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Summary

Based on the least square method, we proposed a new algorithm to obtain the solution
of the second kind regular and weakly singular Volterra-Fredholm integral equations
in reproducing kernel spaces. The stability and uniform convergence of the algorithm
are investigated in details. Numerical experiments verify the theoretical findings.
Meanwhile this method is also applicable to the nonlinear Volterra integral equations.
Test problems which have non-smooth solutions are also considered and our pro-
posed method is efficient as some recent Krylov subspace methods such as LSQR
and LSMR.

KEYWORDS:
Volterra-Fredholm integral equation; multiscale basis; reproducing kernel spaces; least square method;
convergence analysis; stability analysis

1 INTRODUCTION

This article mainly discusses the following linear Volterra-Fredholm integral equation (VFIE) of the second kind:

𝑢(𝑥) −

𝑥

∫
𝑎

𝑘1(𝑥, 𝑡)𝑢(𝑡)d𝑡 −

𝑏

∫
𝑎

𝑘2(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓 (𝑥), 𝑥 ∈ [𝑎, 𝑏] (1.1)

with the solution 𝑢 to be confirmed, where 𝑘1, 𝑘2, 𝑓 are known functions, 𝑘1, 𝑘2 are smooth enough.
The VFIE of this type arised in the mathematical modeling of biological and chemical phenomena1,2. In [3], the authors

studied some theoretical results of the equation (1.1), including the existence and uniqueness of the solution. Because equation
(1.1) is usually difficult to be solved analytically, several numerical methods are used, here we refer to [4,5,6,7,8,9,11,17]. For
more details, in [4] a variable transformation method is applied to solving the Volterra integral equations (VIE) of the second
kind. Also, Du and Chen5 proposed a high order reproducing kernel method to solve linear VFIE in the form of (1.1). Chen and
his coworkers suggested approximate and exact schemes for solving some classes of (1.1) in [6] and [7], respectively. Regarding
collocation methods, one can refer to [7] and [8], [9] and [10]. Taylor operational matrices are also implemented in [11].

The reproducing kernel method (RKM) has been widely used in solving some scientific models12,13,14,15,16. For more details,
Li and Wu have implemented a new RKM for variable order fractional boundary value problems (BVPs) in [12]. Geng and Qian
considered the optimal RKM for solving linear nonlocal BVPs in [13]. Xu and Lin implemented a simplified RKM for delay
fractional ordinary differential equations (ODEs) in [14]. The aforementioned simplified RKM was then extended to solve 1D

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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elliptic interface problems in [15]. Also, Abbasbandy and his coworkers used a variant of RKM to approximate the solutions of
Brinkman-Forchheimer momentum equation in [16]. Moreover, a mixture of Newton method and simplified RKM was applied
for computing the solutions of nonlinear fractional ODEs numerically in [17]. In this work, we construct a set of multi-scale
standard orthogonal bases of reproducing kernel space 𝑊 𝑚

2 [𝑎, 𝑏] in section 2. Based on the least square method, we design an
efficient numerical scheme in 𝑊 𝑚

2 [𝑎, 𝑏] for (1.1) in section 3. We proved that the condition number of the coefficient matrix of
the system of linear equations is uniformly bounded. Therefore, the presented scheme is stable. The convergence of this method
is also discussed. We find that the error of 𝑊 𝑚

2 -norm has the first-order convergence while the absolute error has 𝑚 + 1 order
convergence as long as 𝑢 ∈ 𝑊 𝑚

2 [𝑎, 𝑏]. Some numerical results are provided to agree with the theoretical analysis in section 4.
Moreover, in last Section, some interesting models including linear Volterra integro-differential equations (VIDE) of the first
order18 and the second order19, pantograph type delay differential equations20, nonlinear fractional integro-differential equations
(FIDE)21, noncompact Volterra integral equations22,23, integral algebraic equations24 and Volterra integro-differential algebraic
equations25 are introduced as future works that can be solved by the our proposed least square based reproducing kernel space
method.

2 PRELIMINARIES

Definition 1. The reproducing kernel space 𝑊 𝑚
2 [𝑎, 𝑏] is defined by

𝑊 𝑚
2 [𝑎, 𝑏] = {𝑢|𝑢(𝑚−1)is an absolute continuous function on [𝑎, 𝑏], 𝑢(𝑚) ∈ 𝐿2[𝑎, 𝑏]}, (2.1)

and equipped with the inner product and norm

⟨𝑢, 𝑣⟩𝑊 𝑚
2 [𝑎,𝑏] =

𝑚−1∑
𝑖=0

𝑢(𝑖)(𝑎)𝑣(𝑖)(𝑎) +

𝑏

∫
𝑎

𝑢(𝑚)𝑣(𝑚)d𝑥, ∀ 𝑢, 𝑣 ∈ 𝑊 𝑚
2 [𝑎, 𝑏].

‖𝑢‖2𝑊 𝑚
2 [𝑎,𝑏] = ⟨𝑢, 𝑢⟩𝑊 𝑚

2 [𝑎,𝑏], ∀ 𝑢 ∈ 𝑊 𝑚
2 [𝑎, 𝑏].

Definition 2. 26 The kernel function 𝑅𝑠(𝑡) of the reproducing kernel space 𝑊 satisfies⟨𝑢, 𝑅𝑠(𝑡)⟩ = 𝑢(𝑠),∀𝑢 ∈ 𝑊 . (2.2)

For convenience, we abbreviate ⟨⋅, ⋅⟩𝑊 𝑚
2 [𝑎,𝑏] and ‖⋅‖𝑊 𝑚

2 [𝑎,𝑏] as ⟨⋅, ⋅⟩𝑚 and ‖⋅‖𝑚, respectively. We denote𝑅𝑚𝑥 (𝑦) as the reproducing
kernel of 𝑊 𝑚

2 and use (⋅, ⋅) and ‖ ⋅ ‖0 to represent the inner product and norm in 𝐿2[𝑎, 𝑏].

Lemma 1. ∀𝑢 ∈ 𝑊 𝑚
2 [𝑎, 𝑏], satisfies the following where 𝑀 is a constant‖𝑢‖0 ≤𝑀‖𝑢‖𝑚. (2.3)

Proof. ∀𝑥 ∈ [𝑎, 𝑏],
𝑢(𝑥) = ⟨𝑢, 𝑅𝑚𝑥 ⟩𝑚 ≤ ‖𝑢‖𝑚‖𝑅𝑥‖𝑚 ≤𝑀1‖𝑢‖𝑚, ∀𝑢 ∈ 𝑊 𝑚

2 [𝑎, 𝑏],
where 𝑀1 = ‖𝑅𝑥‖𝑚. By the definition of ‖ ⋅ ‖0, we deduce that ‖𝑢‖0 ≤𝑀‖𝑢‖𝑚.

Next, we will give a standard orthogonal basis of 𝑊 1
2 [𝑎, 𝑏]. For 𝑘 = 1, 2, 3,⋯, 𝑖 = 0, 1,⋯ , 2𝑘−1 − 1, let

𝜑𝑘,𝑖 = 2
𝑘−1
2

√
𝑏 − 𝑎

⎧⎪⎨⎪⎩
𝑥−𝑎
𝑏−𝑎

− 𝑖
2𝑘−1

, 𝑥 ∈ [ 𝑖
2𝑘−1

(𝑏 − 𝑎) + 𝑎, 𝑖+1∕2
2𝑘−1

(𝑏 − 𝑎) + 𝑎],
𝑖+1
2𝑘−1

− 𝑥−𝑎
𝑏−𝑎
, 𝑥 ∈ [ 𝑖+1∕2

2𝑘−1
(𝑏 − 𝑎) + 𝑎, 𝑖+1

2𝑘−1
(𝑏 − 𝑎) + 𝑎],

0, 𝑜𝑡ℎ𝑒𝑟𝑠.
(2.4)

Lemma 2.
{
1, 𝑥−𝑎√

𝑏−𝑎
, 𝜑1,0, 𝜑2,0, 𝜑2,1,⋯ , 𝜑𝑘,0, 𝜑𝑘,1,⋯ , 𝜑𝑘,2𝑘−1−1,⋯

}
is a standard orthogonal basis of 𝑊 1

2 [𝑎, 𝑏].

Proof. By a direct computation, we derive⟨1, 1⟩1 = 1, ⟨1, 𝑥 − 𝑎√
𝑏 − 𝑎

⟩1 = 0, ⟨ 𝑥 − 𝑎√
𝑏 − 𝑎

, 𝑥 − 𝑎√
𝑏 − 𝑎

⟩1 = 1,

⟨1, 𝜑𝑘,𝑖⟩1 = ⟨ 𝑥 − 𝑎√
𝑏 − 𝑎

, 𝜑𝑘,𝑖⟩1 = 0, 𝑘 = 1, 2,⋯ , 𝑖 = 0, 1, 2,⋯ , 2𝑘−1 − 1,
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and ⟨𝜑𝑘,𝑖, 𝜑𝑛,𝑗⟩1 = {
1, 𝑘 = 𝑛, 𝑖 = 𝑗,
0, 𝑘 ≠ 𝑛, 𝑖 ≠ 𝑗.

Next, we will prove the basis presented above is complete in 𝑊 1
2 [𝑎, 𝑏]. Assume 𝑢 ∈ 𝑊 1

2 [𝑎, 𝑏] and it satisfies⟨1, 𝑢⟩1 = ⟨ 𝑥 − 𝑎√
𝑏 − 𝑎

, 𝑢⟩1 = 0, ⟨𝜑𝑘,𝑖, 𝑢⟩1 = 0, 𝑘 = 1, 2,⋯ , 𝑖 = 0, 1, 2,⋯ , 2𝑘−1 − 1.

We need to prove 𝑢 ≡ 0. By the definition of ‖ ⋅ ‖𝑚, it’s easily to justify ⟨1, 𝑢⟩1 = 𝑢(0) = 0, ⟨𝑢, 𝑥−𝑎√
𝑏−𝑎

⟩1 = 1√
𝑏−𝑎
𝑢(1) = 0, and⟨𝑢, 𝜑𝑘,𝑖⟩1 = 𝑢( 𝑖

2𝑘−1
(𝑏 − 𝑎) + 𝑎) = 0, 𝑘 = 1, 2,⋯ , 𝑖 = 0, 1, 2,⋯ , 2𝑘−1 − 1. Due to the density of

{
𝑖

2𝑘−1
(𝑏 − 𝑎) + 𝑎

}
𝑘,𝑖

in [a,b] and
the continuity of 𝑢, we obtain that 𝑢 ≡ 0.

Let  be an integral operator, that is, for any 𝑢 ∈ 𝐿2[𝑎, 𝑏], 𝑢 = ∫ 𝑥
𝑎 𝑢(𝑡)d𝑡. Then we have the following two lemmas.

Lemma 3.
{
1, 𝑥 − 𝑎, 1

2
√
𝑏−𝑎

(𝑥 − 𝑎)2,𝜑1,0,𝜑2,0,𝜑2,1,⋯ ,𝜑𝑘,0,𝜑𝑘,1,⋯ ,𝜑𝑘,2𝑘−1−1,⋯
}

is a standard orthogonal basis of
𝑊 2

2 [𝑎, 𝑏].

Proof. According to the definition of inner product and norm in 𝑊 2
2 [𝑎, 𝑏] and simple calculation, the orthogonality of{

1, 𝑥 − 𝑎, 1
2
√
𝑏−𝑎

(𝑥 − 𝑎)2,𝜑1,0,𝜑2,0,𝜑2,1,⋯ ,𝜑𝑘,0,𝜑𝑘,1,⋯ ,𝜑𝑘,2𝑘−1−1,⋯
}

can be obtained. Similar to the proof of
lemma 2.2, the conditions

⟨𝑥 − 𝑎, 𝑢⟩2 = ⟨ (𝑥 − 𝑎)2
2
√
𝑏 − 𝑎

, 𝑢⟩2 = 0, ⟨𝜑𝑘,𝑖, 𝑢⟩2 = 0, 𝑘 = 1, 2,⋯ , 𝑖 = 0, 1, 2,⋯ , 2𝑘−1 − 1,

lead to 𝑢′ ≡ 0. Thus 𝑢 ≡ 𝐶 . Besides, ⟨1, 𝑢⟩2 = 0 results in 𝑢 = 0. Therefore, 𝑢 ≡ 0. The completeness of the above basis is
proved.

Lemma 4.
{
1, 𝑥 − 𝑎, 1

2
(𝑥 − 𝑎)2, 1

6
√
𝑏−𝑎

(𝑥 − 𝑎)3,2𝜑1,0,2𝜑2,0,2𝜑2,1,⋯ ,2𝜑𝑘,0,2𝜑𝑘,1,⋯ ,2𝜑𝑘,2𝑘−1−1,⋯
}

is a standard
orthogonal basis of 𝑊 3

2 [𝑎, 𝑏].

The proof is similar to Lemma 2.3, we omit it here.
Exactly, a standard orthogonal basis of𝑊 𝑚

2 [𝑎, 𝑏] can be obtained. For the sake of simplification, we denote the basis obtained
above in 𝑊 𝑚

2 [𝑎, 𝑏] as
{
𝜓𝑖
}𝑚
𝑖=0

⋃{
𝜙𝑘,0, 𝜙𝑘,1,⋯ , 𝜙𝑘,2𝑘−1−1

}∞
𝑘=1.

According to Eq.(1.1), we define an operator  ∶ 𝑊 𝑚
2 [𝑎, 𝑏] → 𝑊 𝑚

2 [𝑎, 𝑏] as following:

𝑢 = 𝑢(𝑥) −

𝑥

∫
𝑎

𝑘1(𝑥, 𝑡)𝑢(𝑡)d𝑡 −

𝑏

∫
𝑎

𝑘2(𝑥, 𝑡)𝑢(𝑡)d𝑡, 𝑥 ∈ [𝑎, 𝑏].

Obviously, the operator  is linear and bounded.
Remark 2.1: Suppose that 𝑘1(𝑥, 𝑡), 𝑘2(𝑥, 𝑡) ∈ 𝐶𝑚([𝑎, 𝑏])2.

‖𝑢∗𝑛 − 𝑓‖20 = ‖ 𝑚∑
𝑗=0

𝑑∗𝑗𝜓𝑗 +
𝑛∑
𝑘=1

2𝑘−1−1∑
𝑖=0

𝑐∗𝑘,𝑖𝜙𝑘,𝑖 − 𝑓‖20 = min‖𝑢𝑛 − 𝑓‖20. (2.5)

Definition 3. For any positive 𝜖, 𝑣 is termed as an 𝜖-approximating solution of Eq.(1.1) in 𝑊 𝑚
2 [𝑎, 𝑏] if‖𝑣 − 𝑓‖2𝑚 ≤ 𝜖2.

Lemma 5. Assume that 𝑢 is the exact solution of Eq.(1.1) in 𝑊 𝑚
2 [𝑎, 𝑏], then the Eq.(1.1) exists an 𝜖-approximating solution for

any positive 𝜖.

Proof. As 𝑢 belongs to 𝑊 𝑚
2 [𝑎, 𝑏], it follows that 𝑢 can be expressed by

𝑢(𝑥) =
𝑚∑
𝑗=0

𝑑⋆𝑗 𝜓𝑗 +
∞∑
𝑘=1

2𝑘−1−1∑
𝑖=0

𝑐⋆𝑘,𝑖𝜙𝑘,𝑖,

where 𝑑⋆𝑗 = ⟨𝜓𝑗 , 𝑢⟩𝑚, 𝑐⋆𝑘,𝑖 = ⟨𝜙𝑘,𝑖, 𝑢⟩𝑚.
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Thus, ∀𝜖 > 0, ∃𝑁 ∈ 𝑁∗ satisfies

‖𝑢 − 𝑚∑
𝑗=0

𝑑⋆𝑗 𝜓𝑗 −
𝑛∑
𝑘=1

2𝑘−1−1∑
𝑖=0

𝑐⋆𝑘,𝑖𝜙𝑘,𝑖‖2𝑚 ≤ 1‖‖2 𝜖2, ∀ 𝑛 ≥ 𝑁.

Taking 𝑢⋆𝑛 =
∑𝑚
𝑗=0 𝑑

⋆
𝑗 𝜓𝑗 −

∑𝑛
𝑘=1

∑2𝑘−1−1
𝑖=0 𝑐⋆𝑘,𝑖𝜙𝑘,𝑖, we have

‖𝑢⋆𝑛 − 𝑓‖2𝑚 = ‖𝑢⋆𝑛 − 𝑢‖2𝑚 ≤ ‖‖2‖𝑢⋆𝑛 − 𝑢‖2𝑚 ≤ ‖‖2 1‖‖2 𝜖2 = 𝜖2,

which indicates that 𝑢⋆𝑛 is an 𝜖-approximating solution of Eq.(1.1).

3 A LEAST SQUARE METHOD AND ITS CONVERGENCE ANALYSIS

We will raise a stable scheme for (1.1) and give the theoretical analysis of the scheme in this section.
Let

𝑢𝑛 =
𝑚∑
𝑗=0

𝑑𝑗𝜓𝑗 +
𝑛∑
𝑘=1

2𝑘−1−1∑
𝑖=0

𝑐𝑘,𝑖𝜙𝑘,𝑖

be an approximating solution of Eq.(1.1) in 𝑊 𝑚
2 [𝑎, 𝑏]. We need to determine the unknown coefficients. We will apply the least

square method to determine the unknown coefficients. Let

𝐽 (𝑑0, 𝑑1,… , 𝑑𝑚, 𝑐1,0, 𝑐2,0, 𝑐2,1,⋯ , 𝑐𝑛,0, 𝑐𝑛,1,⋯ , 𝑐𝑛,2𝑛−1−1) = ‖𝑢𝑛 − 𝑓‖2𝑚.
Algorithm: The least square method for problem (1.1) reads as: Finding 𝑑∗0 , 𝑑

∗
0 ,… , 𝑑∗𝑚, 𝑐

∗
1,0, 𝑐

∗
2,0, 𝑐

∗
2,1,⋯ , 𝑐∗𝑛,0, 𝑐

∗
𝑛,1,⋯ , 𝑐∗𝑛,2𝑛−1−1

such that

‖𝑢∗𝑛 − 𝑓‖2𝑚 = ‖ 𝑚∑
𝑗=0

𝑑∗𝑗𝜓𝑗 +
𝑛∑
𝑘=1

2𝑘−1−1∑
𝑖=0

𝑐∗𝑘,𝑖𝜙𝑘,𝑖 − 𝑓‖2𝑚 = min𝐽 . (3.1)

It is trivial to derive that the algorithm (3.1) of searching the minimum value of 𝐽 is equivalent to solving the following linear
equations: { ⟨𝜓𝑗 ,𝑢𝑛⟩𝑚 = ⟨𝜓𝑗 , 𝑓 ⟩𝑚, 𝑗 = 1, 2,⋯ , 𝑚,⟨𝜙𝑘,𝑖,𝑢𝑛⟩𝑚 = ⟨𝜙𝑘,𝑖, 𝑓 ⟩𝑚, 𝑘 = 1, 2,⋯ , 𝑛, 𝑖 = 1, 2,⋯ , 2𝑘−1 − 1. (3.2)

Therefore, the unknown coefficients 𝑑∗0 , 𝑑
∗
1 ,… , 𝑑∗𝑚, 𝑐

∗
1,0, 𝑐

∗
2,0, 𝑐

∗
2,1,⋯ , 𝑐∗𝑛,0, 𝑐

∗
𝑛,1,⋯ , 𝑐∗𝑛,2𝑛−1−1 can be determined by (3.2).

Remark 3.1: In 𝑊 𝑚
2 [𝑎, 𝑏], the computation of ‖ ⋅ ‖0 is simpler than that of ‖ ⋅ ‖𝑚. Thus we can simplify the scheme (3.1), that

is, finding 𝑑∗0 , 𝑑
∗
1 ,… , 𝑑∗𝑚, 𝑐

∗
1,0, 𝑐

∗
2,0, 𝑐

∗
2,1,⋯ , 𝑐∗𝑛,0, 𝑐

∗
𝑛,1,⋯, 𝑐∗𝑛,2𝑛−1−1 such that

‖𝑢∗𝑛 − 𝑓‖20 = ‖ 𝑚∑
𝑗=0

𝑑∗𝑗𝜓𝑗 +
𝑛∑
𝑘=1

2𝑘−1−1∑
𝑖=0

𝑐∗𝑘,𝑖𝜙𝑘,𝑖 − 𝑓‖20 = min‖𝑢𝑛 − 𝑓‖20. (3.3)

Remark 3.2: Selecting limited points {𝑥𝑙}𝑁𝑙=1 in the interval [a, b], we can discretize the scheme (3.1), that is, finding
𝑑∗0 , 𝑑

∗
0 ,… , 𝑑∗𝑚, 𝑐

∗
1,0, 𝑐

∗
2,0, 𝑐

∗
2,1,⋯ , 𝑐∗𝑛,0, 𝑐

∗
𝑛,1,⋯, 𝑐∗𝑛,2𝑛−1−1 such that

𝑁∑
𝑙=1

||𝑢∗𝑛(𝑥𝑙) − 𝑓 (𝑥𝑙)||2 = min
𝑁∑
𝑙=1

| 𝑚∑
𝑗=0

𝑑𝑗𝜓𝑗(𝑥𝑙) +
𝑛∑
𝑘=1

2𝑘−1−1∑
𝑖=0

𝑐𝑘,𝑖𝜙𝑘,𝑖(𝑥𝑙) − 𝑓 (𝑥𝑙)|2. (3.4)

Theorem 1. The approximating solutions 𝑢∗𝑛 obtained by schemes (3.1) and (3.3) are 𝜖-approximating solutions.

Proof. From the proof of the Lemma 2.5, it holds that there exists an 𝜖-approximating solution 𝑢⋆𝑛 of Eq.(1.1) in 𝑊 𝑚
2 [𝑎, 𝑏], that

is, ‖𝑢⋆𝑛 − 𝑓‖2𝑚 ≤ 𝜖2,
As 𝑢∗𝑛 is the closest to 𝑓 under ‖ ⋅ ‖2𝑚-norm, we derive that‖𝑢∗𝑛 − 𝑓‖2𝑚 ≤ ‖𝑢⋆𝑛 − 𝑓‖2𝑚 ≤ 𝜖2,

which implies that 𝑢∗𝑛 obtained by the scheme (3.1) is an 𝜖-approximating solution. Analogously, we deduce that 𝑢∗𝑛 obtained by
the scheme (3.3) is also an 𝜖-approximating solution by Lemma 2.1.
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Theorem 2. Assume that  is a reversible operator from 𝑊 𝑚
2 [𝑎, 𝑏] to 𝑊 𝑚

2 [𝑎, 𝑏], then the scheme (3.1) is uniquely solvable and
stable.

Proof. Denote the coefficient matrix of the system (3.2) by 𝐺. As 𝐺 is a Gram matrix, we only need to show{𝜓𝑖}𝑚𝑖=0 ⋃{𝜙𝑘,0,𝜙𝑘,1,⋯ ,𝜙𝑘,2𝑘−1−1}𝑛𝑘=1 are linearly independent. The combination of reversibility of the operator  and
linear independence of

{
𝜓𝑖
}𝑚
𝑖=0

⋃{
𝜙𝑘,0, 𝜙𝑘,1,⋯ , 𝜙𝑘,2𝑘−1−1

}𝑛
𝑘=1 lead to the unique solvability of the scheme (3.1).

To show the stability, we consider the condition number of 𝐺. Let 𝜆 be an eigenvalue of 𝐺 and 𝑌 = (𝑦1, 𝑦2,⋯ , 𝑦𝐿) be the
related eigenvector with ‖𝑌 ‖0 = 1. Then it holds

𝐺𝑦 = 𝜆𝑦.
Therefore, we have 𝜆𝑦𝑖 = 𝐺(𝑖, ∶)𝑌 . It follows that

𝜆 = 𝜆
𝑁∑
𝑖=1

𝑦2𝑖 = ‖( 𝑚∑
𝑗=1

𝑦𝑗𝜓𝑗 +
𝑛∑
𝑘=1

2𝑘−1−1∑
𝑖=0

𝑦𝑘,𝑖𝜙𝑘,𝑗)‖2𝑚 ≤ ‖‖2‖ 𝑚∑
𝑗=1

𝑦𝑗𝜓𝑗 +
𝑛∑
𝑘=1

𝑘−1∑
𝑖=0

𝑦𝑘,𝑖𝜙𝑘,𝑗‖2𝑚 = ‖‖2. (3.5)

which indicates that 𝜆 is greater than zero. On the other hand, we obtain that

1 = ‖𝑌 ‖20 = ‖ 𝑚∑
𝑗=1

𝑦𝑗𝜓𝑗 +
𝑛∑
𝑘=1

𝑘−1∑
𝑖=0

𝑦𝑘,𝑖𝜙𝑘,𝑗‖2𝑚 = ‖−1( 𝑚∑
𝑗=1

𝑦𝑗𝜓𝑗 +
𝑛∑
𝑘=1

𝑘−1∑
𝑖=0

𝑦𝑘,𝑖𝜙𝑘,𝑗)‖2𝑚 ≤ ‖−1‖2 ⋅ 𝜆. (3.6)

Combined with (3.5) and (3.6), we have
cond(𝐺) =

𝜆max

𝜆min
≤ ‖‖2‖−1‖2,

that means the condition number of 𝐺 is uniformly bounded. Thus, we have verified the stability of the scheme (3.1).

Remark 3.3: Similar to the proof of Theorems 3.2, the unique solvability of the solution of the scheme (3.3) can be derived.
Moreover, estimation (3.5) is valid, but estimation (3.6) does not hold.
Remark 3.4: The scheme (3.4) is a collocation method. However, we find it difficult to prove its stability.
Remark 3.5: Numerical results illustrate that schemes (3.3) and (3.4) are stable.

Theorem 3. Assume that the exact solution 𝑢 ∈ 𝑊 𝑚
2 [𝑎, 𝑏], then 𝑢∗𝑛 ⇉ 𝑢. Furthermore,‖𝑢 − 𝑢∗𝑛‖𝑚 ≤ 2−𝑛𝑀.

Proof. By the reproducibility of 𝑅𝑚𝑥 and the Cauchy-Schwarz inequality, it follows that|𝑢(𝑥) − 𝑢∗𝑛(𝑥)| = ⟨𝑢 − 𝑢∗𝑛, 𝑅𝑚𝑥 ⟩𝑚 ≤ ‖𝑢 − 𝑢∗𝑛‖𝑚‖𝑅𝑚𝑥 ‖ ≤𝑀1‖𝑢 − 𝑢∗𝑛‖𝑚. (3.7)

Let 𝑢⋆𝑛 be the 𝜖-approximating solution defined in Lemma 2.5. Then ‖𝑢 − 𝑢⋆𝑛 ‖𝑚 → 0 as 𝑛 → ∞. Since the operators −1 and 
are bounded, we derive that‖𝑢 − 𝑢∗𝑛‖𝑚 = ‖−1(𝑢 − 𝑢∗𝑛)‖𝑚 ≤ ‖−1‖ ⋅ ‖‖ ⋅ ‖𝑢 − 𝑢∗𝑛‖𝑚 ≤ ‖−1‖ ⋅ ‖‖ ⋅ ‖(𝑢 − 𝑢⋆𝑛 )‖𝑚 → 0.

In fact, we have

‖𝑢 − 𝑢⋆𝑛 ‖2𝑚 = ‖ ∞∑
𝑘=𝑛+1

2𝑘−1−1∑
𝑖=0

𝑐⋆𝑘,𝑖𝜙𝑘,𝑖‖2𝑚 =
∞∑

𝑘=𝑛+1

2𝑘−1−1∑
𝑖=0

𝑐⋆2𝑘,𝑖 =
∞∑

𝑘=𝑛+1

2𝑘−1−1∑
𝑖=0

(

𝑏

∫
𝑎

𝑢(𝑚)𝜑′
𝑘,𝑖d𝑥)

2. (3.8)

Because
𝑢(𝑚)(𝑥) = 𝑢(𝑚)

(𝑏 − 𝑎
2𝑘−1

𝑖 + 𝑎
)
+ 𝑢(𝑚+1)(𝜉)

(
𝑥 − 𝑏 − 𝑎

2𝑘−1
𝑖 − 𝑎

)
,

we immediately obtain that

|𝑐⋆𝑘,𝑖| ≤
||||||||

𝑏−𝑎
2𝑘−1

(𝑖+1)+𝑎

∫
𝑏−𝑎
2𝑘−1

𝑖+𝑎

𝑢(𝑚)
(𝑏 − 𝑎
2𝑘−1

𝑖 + 𝑎
)
𝜑′
𝑘,𝑖

|||||||| +
||||||||

𝑏−𝑎
2𝑘−1

(𝑖+1)+𝑎

∫
𝑏−𝑎
2𝑘−1

𝑖+𝑎

𝑢(𝑚+1)(𝜉)
(
𝑥 − 𝑏 − 𝑎

2𝑘−1
𝑖 − 𝑎

)
𝜑′
𝑘,𝑖

|||||||| = 𝐼1 + 𝐼2.

By a straightforward calculation, it holds 𝐼1 equals to zero and

𝐼2 ≤ 2
𝑘−1
2√

𝑏 − 𝑎
|𝑢(𝑚+1)|𝐶

𝑏−𝑎
2𝑘−1

(𝑖+1)+𝑎

∫
𝑏−𝑎
2𝑘−1

𝑖+𝑎

(
𝑥 − 𝑏 − 𝑎

2𝑘−1
𝑖 − 𝑎

)
d𝑥 ≤ 2−

3
2
𝑘𝑀2.
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Thus, we have

‖𝑢 − 𝑢⋆𝑛 ‖2𝑚 ≤ ∞∑
𝑘=𝑛+1

2𝑘−1−1∑
𝑖=0

(2−
3
2
𝑘𝑀2)2 ≤ 4−𝑛𝑀3,

which implies that ‖𝑢 − 𝑢∗𝑛‖𝑚 ≤ 2−𝑛𝑀 . The proof is completed.

Remark 3.6: Let |𝑢|2𝑚 = ∫ 𝑏
𝑎 𝑢

(𝑚)𝑢(𝑚)d𝑥. By the definition of ‖ ⋅ ‖𝑚, we have | ⋅ |𝑚 is bounded by ‖ ⋅ ‖𝑚. Theorem 3.3 demonstrates
that the error under | ⋅ |𝑚-seminorm at least has first-order convergence.

4 NUMERICAL EXAMPLES

The efficiency and robustness of the presented approach are verified via six numerical examples in this section. Numerical results
obtained by schemes (3.1), (3.3) and (3.4) are similar for Example 4.1, 4.2 and 4.5, so we only illustrate results from the scheme
(3.1). All of the codes associated to the proposed method are written in Mathematica software. In addition, we shall examine
several numerical errors, denoted in the following notations:‖𝑒𝑛‖∞ = max

𝑥∈[𝑎,𝑏]
|𝑢 − 𝑢∗𝑛|, ‖𝑒𝑛‖𝑊 𝑚

2
= ‖𝑢 − 𝑢∗𝑛‖𝑚,

and the convergence order is tested by the following:

C.O. = log2
‖𝑒𝑛‖‖𝑒𝑛+1‖ .

Example 4.1: Let us consider the problem suggested in [5], wherein 𝑎 = 0, 𝑏 = 1, 𝑘1(𝑡, 𝑥) = 𝑒𝑡 cos(𝑥), 𝑘2(𝑡, 𝑥) = 𝑒𝑡 sin(𝑥) and
𝑓 (𝑥) = 𝑒𝑥 − 1

2
cos(𝑥)(𝑒2𝑥 − 1) + 1

2
sin(𝑥)(𝑒2 − 1). 𝑢(𝑥) = 𝑒𝑥 is the exact solution.

FIGURE 1 Absolute errors in 𝑊 1
2 (left), 𝑊 2

2 (middle) and 𝑊 3
2 (right) for Example 4.1 with 𝑛 = 3.

TABLE 1 Convergence order for Example 4.1

𝑊 1
2 [0, 1] 𝑊 2

2 [0, 1] 𝑊 3
2 [0, 1]

𝑛 ‖𝑒𝑛‖𝐿∞ ‖𝑒𝑛‖𝑊 1
2

‖𝑒𝑛‖𝐿∞ ‖𝑒𝑛‖𝑊 2
2

‖𝑒𝑛‖𝐿∞ ‖𝑒𝑛‖𝑊 3
2

3 3.46 × 10−3 6.45 × 10−2 4.93 × 10−5 6.47 × 10−2 8.00 × 10−7 6.47 × 10−2
4 8.84 × 10−4 3.23 × 10−2 6.18 × 10−6 3.23 × 10−2 5.01 × 10−8 3.24 × 10−2
5 2.21 × 10−4 1.62 × 10−2 7.73 × 10−7 1.63 × 10−2 3.13 × 10−9 1.62 × 10−2
6 5.56 × 10−5 8.01 × 10−3 9.60 × 10−8 8.02 × 10−3 1.96 × 10−10 8.01 × 10−3
7 1.37 × 10−5 4.01 × 10−3 1.21 × 10−9 4.01 × 10−3 1.22 × 10−11 4.01 × 10−3
8 3.45 × 10−6 2.00 × 10−3 1.50 × 10−10 2.01 × 10−3 7.64 × 10−12 2.00 × 10−3

C.O. 2.0 1.0 3.0 1.0 4.0 1.0
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Tables 1 and Figure 1 illustrate the performance of the proposed scheme (3.1) for the test problem 4.1 in𝑊 𝑚
2 [0, 1](𝑚 = 1, 2, 3).

It can be seen from the Table 1 that the convergence order of 𝑊 𝑚
2 -norm error is 1, which is in agreement with our theoretical

finding. As expected, the 𝐿∞-norm error reaches to (2−(𝑚+1)𝑛) in 𝑊 𝑚
2 [0, 1].

Example 4.2: Let us research the question from [11,17], wherein 𝑎 = 0, 𝑏 = 1, 𝑘1(𝑡, 𝑥) = 𝑒𝑡+𝑥, 𝑘2(𝑡, 𝑥) = −𝑒𝑡+ℎ(𝑥) and
𝑓 (𝑥) = 𝑒−𝑥 − 𝑥𝑒𝑥(ℎ(𝑥) − 1). 𝑢(𝑥) = 𝑒−𝑥 is the exact solution.

We take 𝑘2(𝑡, 𝑥) = −𝑒𝑡+ln(𝑥+1), the absolute error is given in Figure 2. In addition, the 𝐿∞-norm error of our method is
compared, the Taylor collocation method (TCM) in [10] and Taylor polynomial method (TPM) in [11] in Table 2. Our method
approximates the exact solution more closely.

FIGURE 2 Absolute errors in 𝑊 1
2 (left), 𝑊 2

2 (middle) and 𝑊 3
2 (right) for Example 4.2 with 𝑛 = 3.

TABLE 2 Comparison of the absolute errors for Example 4.2

Our method TCM in [10] TPM in [11]
𝑛 ℎ(𝑥) = 𝑥 ℎ(𝑥) = ln(𝑥 + 1) ℎ(𝑥) = 𝑥 ℎ(𝑥) = ln(𝑥 + 1) ℎ(𝑥) = 𝑥 ℎ(𝑥) = ln(𝑥 + 1)
2 4.07 × 10−6 4.03 × 10−6 3.68 × 10−3 3.27 × 10−3 2.23 × 10−2 3.59 × 10−2
5 9.94 × 10−10 9.90 × 10−10 4.03 × 10−7 4.30 × 10−7 1.41 × 10−4 3.05 × 10−4
8 2.43 × 10−13 2.41 × 10−13 0.00 × 10−0 5.96 × 10−8 2.52 × 10−7 5.61 × 10−7
9 1.52 × 10−14 1.50 × 10−14 0.00 × 10−0 8.84 × 10−8 2.47 × 10−8 1.41 × 10−7

Example 4.3: Let us consider a VIE with weakly singular kernel, where 𝑎 = 0, 𝑏 = 1, 𝑘1(𝑥, 𝑡) = 1√
𝑥−𝑡

, 𝑘2(𝑥, 𝑡) = 0

and 𝑓 (𝑥) = sin(𝜋𝑥)𝑥 +
√
2
[
−cos(𝜋𝑥)𝑆(

√
2𝑥) + sin(𝜋𝑥)𝐶(

√
2𝑥)

]
, in which 𝑆(𝑥) = ∫ 𝑥

0 cos( 𝜋𝑡
2

2
) and 𝐶(𝑥) = ∫ 𝑥

0 sin( 𝜋𝑡
2

2
),

𝑢(𝑥) = sin(𝜋𝑥). This example is found in [7].

FIGURE 3 Absolute errors in 𝑊 1
2 (left), 𝑊 2

2 (middle) and 𝑊 3
2 [0, 1](right) for Example 4.3 with 𝑛 = 4.

Due to the singularity of 𝑘1(𝑠, 𝑥), we apply the scheme (3.3) to solve Problem 4.3. The surface plots of the absolute error with
𝑛 = 4 are demonstrated in Figure 3, which implies that our method is also applicable to this kind of problems. The convergence
order of the 𝐿∞-norm and 𝑊 𝑚

2 -norm errors are listed in Table 3, which shows that the singularity of 𝑘1(𝑥, 𝑡) does not reduce
the convergence order of the algorithm.
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TABLE 3 Convergence order for Example 4.3

𝑊 1
2 [0, 1] 𝑊 2

2 [0, 1] 𝑊 3
2 [0, 1]

𝑛 ‖𝑒𝑛‖𝐿∞ ‖𝑒𝑛‖𝑊 1
2

‖𝑒𝑛‖𝐿∞ ‖𝑒𝑛‖𝑊 2
2

‖𝑒𝑛‖𝐿∞ ‖𝑒𝑛‖𝑊 3
2

3 1.58 × 10−2 2.52 × 10−1 5.57 × 10−4 7.99 × 10−1 3.45 × 10−5 2.50 × 10−0
4 3.34 × 10−3 1.26 × 10−1 6.79 × 10−5 3.97 × 10−1 2.13 × 10−6 1.24 × 10−0
5 7.92 × 10−4 6.30 × 10−2 8.35 × 10−6 1.98 × 10−1 1.32 × 10−7 6.22 × 10−1
6 1.96 × 10−4 3.15 × 10−2 1.06 × 10−6 9.89 × 10−2 8.25 × 10−9 3.11 × 10−1
7 4.85 × 10−5 1.58 × 10−2 1.32 × 10−7 4.94 × 10−2 5.16 × 10−10 1.56 × 10−1
8 1.21 × 10−5 7.89 × 10−3 1.66 × 10−8 2.47 × 10−2 3.22 × 10−11 7.79 × 10−2

C.O. 2.0 1.0 3.0 1.0 4.0 1.0

Example 4.4: Consider the VIE with the exact solution has singularity near 𝑎. In this example, 𝑎 = 0, 𝑏 = 1, 𝑘1(𝑥, 𝑡) = 𝑥+ 𝑡,
𝑘2(𝑥, 𝑡) = 𝑥𝑡 and 𝑓 (𝑥) = − 2

9
𝑥 + 𝑥5∕2 − 32

63
𝑥9∕2. The exact solution of this problem is 𝑢(𝑥) = 𝑥5∕2.

FIGURE 4 Absolute errors in 𝑊 1
2 (left), 𝑊 2

2 (middle) and 𝑊 3
2 [0, 1](right) for Example 4.4 with 𝑛 = 4.

TABLE 4 Convergence order for Example 4.4

𝑊 1
2 [0, 1] 𝑊 2

2 [0, 1] 𝑊 3
2 [0, 1]

𝑛 ‖𝑒𝑛‖𝐿∞ C.O ‖𝑒𝑛‖𝐿∞ C.O ‖𝑒𝑛‖𝐿∞ C.O
3 5.02 × 10−3 1.93 × 10−4 2.50 2.91 × 10−5
4 1.23 × 10−3 2.03 3.42 × 10−5 2.52 4.94 × 10−6 2.56
5 3.05 × 10−4 2.06 5.97 × 10−6 2.95 8.38 × 10−7 2.56
6 7.62 × 10−5 2.01 7.70 × 10−7 2.95 1.08 × 10−7 2.95
7 1.91 × 10−5 2.00 9.96 × 10−8 2.95 1.40 × 10−8 2.96
8 4.76 × 10−6 2.00 1.29 × 10−8 2.95 1.81 × 10−9 2.95

The scheme (3.3) is applied to solve Problem 4.4. In Figure 4, we plot the absolute error. In Table 4, we list the convergence
order of the 𝐿∞-norm and 𝑊 𝑚

2 -norm errors. Since 𝑢(𝑥) is singular near 𝑥 = 0, the convergence order of 𝐿∞-norm error in 𝑊 2
2

is nearly to third and that in 𝑊 3
2 reduces to third.

Example 4.5: Consider the nonlinear VIE:

𝑢(𝑥) =

𝑥

∫
0

𝑢4(𝑡)√
𝑥 + 𝑡

d𝑡 + 𝑓 (𝑥), 𝑥 ∈ [0, 1].

where 𝑓 (𝑥) = 𝑥5 − 0.0340676𝑥41∕2 with the exact solution given by 𝑢(𝑥) = 𝑥5.
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We apply QNM in [17] and the scheme (3.3) to solve Problem 4.5. We take 𝑛 = 4, the absolute errors are displayed in Figure
5. The results in Table 5 illustrate the convergence order of the 𝐿∞-norm and 𝑊 𝑚

2 -norm errors. Again the convergence order of
absolute error is still 2, 3 and 4 in 𝑊 1

2 , 𝑊 2
2 and 𝑊 3

2 is observed for this nonlinear problem.

FIGURE 5 Absolute errors in 𝑊 1
2 (left), 𝑊 2

2 (middle) and 𝑊 3
2 [0, 1](right) for Example 4.5 with 𝑛 = 4.

TABLE 5 Convergence order for Example 4.5

𝑊 1
2 [0, 1] 𝑊 2

2 [0, 1] 𝑊 3
2 [0, 1]

𝑛 ‖𝑒𝑛‖𝐿∞ C.O ‖𝑒𝑛‖𝐿∞ C.O ‖𝑒𝑛‖𝐿∞ C.O
3 2.38 × 10−2 9.38 × 10−4 3.52 × 10−5
4 6.21 × 10−3 1.93 1.03 × 10−4 3.18 2.35 × 10−6 3.88
5 1.58 × 10−3 1.97 1.24 × 10−5 3.05 1.58 × 10−7 3.91
6 3.97 × 10−4 1.99 1.53 × 10−6 3.02 1.02 × 10−8 3.96
7 9.93 × 10−5 2.00 1.91 × 10−7 3.00 6.43 × 10−9 3.98
8 2.48 × 10−5 2.00 2.39 × 10−8 3.00 4.02 × 10−10 4.00

Example 4.6:27 Consider the VIE with nonsmooth solution:

𝑢(𝑥) = 𝑥
1
2 − 𝜋3

24
𝑥

3
2 +

𝜋
2

∫
0

(𝑥𝑡)
3
2 𝑢(𝑡)d𝑡, 𝑥 ∈ [0, 𝜋

2
],

the exact solution is 𝑢(𝑥) = 𝑥
1
2 .

We apply the scheme (3.3) to solve Problem 4.6. We take 𝑛 = 4, 5, 6, the absolute errors in logarithm format are exhibited
in Figure 6 . However, the rate of convergence of the approximate solutions are not the same of previous examples, but our
proposed method is efficient for solving such this type of problems.

FIGURE 6 Absolute errors in 𝑊 1
2 (left), 𝑊 2

2 (middle) and 𝑊 3
2 [0, 1](right) for Example 4.6 with 𝑛 = 4, 5, 6 in loglog format
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5 CONCLUSIONS AND FUTURE WORKS

In this work, we introduce the least square method in reproducing kernel space𝑊 𝑚
2 [𝑎, 𝑏] for the second type linear VFIE. We

discuss the stability of the scheme and obtain that convergence order of 𝑊 𝑚
2 -norm error is 1. Numerical examples show that

the approximating space we choose is smoother, the convergence order of absolute error is higher. What’s more, the presented
algorithm works well for weakly singular and nonlinear Volterra integral problems. As our future work, we will extend our
proposed method for solving the first order linear VFIDE18:{

𝑢′(𝑥) − 𝑐(𝑥)𝑢(𝑥) − ∫ 𝑥
𝑎 𝑘1(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 − ∫ 𝑏

𝑎 𝑘2(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 = 𝑓 (𝑥), 𝑥 ∈ [𝑎, 𝑏],
𝑢(𝑎) = 𝑢0,

and the second order linear VFIDE19:{
𝑢′′(𝑥) − 𝑐1(𝑥)𝑢(𝑥) − 𝑐2(𝑥)𝑢′(𝑥) − ∫ 𝑥

𝑎 𝑘1(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 − ∫ 𝑏
𝑎 𝑘2(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 = 𝑓 (𝑥), 𝑥 ∈ [𝑎, 𝑏],

𝑢(𝑎) = 𝑢0, 𝑢′(𝑎) = 𝑢(1)0 .

Also, our aim is for solving numerically linear VFIDE with vanishing pantograph delays20:

𝑢(𝑥) −

𝑞1𝑥

∫
𝑎

𝑘1(𝑥, 𝑡)𝑢(𝑡)d𝑡 −

𝑞2𝑥

∫
𝑎

𝑘2(𝑥, 𝑡)𝑢(𝑡)d𝑡 −

𝑏

∫
𝑎

𝑘3(𝑥, 𝑡)𝑢(𝑡)d𝑡 = 𝑓 (𝑥), 𝑥 ∈ [𝑎, 𝑏].

Moreover, our suggsted scheme can be generalized for treating the following class of nonlinear FIDE approximately21

𝑐
0𝐷

𝛾
𝑥𝑢(𝑥) −

𝑥

∫
𝑎

𝑘1(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡 −

𝑏

∫
𝑎

𝑘2(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡 = 𝑓 (𝑥, 𝑢(𝑥)), 𝑥 ∈ [𝑎, 𝑏].

In addition, with some modifications in our novel and accurate method, noncompact Volterra-Fredholm integral equations
can be considered in details both numerically and theoretically22,23:

𝑢(𝑥) −

𝑥

∫
𝑎

𝑡𝜇−1

𝑥𝜇
𝑘1(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 −

𝑏

∫
𝑎

𝑡𝜇−1

𝑥𝜇
𝑘2(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 = 𝑓 (𝑥), 𝑥 ∈ [𝑎, 𝑏].

The area of integral algebraic equations is another aim and future work to investigate our numerical technique for solving
them numerically24: {

𝑢(𝑥) − ∫ 𝑥
𝑎 𝑘11(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 − ∫ 𝑥

𝑎 𝑘12(𝑥, 𝑡)𝑣(𝑡)𝑑𝑡 = 𝑓1(𝑥), 𝑥 ∈ [𝑎, 𝑏],
0 − ∫ 𝑥

𝑎 𝑘21(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 − ∫ 𝑥
𝑎 𝑘22(𝑥, 𝑡)𝑣(𝑡)𝑑𝑡 = 𝑓2(𝑥).

Finally, integro-differential algebraic equations can be a good candidate for testing the accuracy of the suggested least square
based RKM25:{

𝑢′(𝑥) − 𝑐11(𝑥)𝑢(𝑥) − 𝑐12(𝑥)𝑣(𝑥) − ∫ 𝑥
𝑎 𝑘11(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 − ∫ 𝑥

𝑎 𝑘12(𝑥, 𝑡)𝑣(𝑡)𝑑𝑡 = 𝑓1(𝑥), 𝑥 ∈ [𝑎, 𝑏],
0 − ∫ 𝑥

𝑎 𝑘21(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 − ∫ 𝑥
𝑎 𝑘22(𝑥, 𝑡)𝑣(𝑡)𝑑𝑡 = 𝑓2(𝑥).
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