Supplemental Table Captions
Supplemental Table 1. GT-seq primers, probes, and variants for the 325 single nucleotide polymorphism loci from white sturgeon.
References Cited
Anders, P. J., Drauch-Schreier, A., Rodzen, J., Powell, M. S., Narum, S., & Crossman, J. A. (2011). A review of genetic evaluation tools for conservation and management of North American sturgeons: Roles, benefits, and limitations. Journal of Applied Ichthyology . doi: 10.1111/j.1439-0426.2011.01830.x
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing.Journal of the Royal Statistical Society, Series B , 57 (1), 289–300.
Beyea, M. M., Benfey, T. J., & Kieffer, J. D. (2005). Hematology and stress physiology of juvenile diploid and triploid shortnose sturgeon (Acipenser brevirostrum). Fish Physiology and Biochemistry ,31 , 303–313. doi: 10.1007/s10695-005-1552-y
Blankenship, S. M., Schumer, G., Van Eenennaam, J. P., & Jackson, Z. J. (2017). Estimating number of spawning white sturgeon adults from embryo relatedness. Fisheries Management and Ecology . doi: 10.1111/fme.12217
Blischak, P. D., Kubatko, L. S., & Wolfe, A. D. (2018). SNP genotyping and parameter estimation in polyploids using low-coverage sequencing data. Bioinformatics . doi: 10.1093/bioinformatics/btx587
Campbell, N. R., Harmon, S. A., & Narum, S. R. (2015). Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Molecular Ecology Resources , 15 (4), 855–867. doi: 10.1111/1755-0998.12357
Catchen, J. M., Amores, A., Hohenlohe, P. A., Cresko, W. A., & Postlethwait, J. H. (2011). Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences. G3: Genes, Genomes, Genetics‘ ,1 , 3171–3182.
Clark, L. V., & Schreier, A. D. (2017). Resolving microsatellite genotype ambiguity in populations of allopolyploid and diploidized autopolyploid organisms using negative correlations between allelic variables. Molecular Ecology Resources . doi: 10.1111/1755-0998.12639
Comai, L. (2005). The advantages and disadvantages of being polyploid.Nature Reviews Genetics . doi: 10.1038/nrg1711
Crow, K. D., Stadler, P. F., Lynch, V. J., Amemiya, C., & Wagner, G. P. (2006). The “fish-specific” Hox cluster duplication is coincident with the origin of teleosts. Molecular Biology and Evolution . doi: 10.1093/molbev/msj020
Dehal, P., & Boore, J. L. (2005). Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biology . doi: 10.1371/journal.pbio.0030314
Drauch Schreier, A., Gille, D., Mahardja, B., & May, B. (2011). Neutral markers confirm the octoploid origin and reveal spontaneous autopolyploidy in white sturgeon, Acipenser transmontanus. Journal of Applied Ichthyology . doi: 10.1111/j.1439-0426.2011.01873.x
Du, K., Stöck, M., Kneitz, S., Klopp, C., Woltering, J. M., Adolfi, M. C., … Schartl, M. (2020). The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nature Ecology and Evolution . doi: 10.1038/s41559-020-1166-x
Dufresne, F., Stift, M., Vergilino, R., & Mable, B. K. (2014). Recent progress and challenges in population genetics of polyploid organisms: An overview of current state-of-the-art molecular and statistical tools.Molecular Ecology . doi: 10.1111/mec.12581
Fiske, J. A., Van Eenennaam, J. P., Todgham, A. E., Young, S. P., Holem-Bell, C. E., Goodbla, A. M., & Schreier, A. D. (2019). A comparison of methods for determining ploidy in white sturgeon (Acipenser transmontanus). Aquaculture . doi: 10.1016/j.aquaculture.2019.03.009
Gille, D. A., Famula, T. R., May, B. P., & Schreier, A. D. (2015). Evidence for a maternal origin of spontaneous autopolyploidy in cultured white sturgeon (Acipenser transmontanus). Aquaculture . doi: 10.1016/j.aquaculture.2014.10.002
Havelka, M., Bytyutskyy, D., Symonová, R., Ráb, P., & Flajšhans, M. (2016). The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity.Genetics Selection Evolution . doi: 10.1186/s12711-016-0194-0
Hildebrand, L. R., Drauch Schreier, A., Lepla, K., McAdam, S. O., McLellan, J., Parsley, M. J., … Young, S. P. (2016). Status of White Sturgeon (Acipenser transmontanus Richardson, 1863) throughout the species range, threats to survival, and prognosis for the future.Journal of Applied Ichthyology . doi: 10.1111/jai.13243
Holland, P. W. H., Garcia-Fernandez, J., Williams, N. A., & Sidow, A. (1994). Gene duplications and the origins of vertebrate development.Development .
Huang, K., Guo, S. T., Shattuck, M. R., Chen, S. T., Qi, X. G., Zhang, P., & Li, B. G. (2015). A maximum-likelihood estimation of pairwise relatedness for autopolyploids. Heredity . doi: 10.1038/hdy.2014.88
Huang, Kang, Dunn, D. W., Ritland, K., & Li, B. (2020). polygene: Population genetics analyses for autopolyploids based on allelic phenotypes. Methods in Ecology and Evolution . doi: 10.1111/2041-210X.13338
Ilut, D. C., Nydam, M. L., & Hare, M. P. (2014). Defining loci in restriction-based reduced representation genomic data from nonmodel species: Sources of bias and diagnostics for optimal clustering.BioMed Research International . doi: 10.1155/2014/675158
Jager, H. I. (2005). Genetic and demographic implications of aquaculture in white sturgeon (Acipenser transmontanus) conservation. Canadian Journal of Fisheries and Aquatic Sciences . doi: 10.1139/f05-106
Jay, K., Crossman, J. A., & Scribner, K. T. (2014). Estimates of Effective Number of Breeding Adults and Reproductive Success for White Sturgeon. Transactions of the American Fisheries Society . doi: 10.1080/00028487.2014.931301
Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics . doi: 10.1093/bioinformatics/btn129
Jones, O. R., & Wang, J. (2010). COLONY: A program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources . doi: 10.1111/j.1755-0998.2009.02787.x
Leal, M. J., Clark, B. E., Van Eenennaam, J. P., Schreier, A. D., & Todgham, A. E. (2018). The effects of warm temperature acclimation on constitutive stress, immunity, and metabolism in white sturgeon (Acipenser transmontanus) of different ploidies. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology . doi: 10.1016/j.cbpa.2018.05.021
Leal, M. J., Van Eenennaam, J. P., Schreier, A. D., & Todgham, A. E. (2020). Diploid and triploid white sturgeon (Acipenser transmontanus) differ in magnitude but not kinetics of physiological responses to exhaustive exercise at ambient and elevated temperatures. Canadian Journal of Fisheries and Aquatic Sciences . doi: 10.1139/cjfas-2019-0289
Ludwig, A., Belfiore, N. M., Pitra, C., Svirsky, V., & Jenneckens, I. (2001). Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus).Genetics .
Lynch, M., & Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science . doi: 10.1126/science.290.5494.1151
Meirmans, P. G., Liu, S., & Van Tienderen, P. H. (2018). The Analysis of Polyploid Genetic Data. Journal of Heredity . doi: 10.1093/jhered/esy006
Meirmans, P. G., & Van Tienderen, P. H. (2013). The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity . doi: 10.1038/hdy.2012.80
Meyer, A., & Van De Peer, Y. (2005). From 2R to 3R: Evidence for a fish-specific genome duplication (FSGD). BioEssays . doi: 10.1002/bies.20293
Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers.Genome Research . doi: 10.1101/gr.5681207
Nei, M. (1973). Analysis of gene diversity in subdivided populations.Proceedings of the National Academy of Sciences of the United States of America . doi: 10.1073/pnas.70.12.3321
O’Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M., & Portnoy, D. S. (2018). These aren’t the loci you’re looking for: Principles of effective SNP filtering for molecular ecologists.Molecular Ecology , 0 (ja). doi: 10.1111/mec.14792
Ogden, R., Gharbi, K., Mugue, N., Martinsohn, J., Senn, H., Davey, J. W., … Congiu, L. (2013). Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing. Molecular Ecology . doi: 10.1111/mec.12234
Ohno, S. (1971). Evolution by Gene Duplication. Population (French Edition) . doi: 10.2307/1530208
Puritz, J. B., Matz, M. V, Toonen, R. J., Weber, J. N., Bolnick, D. I., & Bird, C. E. (2014). Demystifying the RAD fad. Molecular Ecology , 23 (24), 5937–5942.
Rajkov, J., Shao, Z., & Berrebi, P. (2014). Evolution of polyploidy and functional diploidization in sturgeons: Microsatellite analysis in 10 sturgeon species. Journal of Heredity . doi: 10.1093/jhered/esu027
Raymond, M., & Rousset, F. (1995). An exact test for population differentiation. Evolution , 49 , 1280–1283. doi: 10.1111/j.1558-5646.1995.tb04456.x
Rodzen, J. A., Famula, T. R., & May, B. (2004). Estimation of parentage and relatedness in the polyploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated microsatellite loci. Aquaculture . doi: 10.1016/S0044-8486(03)00450-2
Ronfort, J., Jenczewski, E., Bataillon, T., & Rousset, F. (1998). Analysis of population structure in autotetraploid species.Genetics .
Roques, S., Chancerel, E., Boury, C., Pierre, M., & Acolas, M. L. (2019). From microsatellites to single nucleotide polymorphisms for the genetic monitoring of a critically endangered sturgeon. Ecology and Evolution . doi: 10.1002/ece3.5268
Schreier, A. D., May, B., & Gille, D. A. (2013). Incidence of spontaneous autopolyploidy in cultured populations of white sturgeon, Acipenser transmontanus. Aquaculture . doi: 10.1016/j.aquaculture.2013.09.012
Schreier, A. Drauch, Mahardja, B., & May, B. (2013). Patterns of population structure vary across the range of the white sturgeon.Transactions of the American Fisheries Society . doi: 10.1080/00028487.2013.788554
Schreier, A. Drauch, Rodzen, J., Ireland, S., & May, B. (2012). Genetic techniques inform conservation aquaculture of the endangered Kootenai river white sturgeon Acipenser transmontanus. Endangered Species Research . doi: 10.3354/esr00387
Schreier, A., Stephenson, S., Rust, P., & Young, S. (2015). The case of the endangered Kootenai River white sturgeon (Acipenser transmontanus) highlights the importance of post-release genetic monitoring in captive and supportive breeding programs. Biological Conservation . doi: 10.1016/j.biocon.2015.09.011
Schreier, Andrea Drauch, Mahardja, B., & May, B. (2012). Hierarchical patterns of population structure in the endangered fraser river white sturgeon (acipenser transmontanus) and implications for conservation.Canadian Journal of Fisheries and Aquatic Sciences , 69 , 1968–1980. doi: 10.1139/f2012-120
Scott, W., & Crossman, E. (1973). Freshwater fishes of Canada, Bulletin 184 . Fisheries Research Board of Canada, Ottawa.
Soltis, D. E., Visger, C. J., Blaine Marchant, D., & Soltis, P. S. (2016). Polyploidy: Pitfalls and paths to a paradigm. American Journal of Botany . doi: 10.3732/ajb.1500501
Spoelhof, J. P., Soltis, P. S., & Soltis, D. E. (2017). Pure polyploidy: Closing the gaps in autopolyploid research. Journal of Systematics and Evolution . doi: 10.1111/jse.12253
Thorstensen, M., Bates, P., Lepla, K., & Schreier, A. (2019). To breed or not to breed? Maintaining genetic diversity in white sturgeon supplementation programs. Conservation Genetics . doi: 10.1007/s10592-019-01190-4
Van Eenennaam, A. L., Murray, J. D., & Medrano, J. F. (1998). Synaptonemal complex analysis in spermatocytes of white sturgeon, Acipenser transmontanus richardson (pisces, acipenseridae), a fish with a very high chromosome number. Genome , 41 , 51–61. doi: 10.1139/g97-101
Van Eenennaam, J. P., Fiske, A. J., Leal, M. J., Cooley-Rieders, C., Todgham, A. E., Conte, F. S., & Schreier, A. D. (2019). Mechanical shock during egg de-adhesion and post-ovulatory ageing contribute to spontaneous autopolyploidy in white sturgeon culture (Acipenser transmontanus). Aquaculture . doi: 10.1016/j.aquaculture.2019.734530
Wang, J. (2018). Effects of sampling close relatives on some elementary population genetics analyses. Molecular Ecology Resources . doi: 10.1111/1755-0998.12708
Wang, J., & Scribner, K. T. (2014). Parentage and sibship inference from markers in polyploids. Molecular Ecology Resources . doi: 10.1111/1755-0998.12210
Waples, R. S., & Anderson, E. C. (2017). Purging putative siblings from population genetic data sets: A cautionary view. Molecular Ecology . doi: 10.1111/mec.14022
Weir, B. S. (1997). Genetic Data Analysis II. Biometrics . doi: 10.2307/2533134
Wendel, J. F. (2000). Genome evolution in polyploids. Plant Molecular Biology . doi: 10.1023/A:1006392424384
Willis, S. C., Hollenbeck, C. M., Puritz, J. B., Gold, J. R., & Portnoy, D. S. (2017). Haplotyping RAD loci: an efficient method to filter paralogs and account for physical linkage. Molecular Ecology Resources , 17 (5), 955–965. doi: 10.1111/1755-0998.12647
Wolfe, K. H. (2001). Yesterday’s polyploids and the mystery of diploidization. Nature Reviews Genetics . doi: 10.1038/35072009