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Abstract

In this paper, random coupled Ginzburg-Landau equation driven by colored

noise on unbounded domains is considered, in which nonlinear term satisfies

local Lipschitz condition. It is shown that random attractor of such coupled

Ginzburg-Landau equation is singleton set, and the components of solutions are

very close when the coupling parameter becomes large enough.
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1. Introduction

Synchronization phenomenon, which was discovered in many fields such as

physics, biology, and social science [1, 2, 3], has been paid more attention due to

its extensive applications in secure communications, optimization of nonlinear

system performance [4, 5]. Synchronization of deterministic coupled dissipative5

systems has been investigated [6, 7, 8].

Since noise is omnipresent in real world, random perturbation is an impor-

tant factor worthy of being considered in synchronization. The persistence and

convergence rate of synchronization under additive noise were investigated in [9]

and [10], respectively. Moreover, synchronization of coupled sine-Gordon wave10
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model on bounded domain perturbed by additive white noise was investigated

by the quasi-stability method [11].

For linear multiplicative noises, synchronization of Stratonovich stochastic

differential equations was investigated in [12] by transforming it to random

ordinary differential equations. Recently, synchronization for additive noise and15

linear multiplicative noise was investigated in [13] by the theory of Imkeller and

Schmalfuss. However, the methods in the above references can not deal with

synchronization for systems with nonlinear noise. Z. Li and J. Liu [14] proved the

synchronization result for stochastic differential equations with general nonlinear

multiplicative noise in the mean square sense.20

It is worth mentioning that nonlinear terms in the above literature satisfy

one-sided dissipative Lipschitz conditions or global Lipschitz conditions. When

nonlinear term satisfies local Lipschitz condition, random attractor and syn-

chronization were studied for stochastic reaction-diffusion system with additive

space-time noise on a thin bounded domain [15].25

Motivated by the above literature, in this paper, we will consider random

coupled complex Ginzburg-Landau equation driven by colored noise on un-

bounded domains

∂uε

∂t
− (1 + iλ)∆uε = −ρ1uε + f(uε) + ε(vε − uε) + uεGδ (θtω) ,

∂vε

∂t
− (1 + iλ)∆vε = −ρ2vε + f(vε) + ε(uε − vε) + vεGδ (θtω) ,

uε(τ, x) = uτ (x), vε(τ, x) = vτ (x),

(1.1)

where uε(t, x), vε(t, x) are unknown complex-value functions, t ≥ τ , x ∈ R, i is

the imaginary unit, λ, µ ∈ R, ρ1, ρ2 > 0, the nonlinear term f(u) = −(1 + iµ) |30

u |2 u is complex-valued function, ε > 0 is coupling parameter, and Gδ(θtω)

is colored noise introduced in [16, 17] and is the unique stationary solution of

stochastic differential equation dGδ + 1
δGδdt = 1

δdW .

It is worth noting that the nonlinear term f in (1.1) does not satisfy glob-

al Lipschitz conditions such as [11] and one-sided Lipschitz conditions such as35

[12, 13]. Moreover, different from the case of bounded domain in [11, 15], Sobolev

embedding on unbounded domain is noncompact. In [19], the authors investi-
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gated random attractor for nonautonomous random Ginzburg-Landau equation

on unbounded domain driven by nonlinear colored noise by the tail-estimates

method and the properties of the colored noise. In this paper, we will further40

prove that the solutions of (1.1) converge pathwise to each other and random

attractor set is singleton set in Section 3. Moreover, it will be also proved the

solution (uε, vε) of coupled system (1.1) satisfies lim
ε→+∞

‖uε(t) − vε(t)‖2 = 0

uniformly on any bounded time-interval. In addition, one can refer to [18]

for random attractor of fractional Ginzburg-Landau equations on bounded do-45

main driven by colored noise and [20] for random attractor of coupled fractional

Ginzburg-Landau equation.

Throughout this paper, let ‖ · ‖ and (·, ·) denote the norm and the inner

product of L2 (R), respectively. The Sobolev space Hk(R) (k ∈ N) consists of all

u ∈ L2 (R) whose weak derivatives up to order k belong to L2 (R) as well, which50

is a separable Banach space with norm ‖u‖Hk(R) :=

( ∑
|α|≤k

∫
R |D

αu(x)|2 dx

) 1
2

.

Denote |ξ|2Hk(R) := ‖u‖2Hk(R) + ‖v‖2Hk(R), |ξ|
k
Lk(R) := ‖u‖kLk(R) + ‖v‖kLk(R), where

ξ = (u, v)T .

2. Preliminaries

In this section, we recall some properties about colored noise, which are55

useful for proof of main results.

Lemma 2.1 ([21]). (1) For every ω ∈ Ω, the mapping t 7→ Gδ (θtω) is continu-

ous, and for every 0 < δ ≤ 1,

lim
t→±∞

|Gδ (θtω)|
t

= 0.

(2) For every ω ∈ Ω,

lim
t→±∞

1

t

∫ t

0

Gδ (θsω) ds = 0 uniformly for 0 < δ ≤ 1.

Lemma 2.2 ([22]). Let τ ∈ R, ω ∈ Ω and T > 0. Then there exist δ0 =

δ0(τ, ω, T ) > 0 and M = M(τ, ω, T ) > 0 such that for all 0 < δ < δ0 and
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t ∈ [τ, τ + T ], ∣∣∣∣∫ t

0

Gδ (θsω) ds

∣∣∣∣ ≤M.

3. The asymptotic behavior of the coupled system

The system (1.1) can be rewritten as

∂ξε

∂t
− (1 + iλ)∆ξε = F (ξε) + εBξε + ξεGδ(θtω) (3.1)

with initial datum (uτ , vτ )T , where

ξε =

uε
vε

 , F (ξε) =

−ρ1uε + f(uε)

−ρ2vε + f(vε)

 , B =

−1 1

1 −1

 .
Similar to [19], one can know that system (3.1) exists a unique solution

ξε ∈ C
(
[τ,∞);L2(R)× L2(R)

)⋂
L2
loc

(
[τ,∞);H1(R)×H1(R)

)
, and60

ξε ∈ L4
loc

(
[τ,∞);L4(R)× L4(R)

)
, and system (3.1) exists a unique random

attractor. In what follows, we will first show random attractor is singleton set.

Theorem 3.1. For any ρ1, ρ2 > 0, random attractor sets of coupled system

(3.1) are singleton sets for any given ε > 0.

Proof. Let ξε = (uε1, v
ε
1)T and ηε = (uε2, v

ε
2)T be the solutions of (3.1) with65

initial data ξτ = (u1,τ , v1,τ )T and ητ = (u2,τ , v2,τ )T , respectively. Then we have

d

dt
|ξε − ηε|2 + 2|∇(ξε − ηε)|2

=2Re〈F (ξε)− F (ηε), ξε − ηε〉+ 2Re〈εB(ξε − ηε), ξε − ηε〉

+ 2Gδ (θtω) |ξε − ηε|2.

(3.2)

For the first term on the right-hand side of (3.2), it follows from the Hölder

inequality and the Young inequality that

Re〈F (ξε)− F (ηε), ξε − ηε〉

≤ − ρ1‖uε1 − uε2‖2 − ρ2‖vε1 − vε2‖2 + min{ρ1
2
,
ρ2
2
, 1}‖uε1 − uε2‖2H1(R)

+ min{ρ1
2
,
ρ2
2
, 1}‖vε1 − vε2‖2H1(R)

+
3

2
4
3

(
1 + 2

√
2
√

1 + µ2
) 4

3
(

min{ρ1
2
,
ρ2
2
, 1}
)− 1

3

[
(
‖uε1‖

8
3

L4(R) + ‖uε2‖
8
3

L4(R)

)
‖uε1 − uε2‖2 +

(
‖vε1‖

8
3

L4(R) + ‖vε2‖
8
3

L4(R)

)
‖vε1 − vε2‖2]
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≤−min{ρ1, ρ2}|ξε − ηε|2 + min{ρ1
2
,
ρ2
2
, 1}|ξε − ηε|2H1(R) + C(ξε, ηε)|ξε − ηε|2,

where C(ξε, ηε) = a
[
|ξε|

8
3

L4(R) + |ηε|
8
3

L4(R)

]
,

a = 3

2
4
3

(
1 + 2

√
2
√

1 + µ2
) 4

3 (
min{ρ12 ,

ρ2
2 , 1}

)− 1
3 .

Then together with (3.2), we have

d

dt
|ξε − ηε|2

≤−min{ρ1, ρ2}|ξε − ηε|2 + 2C(ξε, ηε)|ξε − ηε|2 + 2Gδ (θtω) |ξε − ηε|2.

From the Gronwall inequality, we can obtain

|ξε − ηε|2 ≤ e−min{ρ1,ρ2}(t−τ)+2
∫ t
τ
Gδ(θsω)ds+2

∫ t
τ
C(ξε,ηε)ds|ξτ − ητ |2. (3.3)

Since

d

dt
|ξε|2 + 2|∇(ξε)|2

=2Re〈F (ξε), ξε〉+ 2Re〈εBξε, ξε〉+ 2Gδ (θtω) |ξε|2

≤− 2ρ1‖uε1‖2 − 2ρ2‖vε1‖2 − 2‖uε1‖4L4(R) − 2‖vε1‖4L4(R) + 2Gδ (θtω) |ξε|2

≤− 2 min{ρ1, ρ2}|ξε|2 − 2‖uε1‖4L4(R) − 2‖vε1‖4L4(R) + 2Gδ (θtω) |ξε|2,

we have
d

dt
|ξε|2 + 2|∇(ξε)|2 + 2‖uε1‖4L4(R) + 2‖vε1‖4L4(R)

≤− 2 min{ρ1, ρ2}|ξε|2 + 2Gδ (θtω) |ξε|2.
(3.4)

By the Gronwall inequality, one can obtain

|ξε|2 ≤ e2
∫ t
τ
[−min{ρ1,ρ2}+Gδ(θsω)]ds|ξτ |2. (3.5)

From (3.4) and (3.5), it follows that70 ∫ t

τ

‖uε1‖4L4(R)ds+

∫ t

τ

‖vε1‖4L4(R)ds

≤1

2
|ξτ |2 +

∫ t

τ

Gδ (θsω) |ξε|2ds

≤1

2
|ξτ |2 +

∫ t

τ

|Gδ (θsω) |e2
∫ s
τ
[−min{ρ1,ρ2}+Gδ(θrω)]dr|ξτ |2ds.

(3.6)

By Lemma 2.1, there exists T (ω) such that for all t > T (ω),
∫ t
τ
Gδ (θsω) ds ≤

min{ρ1,ρ2}
4 (t − τ) and |Gδ (θtω) | ≤ t. In addition, by Lemma 2.2, there exists
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M(ω) such that
∫ T (ω)

τ
|Gδ (θtω) |dt ≤M(ω). Then together with (3.6), we obtain∫ t

τ

‖uε1‖4L4(R)ds+

∫ t

τ

‖vε1‖4L4(R)ds

≤M ′(ω)|ξτ |2 + |ξτ |2
∫ t

T (ω)

se−
3
2 min{ρ1,ρ2}(s−τ)ds,

(3.7)

where M ′(ω) =
∫ T (ω)

τ
|Gδ (θsω) |e2

∫ s
τ
[−min{ρ1,ρ2}+Gδ(θrω)]drds+ 1

2 .

Similarly, we have75 ∫ t

τ

‖uε2‖4L4(R)ds+

∫ t

τ

‖vε2‖4L4(R)ds

≤M ′(ω)|ητ |2 + |ητ |2
∫ t

T (ω)

se−
3
2 min{ρ1,ρ2}(s−τ)ds.

(3.8)

From (3.7), (3.8) and the Hölder inequality, it follows that∫ t

τ

C(ξε, ηε)ds

≤a

[(∫ t

τ

|ξε|4L4(R)ds

) 2
3

+

(∫ t

τ

|ηε|4L4(R)ds

) 2
3

]
(t− τ)

1
3

≤a

(M ′(ω)|ξτ |2 + |ξτ |2
∫ +∞

T (ω)

se−
3
2 min{ρ1,ρ2}(s−τ)ds

) 2
3

+

(
M ′(ω)|ητ |2 + |ητ |2

∫ +∞

T (ω)

se−
3
2 min{ρ1,ρ2}(s−τ)ds

) 2
3

 (t− τ)
1
3

:=C(ω, ξτ , ητ )(t− τ)
1
3 ,

(3.9)

which together with (3.3) implies that

|ξε − ηε|2 ≤ e−min{ρ1,ρ2}(t−τ)+2
∫ t
τ
Gδ(θsω)ds+C(ω,ξτ ,ητ )(t−τ)

1
3 |ξτ − ητ |2.

Noticing that ρ1, ρ2 > 0, thus we can obtain

lim
t→+∞

|ξε(t)− ηε(t)|2 = 0,

which implies that random attractor sets of coupled system (3.1) are singleton

sets.

Remark 3.1. Since (0, 0) is the solution of (3.1), it follows by Theorem 3.1

that random attractor is actually singleton set {(0, 0)}.80
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Theorem 3.2. The solution (uε, vε) of coupled system (1.1) satisfies

lim
ε→+∞

‖uε(t)− vε(t)‖2 = 0

uniformly on any bounded time-interval [T1, T2] of R.

Proof. Let ξε = (uε, vε)T be the solution of (1.1) with initial datum ξτ =

(uτ , vτ )T , then we have

d

dt
‖uε − vε‖2 + 2‖∇(uε − vε)‖2

≤− 2ρ1‖uε − vε‖2 + 2|ρ2 − ρ1|‖uε − vε‖2 + 2|ρ2 − ρ1|‖vε‖2

− 2Re(1 + iµ)〈|uε|2uε − |vε|2vε, uε − uε〉 − 4ε‖uε − vε‖2 + 2Gδ (θtω) ‖uε − vε‖2

≤ [−2ρ1 + 2|ρ2 − ρ1| − 4ε+ 2Gδ (θtω)] ‖uε − vε‖2 + min{ρ1
2
, 1}‖uε − vε‖2H1(R)

+ C(uε, vε)‖uε − vε‖2 + 2|ρ2 − ρ1|‖vε‖2,

where C(uε, vε) = b
(
‖uε‖

8
3

L4(R) + ‖vε‖
8
3

L4(R)

)
,

b = 3

2
1
3

(
1 + 2

√
2
√

1 + µ2
) 4

3 (
min{ρ12 , 1}

)− 1
3 .

Therefore, we have

d

dt
‖uε − vε‖2 ≤ [−ρ1 + 2|ρ2 − ρ1| − 4ε+ C(uε, vε) + 2Gδ (θtω)] ‖uε − vε‖2

+ 2|ρ2 − ρ1|‖vε‖2.

By the Gronwall inequality, one can obtain

‖uε(t)− vε(t)‖2

≤e
∫ t
τ
[−ρ1+2|ρ2−ρ1|−4ε+C(uε,vε)+2Gδ(θsω)]ds‖uτ − vτ‖2

+ 2|ρ2 − ρ1|
∫ t

τ

‖vε‖2e
∫ t
s
[−ρ1+2|ρ2−ρ1|−4ε+C(uε,vε)+2Gδ(θrω)]drds.

(3.10)

Similar to (3.5) and (3.9) in the proof of Theorem 3.1, we have

‖vε(t)‖2 ≤ |ξε(t)|2 ≤ e2
∫ t
τ
[−min{ρ1,ρ2}+Gδ(θsω)]ds|ξτ |2 ≤ C(T1, T2, ω, ξτ ), (3.11)∫ t

τ

C(uε, vε)ds ≤2bM ′′
2
3 (ω)|ξτ |

4
3 (T2 − τ)

1
3 (3.12)

for t on any bounded time-interval [T1, T2], where

M ′′(ω) =

∫ T2

τ

|Gδ (θsω) |e2
∫ s
τ
[−min{ρ1,ρ2}+Gδ(θrω)]drds+

1

2
.
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By (3.10)-(3.12) and Lemma 2.2, we obtain

‖uε(t)− vε(t)‖2

≤e2bM
′′ 2

3 (ω)|ξτ |
4
3 (T2−τ)

1
3 e
∫ t
τ
[−ρ1+2|ρ2−ρ1|−4ε+2Gδ(θsω)]ds‖uτ − vτ‖2

+ 2|ρ2 − ρ1|
∫ t

τ

C(T1, T2, ω, ξτ )e2bM
′′ 2

3 (ω)|ξτ |
4
3 (T2−τ)

1
3

· e
∫ t
s
[−ρ1+2|ρ2−ρ1|−4ε+2Gδ(θrω)]drds

≤M(T1, T2, ω, ξτ )e−4ε(T2−τ).

Then we conclude that

‖uε(t)− vε(t)‖2 → 0, ε→ +∞

uniformly for t on any bounded time-interval [T1, T2].85
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