References:
- Berman, A. S. Laminar flow in channels with porous
walls. Journal of Applied physics , 24 (9), 1232-1235,
(1953).
- Sellars, J. R. Laminar flow in channels with porous walls at high
suction Reynolds numbers. Journal of Applied
Physics , 26 (4), 489-490, (1955).
- Wah, T. Laminar flow in a uniformly porous channel. The
Aeronautical Quarterly , 15 (3), 299-310, (1964).
- Terrill, R. M. Laminar flow in a uniformly porous channel with large
injection. The Aeronautical Quarterly , 16 (4), 323-332,
(1965).
- Sastry, V. U. K., & Rao, V. R. M. Numerical solution of micropolar
fluid flow in a channel with porous walls. International Journal
of Engineering Science , 20 (5), 631-642, (1982).
- Srinivasacharya, D., Murthy, J. R., & Venugopalam, D. Unsteady stokes
flow of micropolar fluid between two parallel porous
plates. International Journal of Engineering
Science , 39 (14), 1557-1563, (2001).
- Xu, H., Liao, S. J., & Pop, I. Series solutions of unsteady boundary
layer flow of a micropolar fluid near the forward stagnation point of
a plane surface. Acta Mechanica , 184 (1-4), 87-101,
(2006).
- Elbashbeshy, E. M. A., Abdelgaber, K. M., & Asker, H. G. Unsteady
flow of micropolar Maxwell fluid over stretching surface in the
presence of magnetic field. International Journal of Electronic
Engineering and Computer Science , 2 (4), 28-34, (2017).
- Devakar, M., & Raje, A. A study on the unsteady flow of two
immiscible micropolar and Newtonian fluids through a horizontal
channel: A numerical approach. The European Physical Journal
Plus , 133 (5), 180, (2018).
- Waqas, H., Imran, M., Khan, S. U., Shehzad, S. A., & Meraj, M. A.
Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles
with porous medium: a numerical study. Applied Mathematics and
Mechanics , 40 (9), 1255-1268, (2019).
- Bhattacharjee, B., Chakraborti, P., & Choudhuri, K. Theoretical
analysis of single-layered porous short journal bearing under the
lubrication of micropolar fluid. Journal of the Brazilian
Society of Mechanical Sciences and Engineering , 41 (9), 365,
(2019).
- Rana, S., & Mehmood, R. August). Hydromagnetic steady flow of a micro
polar nano fluid impinging obliquely over a stretching surface with
Newtonian heating. In 2019 International Conference on Applied
and Engineering Mathematics (ICAEM) (pp. 169-173). IEEE, (2019.
- Eringen, A. C. Theory of micropolar fluids. Journal of
Mathematics and Mechanics , 1-18, (1966).
- Eringen, A. C. Simple microfluids. International Journal of
Engineering Science , 2 (2), 205-217, (1964).
- Shukla, J. B., & Isa, M. Generalized Reynolds equation for micropolar
lubricants and its application to optimum one-dimensional slider
bearings: effects of solid-particle additives in
solution. Journal of Mechanical Engineering
Science , 17 (5), 280-284, (1975).
- Lockwood, F. E., Benchaita, M. T., & Friberg, S. E. Study of
lyotropic liquid crystals in viscometric flow and electrohydrodynamic
contact. ASLE transactions , 30 (4), 539-548, (1986).
- Khonsari, M. M., & Brewe, D. E. On the performance of finite journal
bearings lubricated with micropolar fluids. Tribology
Transactions , 32 (2), 155-160, (1989).
- Nazar, R., Amin, N., Filip, D., & Pop, I. Stagnation point flow of a
micropolar fluid towards a stretching sheet. International
Journal of Non-Linear Mechanics , 39 (7), 1227-1235, (2004).
- Ishak, A., Nazar, R., & Pop, I. Stagnation flow of a micropolar fluid
towards a vertical permeable surface. International
Communications in Heat and Mass Transfer , 35 (3), 276-281,
(2008).
- Hayat, T., Nawaz, M., & Obaidat, S. Axisymmetric magnetohydrodynamic
flow of micropolar fluid between unsteady stretching
surfaces. Applied Mathematics and Mechanics , 32 (3),
361-374, (2011).
- Nadeem, S., Masood, S., Mehmood, R., & Sadiq, M. A. Optimal and
numerical solutions for an MHD micropolar nanofluid between rotating
horizontal parallel plates. Plos one , 10 (6), e0124016,
(2015).
- Subhani, M., & Nadeem, S. Numerical analysis of micropolar hybrid
nanofluid. Applied Nanoscience , 9 (4), 447-459, (2019).
- Nadeem, S., Khan, M. N., Khan, M. N., Muhammad, N., & Ahmad, S.
Erratum to: Mathematical analysis of bio-convective micropolar
nanofluid Erratum to: Journal of Computational Design and
Engineering. Journal of Computational Design and Engineering,(2019).
- Nadeem, S., Malik, M. Y., & Abbas, N. Heat transfer of three
dimensional micropolar fluids on Riga plate. Canadian Journal of
Physics , (ja), (2019).
- Blasius, P. H. Grenzschichten in Flussigkeiten rnit kleiner
Reibung. Zeitschriji fir Mathematik und Physik , 56 (1),
(1908).
- Howarth, L. On the solution of the laminar boundary layer
equations. Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences , 547-579, (1938).
- Sakiadis, B. C. Boundary‐layer behavior on continuous solid surfaces:
I. Boundary‐layer equations for two‐dimensional and axisymmetric
flow. AIChE Journal , 7 (1), 26-28, (1961).
- Tsou, F. K., Sparrow, E. M., & Goldstein, R. J. Flow and heat
transfer in the boundary layer on a continuous moving
surface. International Journal of Heat and Mass
Transfer , 10 (2), 219-235, (1967).
- Crane, L. J. Flow past a stretching plate. Zeitschrift für
angewandte Mathematik und Physik ZAMP , 21 (4), 645-647, (1970).
- Miklavčič, M., & Wang, C. Viscous flow due to a shrinking
sheet. Quarterly of Applied Mathematics , 64 (2), 283-290,
(2006).
- Fang, T. Boundary layer flow over a shrinking sheet with power-law
velocity. International Journal of Heat and Mass
Transfer , 51 (25-26), 5838-5843, (2008).
- Akbar, N. S., Nadeem, S., Haq, R. U., & Khan, Z. H. Numerical
solutions of Magnetohydrodynamic boundary layer flow of tangent
hyperbolic fluid towards a stretching sheet. Indian journal of
Physics , 87 (11), 1121-1124, (2013).
- Hussain, S. T., Nadeem, S., & Haq, R. U. Model-based analysis of
micropolar nanofluid flow over a stretching surface. The
European physical journal plus , 129 (8), 161, (2014).
- Halim, N. A., Haq, R. U., & Noor, N. F. M. Active and passive
controls of nanoparticles in Maxwell stagnation point flow over a
slipped stretched surface. Meccanica , 52 (7), 1527-1539,
(2017).
- Alblawi, A., Malik, M. Y., Nadeem, S., & Abbas, N. Buongiorno’s
Nanofluid Model over a Curved Exponentially Stretching
Surface. Processes , 7 (10), 665, (2019).
- Khan, W. A., Waqas, M., Ali, M., Sultan, F., Shahzad, M., & Irfan, M.
Mathematical analysis of thermally radiative time-dependent Sisko
nanofluid flow for curved surface. International Journal of
Numerical Methods for Heat & Fluid Flow, (2019)..
- Ahmad, L., & Khan, M. Importance of activation energy in development
of chemical covalent bonding in flow of Sisko magneto-nanofluids over
a porous moving curved surface. International Journal of
Hydrogen Energy , 44 (21), 10197-10206, (2019).
- Ahmad, L., & Khan, M. (2019). Numerical simulation for MHD flow of
Sisko nanofluid over a moving curved surface: A revised
model. Microsystem Technologies , 25 (6), 2411-2428.
- Ahmed, A., Khan, M., Ahmed, J., & Hafeez, A. (2004). Von Kármán
rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov
theory with a Buongiorno model. Applied Mathematics and
Mechanics , 1-14.
- Hafeez, A., Khan, M., Ahmed, A., & Ahmed, J. (2020). Rotational flow
of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion
theory. Applied Mathematics and Mechanics (English Edition) .
- Shah, Z., McCash, L.B., Dawar, A., Bonyah, E., (2020) Entropy
Optimisation in Darcy-Focheimer MHD Flow of Water Based Copper and
Silver Nanofluids with Joule Heating and Viscous Dissipation
Effects. AIP Advances, June 2020
- Ahmad, M.W., McCash, L.B., Shah, Z., Nawaz, R. (2020)
Cattaneo-Christov Heat Flux Model for Second Grade Nanofluid Flow with
Hall Effect through Entropy Generation over Stretchable Rotating
Disk. Coatings 2020, 10, 610