LITERATURE CITED
Ainsworth E.A. & Long S.P. (2005). What have we learned from 15 years
of free-air CO2 enrichment (FACE)? A meta-analytic
review of the responses of photosynthesis, canopy properties and plant
production to rising CO2. New Phytologist 165(2):
351-371.
Arp W.J., Van Mierlo J.E.M., Berendse F. & Snijders W. (1998).
Interactions between elevated CO2 concentration,
nitrogen and water: effects on growth and water use of six perennial
plant species. Plant Cell and Environment 21(1): 1-11.
Belyea L.R. & Malmer N. (2004). Carbon sequestration in peatland:
patterns and mechanisms of response to climate change. Global
Change Biology 10(7): 1043-1052.
Benjamini Y. & Hochberg Y. (1995). Controlling the false discovery
rate: a practical and powerful approach to multiple testing.Journal of the Royal Statistical Society Series B 57: 289-300.
Berendse F., Van Breemen N., Rydin H., Buttler A., Heijmans M., Hoosbeek
M.R., Lee J.A., Mitchell E., Saarinen T., Vasander H., et al .
(2001). Raised atmospheric CO2 levels and increased N
deposition cause shifts in plant species composition and production in
Sphagnum bogs. Global Change Biology 7(5): 591-598.
Betson T.R., Augusti A. & Schleucher J. (2006). Quantification of
deuterium isotopomers of tree-ring cellulose using nuclear magnetic
resonance. Analytical Chemistry 78(24): 8406-8411.
Brooks A. & Farquhar G.D. (1985). Effect of temperature on the
CO2/O2 specificity of
ribulose-1,5-bisphosphate carboxylase oxygenase and the rate of
respiration in the light - Estimates from gas-exchange measurements on
spinach. Planta 165(3): 397-406.
Charman D.J., Beilman D.W., Blaauw M., Booth R.K., Brewer S., Chambers
F.M., Christen J.A., Gallego-Sala A., Harrison S.P., Hughes P.D.M.,et al . (2013). Climate-related changes in peatland carbon
accumulation during the last millennium. Biogeosciences 10(2):
929-944.
Cotrufo M.F., Ineson P. & Scott A. (1998). Elevated CO2reduces the nitrogen concentration of plant tissues. Global Change
Biology 4(1): 43-54.
DeLucia E.H., Moore D.J. & Norby R.J. (2005). Contrasting responses of
forest ecosystems to rising atmospheric CO2:
Implications for the global C cycle. Global Biogeochemical Cycles19(3).
Drake B.G., Gonzalez Meler M.A. & Long S.P. (1997). More efficient
plants: A consequence of rising atmospheric CO2?Annual Review of Plant Physiology and Plant Molecular Biology 48:
609-639.
Ehlers I., Augusti A., Betson T.R., Nilsson M.B., Marshall J.D. &
Schleucher J. (2015). Detecting long-term metabolic shifts using
isotopomers: CO2-driven suppression of photorespiration
in C3 plants over the 20th century. Proceedings of
the National Academy of Science , USA 112(51): 15585-15590.
Evans J.R. & von Caemmerer S. (2013). Temperature response of carbon
isotope discrimination and mesophyll conductance in tobacco. Plant
Cell and Environment 36(4): 745-756.
Farquhar G.D., Ehleringer J.R. & Hubick K.T. (1989). Carbon isotope
discrimination and photosynthesis. Annual Review of Plant
Physiology and Plant Molecular Biology 40: 503-537.
Flanagan L.B. & Farquhar G.D. (2014). Variation in the carbon and
oxygen isotope composition of plant biomass and its relationship to
water-use efficiency at the leaf- and ecosystem-scales in a northern
Great Plains grassland. Plant Cell and Environment 37(2):
425-438.
Franz D., Acosta M., Altimir N., Arriga N., Arrouays D., Aubinet M.,
Aurela M., Ayres E., López-Ballesteros A., et al . (2018). Towards
long-term standardized carbon and greenhouse gas observation for
monitoring Europe’s terrestrial ecosystems: a review.International Agrophysics 32(4): 439-455.
Frolking S., Talbot J., Jones M.C., Treat C.C., Kauffman J.B., Tuittila
E.S. & Roulet N. (2011). Peatlands in the Earth’s 21st century climate
system. Environmental Reviews 19: 371-396.
Gallego-Sala A.V., Charman D.J., Brewer S., Page S.E., Prentice I.C.,
Friedlingstein P., Moreton S., Amesbury M.J., Beilman D.W., Bjorck S.,et al . (2018). Latitudinal limits to the predicted increase of
the peatland carbon sink with warming. Nature Climate Change8(10): 907-913.
Graven H., Allison C.E., Etheridge D.M., Hammer S., Keeling R.F., Levin
I., Meijer H.A.J., Rubino M., Tans P.P., Trudinger C.M., et al .
(2017). Compiled records of carbon isotopes in atmospheric
CO2 for historical simulations in CMIP6.Geoscientific Model Development 10(12): 4405-4417.
Gunnarsson U. (2005). Global patterns of Sphagnum productivity.Journal of Bryology 27: 269-279.
Hajek T., Tuittila E.S., Ilomets M. & Laiho R. (2009). Light responses
of mire mosses - a key to survival after water-level drawdown?Oikos 118(2): 240-250.
Harley P.C., Tenhunen J.D., Murray K.J. & Beyers J. (1989). Irradiance
and temperature effects on photosynthesis of tussock tundra Sphagnum
mosses from the foothills of the Philip Smith Mountains, Alaska.Oecologia 79(2): 251-259.
Hayward P.M. & Clymo R.S. (1982). Profiles of water-content and
pore-size in Sphagnum and peat, and their relation to peat bog ecology.Proceedings of the Royal Society Series B-Biological Sciences
215(1200): 299-325.
Heijmans M.M.P.D., Berendse F., Arp W.J., Masselink A.K., Klees H., de
Visser W. & van Breemen N. (2001). Effects of elevated carbon dioxide
and increased nitrogen deposition on bog vegetation in the Netherlands.Journal of Ecology 89(2): 268-279.
Heijmans M.M.P.D., Klees H., de Visser W. & Berendse F. (2002).
Response of a Sphagnum bog plant community to elevated
CO2 and N supply. Plant Ecology 162(1): 123-134.
Hilbert D.W., Roulet N. & Moore T. (2000). Modelling and analysis of
peatlands as dynamical systems. Journal of Ecology 88(2):
230-242.
Hogg E.H. (1993). Decay potential of hummock and hollow Sphagnum peats
at different depths in a Swedish raised bog. Oikos 66(2):
269-278.
Indermühle A., Stocker T.F., Joos F., Fischer H., Smith H.J., Wahlen M.,
Deck B., Mastroianni D., Tschumi J., Blunier T., et al . (1999).
Holocene carbon-cycle dynamics based on CO2 trapped in
ice at Taylor Dome, Antarctica. Nature 398(6723): 121-126.
IPCC. (2013). Stocker T.F. et al ., eds. Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, UK.
Jauhiainen J., Vasander H. & Silvola J. (1994). Response of Sphagnum
fuscum to N deposition and increased CO2. Journal
of Bryology 18: 83-96.
Jauhiainen J., Vasander H. & Silvola J. (1998). Nutrient concentration
in Sphagna at increased N-deposition rates and raised atmospheric
CO2 concentrations. Plant Ecology 138(2):
149-160.
Jauhiainen J. & Silvola J. (1999). Photosynthesis of Sphagnum fuscum at
long-term raised CO2 concentrations. Annales
Botanici Fennici 36(1): 11-19.
Kirschbaum M.U.F. (2011). Does enhanced photosynthesis enhance growth?
Lessons learned from CO2 enrichment studies. Plant
Physiology 155(1): 117-124.
Klinggräff H.V. (1872). Sphagnum fuscum. Schriften Königl. Phys.-Ökon.
Ges. Königsberg, 13(1): 4, 4.
Laine A.M., Juurola E., Hajek T. & Tuittila E.S. (2011). Sphagnum
growth and ecophysiology during mire succession. Oecologia167(4): 1115-1125.
Laing W.A., Ogren W.L. & Hageman R.H. (1974). Regulation of soybean net
photosynthetic CO2 fixation by interaction of
CO2, O2, and ribulose 1,5-diphosphate
carboxylase. Plant Physiology 54(5): 678-685.
Laing C.G., Granath G., Belyea L.R., Allton K.E. & Rydin H. (2014).
Tradeoffs and scaling of functional traits in Sphagnum as drivers of
carbon cycling in peatlands. Oikos 123(7): 817-828.
Limpens J., Berendse F., Blodau C., Canadell J.G., Freeman C., Holden
J., Roulet N., Rydin H. & Schaepman-Strub G. (2008). Peatlands and the
carbon cycle: from local processes to global implications - a synthesis.Biogeosciences 5(5): 1475-1491.
Loisel J., Yu Z.C., Beilman D.W., Camill P., Alm J., Amesbury M.J.,
Anderson D., Andersson S., Bochicchio C., Barber K., et al .
(2014). A database and synthesis of northern peatland soil properties
and Holocene carbon and nitrogen accumulation. Holocene 24(9):
1028-1042.
McCarter C.P.R. & Price J.S. (2014). Ecohydrology of Sphagnum moss
hummocks: mechanisms of capitula water supply and simulated effects of
evaporation. Ecohydrology 7(1): 33-44.
Mitchell E.A.D., Buttler A., Grosvernier P., Rydin H., Siegenthaler A.
& Gobat J.M. (2002). Contrasted effects of increased N and
CO2 supply on two keystone species in peatland
restoration and implications for global change. Journal of
Ecology 90(3): 529-533.
Moor H., Rydin H., Hylander K., Nilsson M.B., Lindborg R. & Norberg J.
(2017). Towards a trait-based ecology of wetland vegetation.Journal of Ecology 105(6): 1623-1635.
Nijp J.J., Limpens J., Metselaar K., van der Zee S.E.A.T.M., Berendse F.
& Robroek B.J.M. (2014). Can frequent precipitation moderate the impact
of drought on peatmoss carbon uptake in northern peatlands? New
Phytologist 203(1): 70-80.
Nijp J.J., Metselaar K., Limpens J., Teutschbein C., Peichl M., Nilsson
M.B., Brendse F. & van der Zee S.E.A.T.M. (2017). Including
hydrological self-regulating processes in peatland models: Effects on
peatmoss drought projections. Science of the Total Environment580: 1389-1400.
Peichl M., Oquist M., Lofvenius M.O., Ilstedt U., Sagerfors J., Grelle
A., Lindroth A. & Nilsson M.B. (2014). A 12-year record reveals
pre-growing season temperature and water table level threshold effects
on the net carbon dioxide exchange in a boreal fen. Environmental
Research Letters 9(5).
Price J.S. & Whittington P.N. (2010). Water flow in Sphagnum hummocks:
Mesocosm measurements and modelling. Journal of Hydrology381(3-4): 333-340.
Pugh T.A.M., Muller C., Arneth A., Haverd V. & Smith B. (2016). Key
knowledge and data gaps in modelling the influence of
CO2 concentration on the terrestrial carbon sink.Journal of Plant Physiology 203: 3-15.
Poorter H. (1998). Do slow-growing species and nutrient-stressed plants
respond relatively strongly to elevated CO2?Global Change Biology 4(6): 693-697.
Rice S.K. & Giles L. (1996). The influence of water content and leaf
anatomy on carbon isotope discrimination and photosynthesis in Sphagnum.Plant, Cell and Environment 19: 118-124.
Rydin H. & Clymo R.S. (1989). Transport of carbon and
phosphorus-compounds about Sphagnum. Proceedings of the Royal
Society Series B-Biological Sciences 237(1286): 63-84.
Rydin H., Gunnarsson U. & Sundberg S. (2006). The role of Sphagnum in
peatland development and persistence. In: Boreal Peatland Ecosystems
(eds. Wieder R.K. & Vitt D.H.). Ecological Studies (Analysis and
Synthesis), vol 188. Springer, Berlin, Heidelberg.
Rydin H. & Jeglum J.K. (2013). The Biology of Peatlands,
2nd edition. Oxford, UK: Oxford University Press.
Schimel D., Stephens B.B. & Fisher J.B. (2015). Effect of increasing
CO2 on the terrestrial carbon cycle. Proceedings
of the National Academy of Science , USA 112(2): 436-441.
Schipperges B. & Rydin H. (1998). Response of photosynthesis of
Sphagnum species from contrasting microhabitats to tissue water content
and repeated desiccation. New Phytologist 140(4): 677-684.
Schleucher J., Vanderveer P., Markley J.L. & Sharkey T.D. (1999).
Intramolecular deuterium distributions reveal disequilibrium of
chloroplast phosphoglucose isomerase. Plant Cell and Environment22(5): 525-533.
Silvola J. & Aaltonen H. (1984). Water content and photosynthesis in
the peat mosses Sphagnum fuscum and S. augustifolium. Annales
Botanici Fennici 21: 1-6.
Steel R., Torri J. & Dickey D. (1997). Principles and Procedures of
Statistics: A Biometrical Approach. McGraw-Hill College.
Titus J.E., Wagner D.J. & Stephens M.D. (1983). Contrasting water
relations of photosynthesis for 2 Sphagnum mosses. Ecology 64(5):
1109-1115.
Titus J.E. & Wagner D.J. (1984). Carbon balance for two Sphagnum mosses
- Water-balance resolves a physiological paradox. Ecology 65(6):
1765-1774.
Toet S., Cornelissen J.H.C., Aerts R., van Logtestijn R.S.P., de Beus M.
& Stoevelaar R. (2006). Moss responses to elevated CO2and variation in hydrology in a temperate lowland peatland. Plant
Ecology 182(1-2): 27-40.
van der Heijden E., Jauhiainen J., Silvola J., Vasander H. & Kuiper
P.J.C. (2000a). Effects of elevated atmospheric CO2concentration and increased nitrogen deposition on growth and chemical
composition of ombrotrophic Sphagnum balticum and oligo-mesotrophic
Sphagnum papillosum. Journal of Bryology 22: 175-182.
van der Heijden E., Verbeek S.K. & Kuiper P.J.C. (2000b). Elevated
atmospheric CO2 and increased nitrogen deposition:
effects on C and N metabolism and growth of the peat moss Sphagnum
recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change
Biology 6(2): 201-212.
Venables W.N. & Ripley B.D. (2002). Modern Applied Statistics with S,
4th edition. New York: Springer.
Werner R.A., Bruch B.A. & Brand W.A. (1999). ConFlo III - An interface
for high precision δ13C and δ15N
analysis with an extended dynamic range. Rapid Communications in
Mass Spectrometry 13(13): 1237-1241.
Weston D.J., Timm C.M., Walker A.P., Gu L.H., Muchero W., Schmutz J.,
Shaw A.J., Tuskan G.A., Warren J.M. & Wullschleger S.D. (2015).
Sphagnum physiology in the context of changing climate: emergent
influences of genomics, modelling and host-microbiome interactions on
understanding ecosystem function. Plant Cell and Environment38(9): 1737-1751.
Williams T.G. & Flanagan L.B. (1996). Effect of changes in water
content on photosynthesis, transpiration and discrimination against13CO2 and
C18O16O in Pleurozium and Sphagnum.Oecologia 108(1): 38-46.
Williams T.G. & Flanagan L.B. (1998). Measuring and modelling
environmental influences on photosynthetic gas exchange in Sphagnum and
Pleurozium. Plant Cell and Environment 21(6): 555-564.
Wu J.H., Roulet N.T., Nilsson M., Lafleur P. & Humphreys E. (2012).
Simulating the carbon cycling of Northern peat lands using a land
surface scheme coupled to a Wetland Carbon Model (CLASS3W-MWM).Atmosphere-Ocean 50(4): 487-506.
Wu J.H. & Roulet N.T. (2014). Climate change reduces the capacity of
northern peatlands to absorb the atmospheric carbon dioxide: The
different responses of bogs and fens. Global Biogeochemical
Cycles 27: 1005-1024.
Yu Z., Beilman D.W. & Jones M.C. (2009). Sensitivity of northern
peatland carbon dynamics to Holocene climate change. In: Carbon Cycling
in Northern Peatlands (eds. Baird A.J., et al .), Geophys. Monogr.
Ser., vol. 184, AGU, Washington, D.C., 55– 69.