REFERENCES
Ayarza, A., Garzón-Lòpez, C. and Lasso, E. (2018) Análisis a
múltiple escala de las dinámicas hídricas de Hypericum en el páramo .
Master thesis. Universidad de los Andes.
Azócar, A., Rada, F. and García-Núñez, C. (2000) ‘Aspectos
ecofisiológicos para la conservación de ecosistemas tropicales
contrastantes’, Boletín de la Sociedad Botánica de México , (65),
pp. 89–94.
Azócar, A., Rada, F. and Goldstein, G. (1988) ‘Freezing tolerance inDraba chionophila , a miniature caulescent rosette species’,Oecologia , 75, pp. 156–160. doi: 10.1007/BF00378830.
Azócar, J. (2006) Relación entre anatomía foliar, forma de vida y
mecanismos de resistencia a temperaturas congelantes en diferentes
especies en el Páramo de Piedras Blancas. Universidad de los Andes.
Bartlett, M. K. et al. (2016) ‘The correlations and sequence of
plant stomatal, hydraulic, and wilting responses to drought’,Proceedings of the National Academy of Sciences . National Academy
of Sciences, 113(46), pp. 13098–13103. doi: 10.1073/pnas.1604088113.
Baruch, Z. (1984) ‘Ordination and classification of vegetation along an
altitudinal gradient in the Venezuelan páramos’, Vegetation ,
55(2), pp. 115–126. doi: 10.1007/BF00037333.
Baruch, Z. and Smith, A. P. (1979) ‘Morphological and physiological
correlates of niche breadth in two species of Espeletia (Compositae) in
the Venezuelan Andes’, Oecologia , 38(1), pp. 71–82. doi:
10.1007/BF00347825.
Bazzaz, F. A. (1990) ‘The Response of Natural Ecosystems to the Rising
Global CO2 Levels’, Annual Review of Ecology and Systematics .
Annual Reviews, 21(1), pp. 167–196. doi:
10.1146/annurev.es.21.110190.001123.
Bhaskar, R. and Ackerly, D. D. (2006) ‘Ecological relevance of minimum
seasonal water potentials’, Physiologia Plantarum , 127(3), pp.
353–359. doi: 10.1111/j.1399-3054.2006.00718.x.
Buytaert, W., Cuesta, F. and Tobon, C. (2011) ‘Potential Impacts of
Climate Change on the Environmental Services of Humid Tropical Alpine
Regions’, Global Ecology and Biogeography , 20, pp. 19–33. doi:
10.1111/j.1466-8238.2010.00585.x.
Cárdenas-Arévalo, G. and Vargas-Ríos, O. (2008) ‘Rasgos de historia de
vida de especies en una comunidad vegetal alterada en un páramo húmedo
(Parque Natural Chingaza)’, Caldasia . 30, pp. 245–264.
Carrillo-Rojas, G. et al. (2016) ‘Dynamic mapping of
evapotranspiration using an energy balance-based model over an Andean
Páramo catchment of Southern Ecuador’, Remote Sensing .
Multidisciplinary Digital Publishing Institute, 8(2), p. 160. doi:
10.3390/rs8020160.
Chapin, F. S. et al. (1996) ‘Plant functional types as predictors
of transient responses of arctic vegetation to global change’,Journal of Vegetation Science , 7(3), pp. 347–358. doi:
10.2307/3236278.
Chapin, F. S. et al. (2000) ‘Consequences of changing
biodiversity’, Nature , 405, pp. 234–242. doi: 10.1038/35012241.
Cornelissen, J. H. C. et al. (2003) ‘A handbook of protocols for
standardised and easy measurement of plant functional traits worldwide’,Australian Journal of Botany , 51(4), pp. 335–380. doi:
http://dx.doi.org/10.1071/BT02124.
Diaz, H. and Bradley, R. (1997) ‘Diaz HF, Bradley RS. Temperature
variations during the last century at High elevation sites.’,Climatic Change , 36, pp. 253–279. doi: 10.1023/A:1005335731187.
Diaz, S. et al. (2004) ‘The plant traits that drive ecosystems:
Evidence from three continents’, Journal of Vegetation Science .
Blackwell Publishing Ltd, 15(3), pp. 295–304. doi:
10.1111/j.1654-1103.2004.tb02266.x.
Díaz, S. and Cabido, M. (2001) ‘Vive la différence: plant functional
diversity matters to ecosystem processes’, Trends in Ecology &
Evolution , 16(11), pp. 646–655. doi: 10.1016/S0169-5347(01)02283-2.
Dormann, S. J. W. (2002) ‘Climate change in the Arctic: using plant
functional types in a meta-analysis of field experiments’,Functional Ecology , 16(1), pp. 4–17.
Flantua, S. G. A. et al. (2019) ‘The flickering connectivity
system of the north Andean páramos’, Journal of Biogeography ,
46(8), pp. 1808–1825. doi: 10.1101/569681.
Goldstein, G., Meinzer, F. and Monasterio, M. (1984) ‘The role of
capacitance in the water balance of Andean giant rosette species.’,Plant, Cell and Environment . Blackwell Publishing Ltd, 7(3), pp.
179–186. doi: 10.1111/1365-3040.ep11614612.
Hanley, M. E. et al. (2007) ‘Plant structural traits and their
role in anti-herbivore defence’, Perspectives in Plant Ecology,
Evolution and Systematics , 8(4), pp. 157–178. doi:
10.1016/j.ppees.2007.01.001.
Hedberg, I. and Hedberg, O. (1979) ‘Tropical-alpine life-forms of
vascular plants’, Oikos , 33(2), pp. 297–297. doi:
10.2307/3544006.
Hofstede, R. (1999) ‘El páramo como espacio para la fijación de carbono
atmosférico’, in Medina, G., Mena, P., and Josse, C. (eds) El
páramo como espacio de mitigación de carbono atmosférico . 1st edn.
Quito, Ecuador: Abya Yala, p. 57.
Hubbell, S. (2005) ‘Neutral theory in community ecology and the
hypothesis of functional equivalence’, Functional Ecology , 19,
pp. 166–172. doi: 10.1111/j.0269-8463.2005.00965.x.
IPCC (2014) Climate Change 2014: Impacts, Adaptation, and
Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter
Boxes. A Contribution of Working Group II to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change , p. 190.
Kassambara, A. (2017) Practical Guide to Cluster Analysis in R:
Unsupervised Machine Learning . STHDA (Multivariate Analysis).
Kattge, J. et al. (2011) ‘TRY – a global database of plant
traits’, Global Change Biology . John Wiley & Sons, Ltd
(10.1111), 17(9), pp. 2905–2935. doi: 10.1111/j.1365-2486.2011.02451.x.
Kazakou, E. et al. (2006) ‘Co-variations in litter decomposition,
leaf traits and plant growth in species from a Mediterranean old-field
succession’, Functional Ecology , 20, pp. 21–30. doi:
10.1111/j.1365-2435.2006.01080.x.
Kitajima, K. and Poorter, L. (2010) ‘Tissue-level leaf toughness, but
not lamina thickness, predicts sapling leaf lifespan and shade tolerance
of tropical tree species’, New Phytologist , 186(3), pp. 708–721.
doi: 10.1111/j.1469-8137.2010.03212.x.
Körner, C. (2003) Alpine plant life: Functional plant ecology of
high mountain ecosystems , Alpine Plant Life, 2nd Edn . doi:
10.1007/978-3-642-18970-8.
Körner, C. and Diemer, M. (1994) ‘Evidence that plants from high
altitudes retain their greater photosynthetic efficiency under elevated
CO2’, Functional Ecology , 8(1), pp. 58–68. doi:
10.2307/2390112.
Körner, C. and Hiltbrunner, E. (2018) ‘The 90 ways to describe plant
temperature’, Perspectives in Plant Ecology, Evolution and
Systematics . (Special issue on Alpine and arctic plant communities: a
worldwide perspective), 30, pp. 16–21. doi:
10.1016/j.ppees.2017.04.004.
Lavorel, S. and Garnier, E. (2002) ‘Predicting changes in community
composition and ecosystem functioning from plant traits: Revisiting the
Holy Grail’, Functional Ecology , 16(5), pp. 545–556. doi:
10.1046/j.1365-2435.2002.00664.x.
Leon-Garcia, I. V. and Lasso, E. (2019) ‘High heat tolerance in plants
from the Andean highlands: Implications for paramos in a warmer world’,PLoS ONE , 14(11), pp. 1–14. doi: 10.1371/journal.pone.0224218.
Liu, X. and Chen, B. (2000) ‘Climatic warming in the Tibetan plateau
during recent decades’, International Journal of climatology , 20,
pp. 1729–1742. doi: 10.1002/1097-0088.
Llambí, L. and Rada, F. (2019) ‘Ecological research in the tropical
alpine ecosystems of the Venezuelan páramo: past, present and future’,Plant Ecology & Diversity , pp. 1–20. doi:
10.1080/17550874.2019.1680762.
Long, S. P. et al. (2004) ‘Rising atmospheric carbon dioxide:
plants FACE the future’, Annual Review of Plant Biology , 55, pp.
591–628. doi: 10.1146/annurev.arplant.55.031903.141610.
Luteyn, J. (1999) ‘Paramos: A checklist of plant diversity, geographical
distribution, and botanical literature. Costa Rica and Panama.’,Memoirs of the New York Botanical Garden , 84, pp. 138–141.
Madriñán, S., Cortés, A. J. and Richardson, J. E. (2013) ‘Páramo is the
world’s fastest evolving and coolest biodiversity hotspot’,Frontiers in Genetics , 4(192). doi: 10.3389/fgene.2013.00192.
Markesteijn, L. et al. (2011) ‘Hydraulics and life history of
tropical dry forest tree species: coordination of species’ drought and
shade tolerance’, New Phytologist , 191(2), pp. 480–495. doi:
10.1111/j.1469-8137.2011.03708.x.
Martínez-Garza, C., Bongers, F. and Poorter, L. (2013) ‘Are functional
traits good predictors of species performance in restoration plantings
in tropical abandoned pastures?’, Forest Ecology and Management ,
303, pp. 35–45. doi: 10.1016/j.foreco.2013.03.046.
Meinzer, F. C., Goldstein, G. H. and Rundel, P. W. (1985) ‘Morphological
changes along an altitude gradient and their consequences for an Andean
giant rosette plant’, Oecologia , 65(2), pp. 278–283. doi:
10.1007/BF00379230.
Mora, M. A., Llambí, L. D. and Ramírez, L. (2019) ‘Giant stem rosettes
have strong facilitation effects on alpine plant communities in the
tropical Andes’, Plant Ecology & Diversity . Taylor & Francis,
12(6), pp. 593–606. doi: 10.1080/17550874.2018.1507055.
Niinemets, Ü. (2001) ‘Global-scale climatic controls of leaf dry mass
per area, density, and thickness in trees and shrubs’, Ecology ,
82(2), pp. 453–469. doi:
10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2.
Niinemets, U. and Kull, O. (1998) ‘Stoichiometry of foliar carbon
constituents varies along light gradients in temperate woody canopies:
implications for foliage morphological plasticity’, Tree
Physiology , 18(7), pp. 467–479. doi: 10.1093/treephys/18.7.467.
Ning, L. and Bradley, R. (2014) ‘Winter precipitation variability and
corresponding teleconnections over the Northeastern United States’,Journal of Geophysical Research: Atmospheres , 119. doi:
10.1002/2014JD021591.
Ostertag, R. et al. (2015) ‘Using plant functional traits to
restore Hawaiian rainforest’, Journal of Applied Ecology , 52(4),
pp. 805–809. doi: 10.1111/1365-2664.12413.
Pagès, J. (2014) Multiple factor analysis by example using R , p.
253.
Pérez-Harguindeguy, N. et al. (2013) ‘New handbook for
standardized measurement of plant functional traits worldwide’,Australian Journal of Botany , 61(3), pp. 167–234. doi:
10.1071/BT12225.
Powers, J. S. and Tiffin, P. (2010) ‘Plant functional type
classifications in tropical dry forests in Costa Rica: Leaf habit versus
taxonomic approaches’, Functional Ecology , 24(4), pp. 927–936.
doi: 10.1111/j.1365-2435.2010.01701.x.
Rada, F. et al. (1992) ‘Net photosynthesis-leaf temperature
relations in plant species with height along an altitudinal gradient’,Acta Oecologica , 13(5), pp. 535–542.
Rada, F. et al. (1998) ‘Leaf gas exchange in Espeletia
schultzii Wedd, a giant caulescent rosette species, along an
altitudinal gradient in the Venezuelan Andes’, Acta Oecologica ,
19(1), pp. 73–79. doi: 10.1016/S1146-609X(98)80010-6.
Rada, F., Azócar, A. and García-Núñez, C. (2019) ‘Plant functional
diversity in tropical Andean páramos’, Plant Ecology &
Diversity , pp. 1–15. doi: 10.1080/17550874.2019.1674396.
Rada, F., Briceño, B. and Azocar, A. (2008) ‘How do two Lupinus species
respond to temperature along an altitudinal gradient in the Venezuelan
Andes?’, Revista Chilena De Historia Natural , 81(3). doi:
10.4067/S0716-078X2008000300003.
Ramirez, L., Rada, F. and Llambí, L. (2014) ‘Linking patterns and
processes through ecosystem engineering: effects of shrubs on
microhabitat and water status of associated plants in the high tropical
Andes’, Plant Ecology , 216(2), pp. 213–225. doi:
10.1007/s11258-014-0429-5.
Ramsay, P., Kent, M. and Duckworth, J. (2000) ‘Plant functional types:
An alternative to taxonomic plant community description in
biogeography?’, Progress in Physical Geography , 24, pp. 515–542.
doi: 10.1177/030913330002400403.
Ramsay, P. M. and Oxley, E. R. B. (1997) ‘The growth form composition of
plant communities in the Ecuadorian páramos’, Plant Ecology ,
131(2), pp. 173–192. doi: 10.1023/A:1009796224479.
Rangwala, I., Sinsky, E. and Miller, J. (2013) ‘Amplified warming
projections for high altitude regions of the Northern Hemisphere
mid-latitudes from CMIP5 models’, Environmental Research Letters ,
8(2), pp. 24–40. doi: 10.1088/1748-9326/8/2/024040.
Reich, P. B. et al. (2003) ‘The evolution of plant functional
variation: Traits, spectra, and strategies’, International Journal
of Plant Sciences , 1643(164), pp. 143–164. doi: 10.1086/374368.
Reich, P. B., Wright, I. J. and Lusk, C. H. (2007) ‘Predicting leaf
physiology from simple plant and climate attributes: A Global GLOPNET
Analysis’, Ecological Applications . Ecological Society of
America, 17(7), pp. 1982–1988.
Scherrer, D. and Körner, C. (2011) ‘Topographically controlled
thermal-habitat differentiation buffers alpine plant diversity against
climate warming’, Journal of Biogeography , 38(2), pp. 406–416.
doi: 10.1111/j.1365-2699.2010.02407.x.
Scoffoni, C. et al. (2018) ‘The causes of leaf hydraulic
vulnerability and its influence on gas exchange in Arabidopsis
thaliana ’, Plant Physiology , 178(4), p. 1584 LP – 1601. doi:
10.1104/pp.18.00743.
Seelmann, L. et al. (2007) ‘Leaf pubescence mediates intraguild
predation between predatory mites’, Oikos , 116(5), pp. 807–817.
doi: 10.1111/j.2007.0030-1299.15895.x.
Sklenář, P. et al. (2016) ‘Temperature microclimates of plants in
a Tropical Alpine environment: How much does growth form matter?’,Arctic, Antarctic, and Alpine Research , 48(1), pp. 61–78. doi:
10.1657/AAAR0014-084.
Sklenář, P. and Balslev, H. (2005) ‘Superpáramo plant species diversity
and phytogeography in Ecuador’, Flora - Morphology, distribution,
functional ecology of plants , 200(5), pp. 416–433. doi:
10.1016/j.flora.2004.12.006.
Sklenář, P., Hedberg, I. and Cleef, A. M. (2014) ‘Island biogeography of
tropical alpine floras’, Journal of Biogeography , 41(2), pp.
287–297. doi: 10.1111/jbi.12212.
Sklenář, P. and Ramsay, P. (2001) ‘Diversity of zonal páramo plant
communities in Ecuador’, Diversity and Distributions , 7, pp.
113–124. doi: 10.1046/j.1472-4642.2001.00101.x.
Squeo, F. A. et al. (1991) ‘Freezing tolerance and avoidance in
high tropical Andean plants: Is it equally represented in species with
different plant height?’, Oecologia . Springer, 86(3), pp.
378–382.
Urrutia, R. and Vuille, M. (2009) ‘Climate change projections for the
Tropical Andes using a regional climate change model: Temperature and
precipitation simulations for the 21st Century’, Journal of
Geophysical Research , 114. doi: 10.1029/2008JD011021.
Wang, H. et al. (2016) ‘Photosynthetic responses to altitude: an
explanation based on optimality principles’, New Phytologist ,
213(3). doi: 10.1111/nph.14332.
Wang, X. et al. (2015) ‘Herbivore defense responses and
associated herbivore defense mechanism as revealed by comparing a
resistant wild soybean with a susceptible cultivar’, Crop
Journal , 3(6), pp. 451–467. doi: 10.1016/j.cj.2015.07.001.
Westoby, M. et al. (2002) ‘Plant ecological strategies: Some
leading dimensions of variation between species’, Annual Review of
Ecology and Systematics , 33(1), pp. 125–159. doi:
10.1146/annurev.ecolsys.33.010802.150452.
Woodward, F. I. and Cramer, W. (1996) ‘Plant functional types and
climatic change: Introduction’, Journal of Vegetation Science ,
7(3), pp. 306–308. doi: 10.1111/j.1654-1103.1996.tb00489.x.
Wright, I. J. et al. (2004) ‘The worldwide leaf economics
spectrum’, Nature , 428, p. 821.