REFERENCES
Ayarza, A., Garzón-Lòpez, C. and Lasso, E. (2018) Análisis a múltiple escala de las dinámicas hídricas de Hypericum en el páramo . Master thesis. Universidad de los Andes.
Azócar, A., Rada, F. and García-Núñez, C. (2000) ‘Aspectos ecofisiológicos para la conservación de ecosistemas tropicales contrastantes’, Boletín de la Sociedad Botánica de México , (65), pp. 89–94.
Azócar, A., Rada, F. and Goldstein, G. (1988) ‘Freezing tolerance inDraba chionophila , a miniature caulescent rosette species’,Oecologia , 75, pp. 156–160. doi: 10.1007/BF00378830.
Azócar, J. (2006) Relación entre anatomía foliar, forma de vida y mecanismos de resistencia a temperaturas congelantes en diferentes especies en el Páramo de Piedras Blancas. Universidad de los Andes.
Bartlett, M. K. et al. (2016) ‘The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought’,Proceedings of the National Academy of Sciences . National Academy of Sciences, 113(46), pp. 13098–13103. doi: 10.1073/pnas.1604088113.
Baruch, Z. (1984) ‘Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan páramos’, Vegetation , 55(2), pp. 115–126. doi: 10.1007/BF00037333.
Baruch, Z. and Smith, A. P. (1979) ‘Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae) in the Venezuelan Andes’, Oecologia , 38(1), pp. 71–82. doi: 10.1007/BF00347825.
Bazzaz, F. A. (1990) ‘The Response of Natural Ecosystems to the Rising Global CO2 Levels’, Annual Review of Ecology and Systematics . Annual Reviews, 21(1), pp. 167–196. doi: 10.1146/annurev.es.21.110190.001123.
Bhaskar, R. and Ackerly, D. D. (2006) ‘Ecological relevance of minimum seasonal water potentials’, Physiologia Plantarum , 127(3), pp. 353–359. doi: 10.1111/j.1399-3054.2006.00718.x.
Buytaert, W., Cuesta, F. and Tobon, C. (2011) ‘Potential Impacts of Climate Change on the Environmental Services of Humid Tropical Alpine Regions’, Global Ecology and Biogeography , 20, pp. 19–33. doi: 10.1111/j.1466-8238.2010.00585.x.
Cárdenas-Arévalo, G. and Vargas-Ríos, O. (2008) ‘Rasgos de historia de vida de especies en una comunidad vegetal alterada en un páramo húmedo (Parque Natural Chingaza)’, Caldasia . 30, pp. 245–264.
Carrillo-Rojas, G. et al. (2016) ‘Dynamic mapping of evapotranspiration using an energy balance-based model over an Andean Páramo catchment of Southern Ecuador’, Remote Sensing . Multidisciplinary Digital Publishing Institute, 8(2), p. 160. doi: 10.3390/rs8020160.
Chapin, F. S. et al. (1996) ‘Plant functional types as predictors of transient responses of arctic vegetation to global change’,Journal of Vegetation Science , 7(3), pp. 347–358. doi: 10.2307/3236278.
Chapin, F. S. et al. (2000) ‘Consequences of changing biodiversity’, Nature , 405, pp. 234–242. doi: 10.1038/35012241.
Cornelissen, J. H. C. et al. (2003) ‘A handbook of protocols for standardised and easy measurement of plant functional traits worldwide’,Australian Journal of Botany , 51(4), pp. 335–380. doi: http://dx.doi.org/10.1071/BT02124.
Diaz, H. and Bradley, R. (1997) ‘Diaz HF, Bradley RS. Temperature variations during the last century at High elevation sites.’,Climatic Change , 36, pp. 253–279. doi: 10.1023/A:1005335731187.
Diaz, S. et al. (2004) ‘The plant traits that drive ecosystems: Evidence from three continents’, Journal of Vegetation Science . Blackwell Publishing Ltd, 15(3), pp. 295–304. doi: 10.1111/j.1654-1103.2004.tb02266.x.
Díaz, S. and Cabido, M. (2001) ‘Vive la différence: plant functional diversity matters to ecosystem processes’, Trends in Ecology & Evolution , 16(11), pp. 646–655. doi: 10.1016/S0169-5347(01)02283-2.
Dormann, S. J. W. (2002) ‘Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments’,Functional Ecology , 16(1), pp. 4–17.
Flantua, S. G. A. et al. (2019) ‘The flickering connectivity system of the north Andean páramos’, Journal of Biogeography , 46(8), pp. 1808–1825. doi: 10.1101/569681.
Goldstein, G., Meinzer, F. and Monasterio, M. (1984) ‘The role of capacitance in the water balance of Andean giant rosette species.’,Plant, Cell and Environment . Blackwell Publishing Ltd, 7(3), pp. 179–186. doi: 10.1111/1365-3040.ep11614612.
Hanley, M. E. et al. (2007) ‘Plant structural traits and their role in anti-herbivore defence’, Perspectives in Plant Ecology, Evolution and Systematics , 8(4), pp. 157–178. doi: 10.1016/j.ppees.2007.01.001.
Hedberg, I. and Hedberg, O. (1979) ‘Tropical-alpine life-forms of vascular plants’, Oikos , 33(2), pp. 297–297. doi: 10.2307/3544006.
Hofstede, R. (1999) ‘El páramo como espacio para la fijación de carbono atmosférico’, in Medina, G., Mena, P., and Josse, C. (eds) El páramo como espacio de mitigación de carbono atmosférico . 1st edn. Quito, Ecuador: Abya Yala, p. 57.
Hubbell, S. (2005) ‘Neutral theory in community ecology and the hypothesis of functional equivalence’, Functional Ecology , 19, pp. 166–172. doi: 10.1111/j.0269-8463.2005.00965.x.
IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes. A Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , p. 190.
Kassambara, A. (2017) Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning . STHDA (Multivariate Analysis).
Kattge, J. et al. (2011) ‘TRY – a global database of plant traits’, Global Change Biology . John Wiley & Sons, Ltd (10.1111), 17(9), pp. 2905–2935. doi: 10.1111/j.1365-2486.2011.02451.x.
Kazakou, E. et al. (2006) ‘Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession’, Functional Ecology , 20, pp. 21–30. doi: 10.1111/j.1365-2435.2006.01080.x.
Kitajima, K. and Poorter, L. (2010) ‘Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species’, New Phytologist , 186(3), pp. 708–721. doi: 10.1111/j.1469-8137.2010.03212.x.
Körner, C. (2003) Alpine plant life: Functional plant ecology of high mountain ecosystems , Alpine Plant Life, 2nd Edn . doi: 10.1007/978-3-642-18970-8.
Körner, C. and Diemer, M. (1994) ‘Evidence that plants from high altitudes retain their greater photosynthetic efficiency under elevated CO2’, Functional Ecology , 8(1), pp. 58–68. doi: 10.2307/2390112.
Körner, C. and Hiltbrunner, E. (2018) ‘The 90 ways to describe plant temperature’, Perspectives in Plant Ecology, Evolution and Systematics . (Special issue on Alpine and arctic plant communities: a worldwide perspective), 30, pp. 16–21. doi: 10.1016/j.ppees.2017.04.004.
Lavorel, S. and Garnier, E. (2002) ‘Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail’, Functional Ecology , 16(5), pp. 545–556. doi: 10.1046/j.1365-2435.2002.00664.x.
Leon-Garcia, I. V. and Lasso, E. (2019) ‘High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world’,PLoS ONE , 14(11), pp. 1–14. doi: 10.1371/journal.pone.0224218.
Liu, X. and Chen, B. (2000) ‘Climatic warming in the Tibetan plateau during recent decades’, International Journal of climatology , 20, pp. 1729–1742. doi: 10.1002/1097-0088.
Llambí, L. and Rada, F. (2019) ‘Ecological research in the tropical alpine ecosystems of the Venezuelan páramo: past, present and future’,Plant Ecology & Diversity , pp. 1–20. doi: 10.1080/17550874.2019.1680762.
Long, S. P. et al. (2004) ‘Rising atmospheric carbon dioxide: plants FACE the future’, Annual Review of Plant Biology , 55, pp. 591–628. doi: 10.1146/annurev.arplant.55.031903.141610.
Luteyn, J. (1999) ‘Paramos: A checklist of plant diversity, geographical distribution, and botanical literature. Costa Rica and Panama.’,Memoirs of the New York Botanical Garden , 84, pp. 138–141.
Madriñán, S., Cortés, A. J. and Richardson, J. E. (2013) ‘Páramo is the world’s fastest evolving and coolest biodiversity hotspot’,Frontiers in Genetics , 4(192). doi: 10.3389/fgene.2013.00192.
Markesteijn, L. et al. (2011) ‘Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance’, New Phytologist , 191(2), pp. 480–495. doi: 10.1111/j.1469-8137.2011.03708.x.
Martínez-Garza, C., Bongers, F. and Poorter, L. (2013) ‘Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures?’, Forest Ecology and Management , 303, pp. 35–45. doi: 10.1016/j.foreco.2013.03.046.
Meinzer, F. C., Goldstein, G. H. and Rundel, P. W. (1985) ‘Morphological changes along an altitude gradient and their consequences for an Andean giant rosette plant’, Oecologia , 65(2), pp. 278–283. doi: 10.1007/BF00379230.
Mora, M. A., Llambí, L. D. and Ramírez, L. (2019) ‘Giant stem rosettes have strong facilitation effects on alpine plant communities in the tropical Andes’, Plant Ecology & Diversity . Taylor & Francis, 12(6), pp. 593–606. doi: 10.1080/17550874.2018.1507055.
Niinemets, Ü. (2001) ‘Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs’, Ecology , 82(2), pp. 453–469. doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2.
Niinemets, U. and Kull, O. (1998) ‘Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity’, Tree Physiology , 18(7), pp. 467–479. doi: 10.1093/treephys/18.7.467.
Ning, L. and Bradley, R. (2014) ‘Winter precipitation variability and corresponding teleconnections over the Northeastern United States’,Journal of Geophysical Research: Atmospheres , 119. doi: 10.1002/2014JD021591.
Ostertag, R. et al. (2015) ‘Using plant functional traits to restore Hawaiian rainforest’, Journal of Applied Ecology , 52(4), pp. 805–809. doi: 10.1111/1365-2664.12413.
Pagès, J. (2014) Multiple factor analysis by example using R , p. 253.
Pérez-Harguindeguy, N. et al. (2013) ‘New handbook for standardized measurement of plant functional traits worldwide’,Australian Journal of Botany , 61(3), pp. 167–234. doi: 10.1071/BT12225.
Powers, J. S. and Tiffin, P. (2010) ‘Plant functional type classifications in tropical dry forests in Costa Rica: Leaf habit versus taxonomic approaches’, Functional Ecology , 24(4), pp. 927–936. doi: 10.1111/j.1365-2435.2010.01701.x.
Rada, F. et al. (1992) ‘Net photosynthesis-leaf temperature relations in plant species with height along an altitudinal gradient’,Acta Oecologica , 13(5), pp. 535–542.
Rada, F. et al. (1998) ‘Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes’, Acta Oecologica , 19(1), pp. 73–79. doi: 10.1016/S1146-609X(98)80010-6.
Rada, F., Azócar, A. and García-Núñez, C. (2019) ‘Plant functional diversity in tropical Andean páramos’, Plant Ecology & Diversity , pp. 1–15. doi: 10.1080/17550874.2019.1674396.
Rada, F., Briceño, B. and Azocar, A. (2008) ‘How do two Lupinus species respond to temperature along an altitudinal gradient in the Venezuelan Andes?’, Revista Chilena De Historia Natural , 81(3). doi: 10.4067/S0716-078X2008000300003.
Ramirez, L., Rada, F. and Llambí, L. (2014) ‘Linking patterns and processes through ecosystem engineering: effects of shrubs on microhabitat and water status of associated plants in the high tropical Andes’, Plant Ecology , 216(2), pp. 213–225. doi: 10.1007/s11258-014-0429-5.
Ramsay, P., Kent, M. and Duckworth, J. (2000) ‘Plant functional types: An alternative to taxonomic plant community description in biogeography?’, Progress in Physical Geography , 24, pp. 515–542. doi: 10.1177/030913330002400403.
Ramsay, P. M. and Oxley, E. R. B. (1997) ‘The growth form composition of plant communities in the Ecuadorian páramos’, Plant Ecology , 131(2), pp. 173–192. doi: 10.1023/A:1009796224479.
Rangwala, I., Sinsky, E. and Miller, J. (2013) ‘Amplified warming projections for high altitude regions of the Northern Hemisphere mid-latitudes from CMIP5 models’, Environmental Research Letters , 8(2), pp. 24–40. doi: 10.1088/1748-9326/8/2/024040.
Reich, P. B. et al. (2003) ‘The evolution of plant functional variation: Traits, spectra, and strategies’, International Journal of Plant Sciences , 1643(164), pp. 143–164. doi: 10.1086/374368.
Reich, P. B., Wright, I. J. and Lusk, C. H. (2007) ‘Predicting leaf physiology from simple plant and climate attributes: A Global GLOPNET Analysis’, Ecological Applications . Ecological Society of America, 17(7), pp. 1982–1988.
Scherrer, D. and Körner, C. (2011) ‘Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming’, Journal of Biogeography , 38(2), pp. 406–416. doi: 10.1111/j.1365-2699.2010.02407.x.
Scoffoni, C. et al. (2018) ‘The causes of leaf hydraulic vulnerability and its influence on gas exchange in Arabidopsis thaliana ’, Plant Physiology , 178(4), p. 1584 LP – 1601. doi: 10.1104/pp.18.00743.
Seelmann, L. et al. (2007) ‘Leaf pubescence mediates intraguild predation between predatory mites’, Oikos , 116(5), pp. 807–817. doi: 10.1111/j.2007.0030-1299.15895.x.
Sklenář, P. et al. (2016) ‘Temperature microclimates of plants in a Tropical Alpine environment: How much does growth form matter?’,Arctic, Antarctic, and Alpine Research , 48(1), pp. 61–78. doi: 10.1657/AAAR0014-084.
Sklenář, P. and Balslev, H. (2005) ‘Superpáramo plant species diversity and phytogeography in Ecuador’, Flora - Morphology, distribution, functional ecology of plants , 200(5), pp. 416–433. doi: 10.1016/j.flora.2004.12.006.
Sklenář, P., Hedberg, I. and Cleef, A. M. (2014) ‘Island biogeography of tropical alpine floras’, Journal of Biogeography , 41(2), pp. 287–297. doi: 10.1111/jbi.12212.
Sklenář, P. and Ramsay, P. (2001) ‘Diversity of zonal páramo plant communities in Ecuador’, Diversity and Distributions , 7, pp. 113–124. doi: 10.1046/j.1472-4642.2001.00101.x.
Squeo, F. A. et al. (1991) ‘Freezing tolerance and avoidance in high tropical Andean plants: Is it equally represented in species with different plant height?’, Oecologia . Springer, 86(3), pp. 378–382.
Urrutia, R. and Vuille, M. (2009) ‘Climate change projections for the Tropical Andes using a regional climate change model: Temperature and precipitation simulations for the 21st Century’, Journal of Geophysical Research , 114. doi: 10.1029/2008JD011021.
Wang, H. et al. (2016) ‘Photosynthetic responses to altitude: an explanation based on optimality principles’, New Phytologist , 213(3). doi: 10.1111/nph.14332.
Wang, X. et al. (2015) ‘Herbivore defense responses and associated herbivore defense mechanism as revealed by comparing a resistant wild soybean with a susceptible cultivar’, Crop Journal , 3(6), pp. 451–467. doi: 10.1016/j.cj.2015.07.001.
Westoby, M. et al. (2002) ‘Plant ecological strategies: Some leading dimensions of variation between species’, Annual Review of Ecology and Systematics , 33(1), pp. 125–159. doi: 10.1146/annurev.ecolsys.33.010802.150452.
Woodward, F. I. and Cramer, W. (1996) ‘Plant functional types and climatic change: Introduction’, Journal of Vegetation Science , 7(3), pp. 306–308. doi: 10.1111/j.1654-1103.1996.tb00489.x.
Wright, I. J. et al. (2004) ‘The worldwide leaf economics spectrum’, Nature , 428, p. 821.