References:
  1. Berman, A. S. Laminar flow in channels with porous walls. Journal of Applied physics24 (9), 1232-1235, (1953).
  2. Sellars, J. R. Laminar flow in channels with porous walls at high suction Reynolds numbers. Journal of Applied Physics26 (4), 489-490, (1955).
  3. Wah, T. Laminar flow in a uniformly porous channel. The Aeronautical Quarterly15 (3), 299-310, (1964).
  4. Terrill, R. M. Laminar flow in a uniformly porous channel with large injection. The Aeronautical Quarterly16 (4), 323-332, (1965).
  5. Sastry, V. U. K., & Rao, V. R. M. Numerical solution of micropolar fluid flow in a channel with porous walls. International Journal of Engineering Science20 (5), 631-642, (1982).
  6. Srinivasacharya, D., Murthy, J. R., & Venugopalam, D. Unsteady stokes flow of micropolar fluid between two parallel porous plates. International Journal of Engineering Science39 (14), 1557-1563, (2001).
  7. Xu, H., Liao, S. J., & Pop, I. Series solutions of unsteady boundary layer flow of a micropolar fluid near the forward stagnation point of a plane surface. Acta Mechanica184 (1-4), 87-101, (2006).
  8. Elbashbeshy, E. M. A., Abdelgaber, K. M., & Asker, H. G. Unsteady flow of micropolar Maxwell fluid over stretching surface in the presence of magnetic field. International Journal of Electronic Engineering and Computer Science2 (4), 28-34, (2017).
  9. Devakar, M., & Raje, A. A study on the unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel: A numerical approach. The European Physical Journal Plus133 (5), 180, (2018).
  10. Waqas, H., Imran, M., Khan, S. U., Shehzad, S. A., & Meraj, M. A. Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study. Applied Mathematics and Mechanics40 (9), 1255-1268, (2019).
  11. Bhattacharjee, B., Chakraborti, P., & Choudhuri, K. Theoretical analysis of single-layered porous short journal bearing under the lubrication of micropolar fluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering41 (9), 365, (2019).
  12. Rana, S., & Mehmood, R. August). Hydromagnetic steady flow of a micro polar nano fluid impinging obliquely over a stretching surface with Newtonian heating. In 2019 International Conference on Applied and Engineering Mathematics (ICAEM)  (pp. 169-173). IEEE, (2019.
  13. Eringen, A. C. Theory of micropolar fluids. Journal of Mathematics and Mechanics , 1-18, (1966).
  14. Eringen, A. C. Simple microfluids. International Journal of Engineering Science2 (2), 205-217, (1964).
  15. Shukla, J. B., & Isa, M. Generalized Reynolds equation for micropolar lubricants and its application to optimum one-dimensional slider bearings: effects of solid-particle additives in solution. Journal of Mechanical Engineering Science17 (5), 280-284, (1975).
  16. Lockwood, F. E., Benchaita, M. T., & Friberg, S. E. Study of lyotropic liquid crystals in viscometric flow and electrohydrodynamic contact. ASLE transactions30 (4), 539-548, (1986).
  17. Khonsari, M. M., & Brewe, D. E. On the performance of finite journal bearings lubricated with micropolar fluids. Tribology Transactions32 (2), 155-160, (1989).
  18. Nazar, R., Amin, N., Filip, D., & Pop, I. Stagnation point flow of a micropolar fluid towards a stretching sheet. International Journal of Non-Linear Mechanics39 (7), 1227-1235, (2004).
  19. Ishak, A., Nazar, R., & Pop, I. Stagnation flow of a micropolar fluid towards a vertical permeable surface. International Communications in Heat and Mass Transfer35 (3), 276-281, (2008).
  20. Hayat, T., Nawaz, M., & Obaidat, S. Axisymmetric magnetohydrodynamic flow of micropolar fluid between unsteady stretching surfaces. Applied Mathematics and Mechanics32 (3), 361-374, (2011).
  21. Nadeem, S., Masood, S., Mehmood, R., & Sadiq, M. A. Optimal and numerical solutions for an MHD micropolar nanofluid between rotating horizontal parallel plates. Plos one10 (6), e0124016, (2015).
  22. Subhani, M., & Nadeem, S. Numerical analysis of micropolar hybrid nanofluid. Applied Nanoscience9 (4), 447-459, (2019).
  23. Nadeem, S., Khan, M. N., Khan, M. N., Muhammad, N., & Ahmad, S. Erratum to: Mathematical analysis of bio-convective micropolar nanofluid Erratum to: Journal of Computational Design and Engineering. Journal of Computational Design and Engineering,(2019).
  24. Nadeem, S., Malik, M. Y., & Abbas, N. Heat transfer of three dimensional micropolar fluids on Riga plate. Canadian Journal of Physics , (ja), (2019).
  25. Blasius, P. H. Grenzschichten in Flussigkeiten rnit kleiner Reibung. Zeitschriji fir Mathematik und Physik56 (1), (1908).
  26. Howarth, L. On the solution of the laminar boundary layer equations. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences , 547-579, (1938).
  27. Sakiadis, B. C. Boundary‐layer behavior on continuous solid surfaces: I. Boundary‐layer equations for two‐dimensional and axisymmetric flow. AIChE Journal7 (1), 26-28, (1961).
  28. Tsou, F. K., Sparrow, E. M., & Goldstein, R. J. Flow and heat transfer in the boundary layer on a continuous moving surface. International Journal of Heat and Mass Transfer10 (2), 219-235, (1967).
  29. Crane, L. J. Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP21 (4), 645-647, (1970).
  30. Miklavčič, M., & Wang, C. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics64 (2), 283-290, (2006).
  31. Fang, T. Boundary layer flow over a shrinking sheet with power-law velocity. International Journal of Heat and Mass Transfer51 (25-26), 5838-5843, (2008).
  32. Akbar, N. S., Nadeem, S., Haq, R. U., & Khan, Z. H. Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian journal of Physics87 (11), 1121-1124, (2013).
  33. Hussain, S. T., Nadeem, S., & Haq, R. U. Model-based analysis of micropolar nanofluid flow over a stretching surface. The European physical journal plus129 (8), 161, (2014).
  34. Halim, N. A., Haq, R. U., & Noor, N. F. M. Active and passive controls of nanoparticles in Maxwell stagnation point flow over a slipped stretched surface. Meccanica52 (7), 1527-1539, (2017).
  35. Alblawi, A., Malik, M. Y., Nadeem, S., & Abbas, N. Buongiorno’s Nanofluid Model over a Curved Exponentially Stretching Surface. Processes7 (10), 665, (2019).
  36. Khan, W. A., Waqas, M., Ali, M., Sultan, F., Shahzad, M., & Irfan, M. Mathematical analysis of thermally radiative time-dependent Sisko nanofluid flow for curved surface. International Journal of Numerical Methods for Heat & Fluid Flow, (2019)..
  37. Ahmad, L., & Khan, M. Importance of activation energy in development of chemical covalent bonding in flow of Sisko magneto-nanofluids over a porous moving curved surface. International Journal of Hydrogen Energy44 (21), 10197-10206, (2019).
  38. Ahmad, L., & Khan, M. (2019). Numerical simulation for MHD flow of Sisko nanofluid over a moving curved surface: A revised model. Microsystem Technologies25 (6), 2411-2428.
  39. Ahmed, A., Khan, M., Ahmed, J., & Hafeez, A. (2004). Von Kármán rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov theory with a Buongiorno model. Applied Mathematics and Mechanics , 1-14.
  40. Hafeez, A., Khan, M., Ahmed, A., & Ahmed, J. (2020). Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory. Applied Mathematics and Mechanics (English Edition) .
  41. Shah, Z., McCash, L.B., Dawar, A., Bonyah, E., (2020) Entropy Optimisation in Darcy-Focheimer MHD Flow of Water Based Copper and Silver Nanofluids with Joule Heating and Viscous Dissipation Effects. AIP Advances, June 2020
  42. Ahmad, M.W.,  McCash, L.B., Shah, Z., Nawaz, R. (2020) Cattaneo-Christov Heat Flux Model for Second Grade Nanofluid Flow with Hall Effect through Entropy Generation over Stretchable Rotating Disk. Coatings  2020, 10, 610