References
André, J. P., Catesson, A. M., & Liberman, M. (1999). Characters and
origin of vessels with heterogenous structure in leaf and flower
abscission zones. Canadian Journal of Botany , 77 (2),
253-261.
André, J. P. (2005). Vascular organization of angiosperms: a new
vision . Science Publishers.
Bréda, N., Cochard, H., Dreyer, E., & Granier, A. (1993). Field
comparison of transpiration, stomatal conductance and vulnerability to
cavitation of Quercus petraea and Quercus robur under water stress.
In Annales des Sciences Forestières (Vol. 50, No. 6, pp.
571-582). EDP Sciences.
Brodersen, C. R., McElrone, A. J., Choat, B., Lee, E. F., Shackel, K.
A., & Matthews, M. A. (2013). In vivo visualizations of drought-induced
embolism spread in Vitis vinifera. Plant
physiology , 161 (4), 1820-1829.
Brodribb, T. J., Skelton, R. P., McAdam, S. A., Bienaimé, D., Lucani, C.
J., & Marmottant, P. (2016a). Visual quantification of embolism reveals
leaf vulnerability to hydraulic failure. New
Phytologist , 209 (4), 1403-1409.
Brodribb, T. J., Bienaimé, D., & Marmottant, P. (2016b). Revealing
catastrophic failure of leaf networks under stress. Proceedings of
the National Academy of Sciences , 113 (17), 4865-4869.
Choat, B., Cobb, A. R., & Jansen, S. (2008). Structure and function of
bordered pits: new discoveries and impacts on whole‐plant hydraulic
function. New phytologist , 177 (3), 608-626.
Choat, B., Drayton, W. M., Brodersen, C., Matthews, M. A., Shackel, K.
A., Wada, H., & Mcelrone, A. J. (2010). Measurement of vulnerability to
water stress‐induced cavitation in grapevine: a comparison of four
techniques applied to a long‐vesseled species. Plant, Cell &
Environment , 33 (9), 1502-1512.
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S.,
Bhaskar, R., … & Jacobsen, A. L. (2012). Global convergence in the
vulnerability of forests to drought. Nature , 491 (7426),
752-755.
Choat, B., Brodersen, C. R., & McElrone, A. J. (2015). Synchrotron
X‐ray microtomography of xylem embolism in Sequoia sempervirens saplings
during cycles of drought and recovery. New
Phytologist , 205 (3), 1095-1105.
Choat, B., Badel, E., Burlett, R., Delzon, S., Cochard, H., & Jansen,
S. (2016). Noninvasive measurement of vulnerability to drought-induced
embolism by X-ray microtomography. Plant
Physiology , 170 (1), 273-282.
Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., & Jansen,
S. (2013). Methods for measuring plant vulnerability to cavitation: a
critical review. Journal of Experimental Botany , 64 (15),
4779-4791.
Cohen, S., Bennink, J., & Tyree, M. (2003). Air method measurements of
apple vessel length distributions with improved apparatus and
theory. Journal of Experimental Botany , 54 (389),
1889-1897.
Crombie, D. S., Hipkins, M. F., & Milburn, J. A. (1985). Gas
penetration of pit membranes in the xylem of Rhododendron as the cause
of acoustically detectable sap cavitation. Functional Plant
Biology , 12 (5), 445-453.
De Baerdemaeker, N. J., Arachchige, K. N. R., Zinkernagel, J., Van den
Bulcke, J., Van Acker, J., Schenk, H. J., & Steppe, K. (2019). The
stability enigma of hydraulic vulnerability curves: addressing the link
between hydraulic conductivity and drought-induced embolism. Tree
Physiology , 39 (10), 1646-1664.
Dixon, H. H., & Joly, J. (1895). On the ascent of sap. Philosophical
Transactions of the Royal Society of London. B, 186, 563-576.
Domec, J. C., & Gartner, B. L. (2001). Cavitation and water storage
capacity in bole xylem segments of mature and young Douglas-fir
trees. Trees , 15 (4), 204-214.
Donaldson, L. A. (2019). Wood cell wall ultrastructure. The key to
understanding wood properties and behaviour. IAWA
Journal , 40 (4), 645-672.
Ellmore, G. S., Zanne, A. E., & Orians, C. M. (2006). Comparative
sectoriality in temperate hardwoods: hydraulics and xylem
anatomy. botanical Journal of the Linnean Society , 150 (1),
61-71.
Espino, S., & Schenk, H. J. (2009). Hydraulically integrated or
modular? Comparing whole‐plant‐level hydraulic systems between two
desert shrub species with different growth forms. New
Phytologist , 183 (1), 142-152.
Greenidge, K. N. H. (1952). An approach to the study of vessel length in
hardwood species. American Journal of Botany , 39 , 570-574.
Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006).
Scaling of angiosperm xylem structure with safety and
efficiency. Tree physiology , 26 (6), 689-701.
Hochberg, U., Albuquerque, C., Rachmilevitch, S., Cochard, H.,
David‐Schwartz, R., Brodersen, C. R., … & Windt, C. W. (2016).
Grapevine petioles are more sensitive to drought induced embolism than
stems: evidence from in vivo MRI and microcomputed tomography
observations of hydraulic vulnerability segmentation. Plant, Cell
& Environment , 39 (9), 1886-1894.
Hochberg, U., Windt, C. W., Ponomarenko, A., Zhang, Y. J., Gersony, J.,
Rockwell, F. E., & Holbrook, N. M. (2017). Stomatal closure, basal leaf
embolism, and shedding protect the hydraulic integrity of grape
stems. Plant Physiology , 174 (2), 764-775.
Jansen, S., & Schenk, H. J. (2015). On the ascent of sap in the
presence of bubbles. American Journal of Botany , 102 (10),
1561-1563.
Jansen, S., Klepsch, M., Li, S., Kotowska, M. M., Schiele, S., Zhang,
Y., & Schenk, H. J. (2018). Challenges in understanding air-seeding in
angiosperm xylem. Acta Hortic , 1222 , 13-20.
Jansen, S., Guan, X., Kaack, L., Trabi, C., Miranda, M. T., Ribeiro, R.
V., & Pereira, L. (In press) The Pneumatron estimates xylem embolism
resistance in angiosperms based on gas diffusion kinetics: a
mini-review. Acta Horticulturae .
Johnson, K. M., Brodersen, C. R., Carins-Murphy, M. R., Choat, B., &
Brodribb, T. J. (2020). Xylem embolism spreads by single-conduit events
in three dry forest angiosperm stems. Plant Physiology .
Kaack, L., Altaner, C. M., Carmesin, C., Diaz, A., Holler, M., Kranz,
C., … & Weber, M. (2019). Function and three-dimensional structure of
intervessel pit membranes in angiosperms: a review. IAWA
Journal , 40 (4), 673-702.
Kitin, P. B., Fujii, T., Abe, H., & Funada, R. (2004). Anatomy of the
vessel network within and between tree rings of Fraxinus lanuginosa
(Oleaceae). American Journal of Botany , 91 (6), 779-788.
Klepsch, M., Zhang, Y., Kotowska, M. M., Lamarque, L. J., Nolf, M.,
Schuldt, B., … & Scoffoni, C. (2018). Is xylem of angiosperm leaves
less resistant to embolism than branches? Insights from microCT,
hydraulics, and anatomy. Journal of Experimental
Botany , 69 (22), 5611-5623.
Kotowska, M. M., Thom, R., Zhang, Y., Schenk, H. J., & Jansen, S.
(2020). Within-tree variability and sample storage effects of bordered
pit membranes in xylem of Acer
pseudoplatanus. Trees , 34 (1), 61-71.
Lamarque, L. J., Corso, D., Torres-Ruiz, J. M., Badel, E., Brodribb, T.
J., Burlett, R., … & Jansen, S. (2018). An inconvenient truth about
xylem resistance to embolism in the model species for refilling Laurus
nobilis L. Annals of forest science , 75 (3), 88.
Lens, F., Sperry, J. S., Christman, M. A., Choat, B., Rabaey, D., &
Jansen, S. (2011). Testing hypotheses that link wood anatomy to
cavitation resistance and hydraulic conductivity in the genus
Acer. New phytologist , 190 (3), 709-723.
Levionnois, S., Ziegler, C., Jansen, S., Calvet, E., Coste, S., Stahl,
C., … & Heuret, P. (2020). Vulnerability and hydraulic segmentations
at the stem‐leaf transition: Coordination across Neotropical
trees. New Phytologist .
Li, S., Lens, F., Espino, S., Karimi, Z., Klepsch, M., Schenk, H. J.,
… & Jansen, S. (2016). Intervessel pit membrane thickness as a key
determinant of embolism resistance in angiosperm xylem. Iawa
Journal , 37 (2), 152-171.
Loepfe, L., Martinez-Vilalta, J., Piñol, J., & Mencuccini, M. (2007).
The relevance of xylem network structure for plant hydraulic efficiency
and safety. Journal of Theoretical Biology , 247 (4),
788-803.
Losso, A., Bär, A., Dämon, B., Dullin, C., Ganthaler, A., Petruzzellis,
F., … & Beikircher, B. (2019). Insights from in vivo micro‐CT
analysis: testing the hydraulic vulnerability segmentation in Acer
pseudoplatanus and Fagus sylvatica seedlings. New
Phytologist , 221 (4), 1831-1842.
Martin‐StPaul, N., Delzon, S., &
Cochard, H. (2017). Plant resistance to drought depends on timely
stomatal closure. Ecology letters , 20 (11), 1437-1447.
Nardini, A., Savi, T., Losso, A., Petit, G., Pacilè, S., Tromba, G., …
& Salleo, S. (2017). X‐ray microtomography observations of xylem
embolism in stems of Laurus nobilis are consistent with hydraulic
measurements of percentage loss of conductance. New
Phytologist , 213 (3), 1068-1075.
Oliveira, R. S., Costa, F. R., van Baalen, E., de Jonge, A.,
Bittencourt, P. R., Almanza, Y., … & Guimaraes, Z. T. (2019).
Embolism resistance drives the distribution of Amazonian rainforest tree
species along hydro‐topographic gradients. New
Phytologist , 221 (3), 1457-1465.
Oskolski, A. A., & Jansen, S. (2009). Distribution of scalariform and
simple perforation plates within the vessel network in secondary xylem
of Araliaceae and its implications for wood evolution. Plant
Systematics and Evolution , 278 (1-2), 43-51.
Pammenter, N. V., & Van der Willigen, C. (1998). A mathematical and
statistical analysis of the curves illustrating vulnerability of xylem
to cavitation. Tree physiology , 18 (8-9), 589-593.
Pan, R., Geng, J., Cai, J., & Tyree, M. T. (2015). A comparison of two
methods for measuring vessel length in woody plants. Plant, cell
& environment , 38 (12), 2519-2526.
Park, J., Go, T., Ryu, J., & Lee, S. J. (2019). Air spreading through
wetted cellulose membranes: Implications for the safety function of
hydraulic valves in plants. Physical Review E , 100 (3),
032409.
Pereira, L., Bittencourt, P. R., Oliveira, R. S., Junior, M. B., Barros,
F. V., Ribeiro, R. V., & Mazzafera, P. (2016). Plant pneumatics: stem
air flow is related to embolism–new perspectives on methods in plant
hydraulics. New Phytologist , 211 (1), 357-370.
Pereira, L., Bittencourt, P. R., Pacheco, V. S., Miranda, M. T., Zhang,
Y., Oliveira, R. S., … & Rowland, L. (2019). The Pneumatron: an
automated pneumatic apparatus for estimating xylem vulnerability to
embolism at high temporal resolution. Plant, cell & environment.
Rančić, D., Quarrie, S. P., Radošević, R., Terzić, M., Pećinar, I.,
Stikić, R., & Jansen, S. (2010). The application of various anatomical
techniques for studying the hydraulic network in tomato fruit
pedicels. Protoplasma , 246 (1-4), 25-31.
Salleo, S., Gullo, M. L., & Siracusano, L. (1984). Distribution of
vessel ends in stems of some diffuse-and ring-porous trees: the nodal
regions as ‘safety zones’ of the water conducting system. Annals
of Botany , 54 (4), 543-552.
Sano, Y., Morris, H., Shimada, H., Ronse De Craene, L. P., & Jansen, S.
(2011). Anatomical features associated with water transport in
imperforate tracheary elements of vessel-bearing
angiosperms. Annals of botany , 107 (6), 953-964.
Schenk, H. J., Steppe, K., & Jansen, S. (2015). Nanobubbles: a new
paradigm for air-seeding in xylem. Trends in plant
science , 20 (4), 199-205.
Schenk, H. J., Espino, S., Romo, D. M., Nima, N., Do, A. Y., Michaud, J.
M., … & Jansen, S. (2017). Xylem surfactants introduce a new element
to the cohesion-tension theory. Plant Physiology , 173 (2),
1177-1196.
Schenk, H. J., Espino, S., Rich‐Cavazos, S. M., & Jansen, S. (2018).
From the sap’s perspective: The nature of vessel surfaces in angiosperm
xylem. American Journal of Botany , 105 (2), 172-185.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair,
M., Pietzsch, T., … & Tinevez, J. Y. (2012). Fiji: an open-source
platform for biological-image analysis. Nature
methods , 9 (7), 676-682.
Scoffoni, C., Albuquerque, C., Brodersen, C. R., Townes, S. V., John, G.
P., Cochard, H., … & Sack, L. (2017). Leaf vein xylem conduit
diameter influences susceptibility to embolism and hydraulic
decline. New Phytologist , 213 (3), 1076-1092.
Skelton, R. P., Dawson, T. E., Thompson, S. E., Shen, Y., Weitz, A. P.,
& Ackerly, D. (2018). Low vulnerability to xylem embolism in leaves and
stems of North American oaks. Plant physiology , 177 (3),
1066-1077.
Sperry, J. S., & Tyree, M. T. (1988). Mechanism of water stress-induced
xylem embolism. Plant physiology , 88 (3), 581-587.
Sperry, J. S., Hacke, U. G., & Wheeler, J. K. (2005). Comparative
analysis of end wall resistivity in xylem conduits. Plant, Cell &
Environment , 28 (4), 456-465.
Tixier, A., Herbette, S., Jansen, S., Capron, M., Tordjeman, P.,
Cochard, H., & Badel, E. (2014). Modelling the mechanical behaviour of
pit membranes in bordered pits with respect to cavitation resistance in
angiosperms. Annals of botany , 114 (2), 325-334.
Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of
trees and other woody plants. New Phytologist , 119 (3),
345-360.
Tyree, M. T., Alexander, J., & Machado, J. L. (1992). Loss of hydraulic
conductivity due to water stress in intact juveniles of Quercus rubra
and Populus deltoides. Tree Physiology , 10 (4), 411-415.
Torres-Ruiz, J. M., Jansen, S., Choat, B., McElrone, A. J., Cochard, H.,
Brodribb, T. J., … & Li, S. (2015). Direct X-ray microtomography
observation confirms the induction of embolism upon xylem cutting under
tension. Plant Physiology , 167 (1), 40-43.
Wang, R., Zhang, L., Zhang, S., Cai, J., & Tyree, M. T. (2014). Water
relations of R obinia pseudoacacia L.: do vessels cavitate and refill
diurnally or are R‐shaped curves invalid in R obinia?. Plant, cell
& environment , 37 (12), 2667-2678.
Wang, Y., Pan, R., & Tyree, M. T. (2015a). Studies on the tempo of
bubble formation in recently cavitated vessels: a model to predict the
pressure of air bubbles. Plant Physiology , 168 (2),
521-531.
Wang, Y., Liu, J., & Tyree, M. T. (2015b). Stem hydraulic conductivity
depends on the pressure at which it is measured and how this dependence
can be used to assess the tempo of bubble pressurization in recently
cavitated vessels. Plant physiology , 169 (4), 2597-2607.
Wason, J. W., Anstreicher, K. S., Stephansky, N., Huggett, B. A., &
Brodersen, C. R. (2018). Hydraulic safety margins and air‐seeding
thresholds in roots, trunks, branches and petioles of four northern
hardwood trees. New Phytologist , 219 (1), 77-88.
Wheeler, J. K., Sperry, J. S., Hacke, U. G., & Hoang, N. (2005).
Inter‐vessel pitting and cavitation in woody Rosaceae and other
vesselled plants: a basis for a safety versus efficiency trade‐off in
xylem transport. Plant, Cell & Environment , 28 (6),
800-812.
Wheeler, J. K., Huggett, B. A., Tofte, A. N., Rockwell, F. E., &
Holbrook, N. M. (2013). Cutting xylem under tension or supersaturated
with gas can generate PLC and the appearance of rapid recovery from
embolism. Plant, Cell & Environment , 36 (11), 1938-1949.
Wolfe, B. T., Sperry, J. S., & Kursar, T. A. (2016). Does leaf shedding
protect stems from cavitation during seasonal droughts? A test of the
hydraulic fuse hypothesis. New Phytologist , 212 (4),
1007-1018.
Wolfe, B. T., Sperry, J. S., & Kursar, T. A. (2016). Does leaf shedding
protect stems from cavitation during seasonal droughts? A test of the
hydraulic fuse hypothesis. New Phytologist , 212 (4),
1007-1018.
Wu M., Zhang Y., Oya T., Marcati C.R., Pereira L., Jansen S.(2020) Root xylem in three woody angiosperm species is not more
vulnerable to embolism than stem xylem. Plant and Soil 450:
479-495.
Yang, J., M Michaud, J., Jansen, S., Schenk, H. J., & Zuo, Y. Y.
(2020). Dynamic surface tension of xylem sap lipids. Tree
Physiology , 40 (4), 433-444.
Zhang, Y. J., Rockwell, F. E., Graham, A. C., Alexander, T., &
Holbrook, N. M. (2016). Reversible leaf xylem collapse: a potential
“circuit breaker” against cavitation. Plant
Physiology , 172 (4), 2261-2274.
Zhang, Y., Klepsch, M., & Jansen, S. (2017). Bordered pits in xylem of
vesselless angiosperms and their possible misinterpretation as
perforation plates. Plant, Cell & Environment , 40 (10),
2133-2146.
Zhang, Y., Lamarque, L. J., Torres-Ruiz, J. M., Schuldt, B., Karimi, Z.,
Li, S., … & Delzon, S. (2018). Testing the plant pneumatic method to
estimate xylem embolism resistance in stems of temperate
trees. Tree physiology , 38 (7), 1016-1025.
Zhang, Y., Carmesin, C., Kaack, L., Klepsch, M. M., Kotowska, M., Matei,
T., … & Jansen, S. (2020). High porosity with tiny pore constrictions
and unbending pathways characterize the 3D structure of intervessel pit
membranes in angiosperm xylem. Plant, cell &
environment , 43 (1), 116-130.
Zhu, S. D., Song, J. J., Li, R. H., & Ye, Q. (2013). Plant hydraulics
and photosynthesis of 34 woody species from different successional
stages of subtropical forests. Plant, Cell &
Environment , 36 (4), 879-891.
Zimmermann, M. H.
(1983). Xylem structure and the ascent of sap . Springer Science
& Business Media.