References

1. Shorland FB, Gray JM. The preparation of nutritious protein from wool. British Journal of Nutrition. 1970;24:717-725.
2. Parry DAD, Steinert PM. Intermediate filament structure. .Heidelberg, Germany: Springer-Verlag; 1995.
3. Parry DAD. Hendecad repeat in segment 2A and linker L2 of intermediate filament chains implies the possibility of a right-handed coiled-coil structure. Journal of Structural Biology.2006;155:370–374.
4. Parry DA, North AC. Hard α-keratin intermediate filament chains: substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains. Journal of Structural Biology. 1998;122(1-2):67-75.
5. Strnad P, Usachov V, Debes C, Gräter F, Parry DA, Omary MB. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins. Journal of Cell Science. 2011;124:4221-4232.
6. Plowman JE, Thomas A, Perloiro T, Clerens S, de Almeida AM. Characterisation of white and black merino wools: a proteomics study.Animal. 2018:1-7.
7. Maclaren JA, Milligan B. Wool Science. The chemical reactivity of the wool fibre. Marrickville, NSW, Australia: Science Press; 1981.
8. Fujikawa H, Fujimoto A, Farooq M, Ito M, Shimomura Y. Characterisation of the human hair keratin-associated protein 2 (KRTAP2) gene family. Journal of Investigative Dermatology.2012;132:1806-1813.
9. Fraser BRD, MacRae TP, Sparrow LG, Parry DA. Disulphide bonding in a-keratin. International Journal of Biological Macromolecules.1988;10(April):106-112.
10. Plowman JE, Flanagan LM, Paton LN, Fitzgerald AC, Joyce NI, Bryson WG. The effect of oxidation or alkylation on the separation of wool keratin proteins by two-dimensional electrophoresis. Proteomics.2003;3:942-950.
11. O’Cualain RD, Sims PFG, Carr CM. Structural analysis of alphahelical proteins from wool using cysteine labelling and mass spectrometry.International Journal of Biological Macromolecules.2011;49:323–330.
12. Deb-choudhury S, Plowman JE, Rao K, et al. Mapping the accessibility of the disulfide crosslink network in the wool fiber cortex.Proteins 2015;83:224-234.
13. Fraser RDB, Parry DAD. Intermediate filament structure in fully differentiated (oxidised) trichocyte keratin. Journal of Structural Biology. 2017;200:45-53.
14. Plowman JE, Deb-Choudhury S, Thomas A, et al. Characterisation of low abundance wool proteins through novel differential extraction techniques. Electrophoresis 2010;31:1937-1946.
15. Parry DAD, Strelkov SV, Burkhard P, Aebi U, Herrmann H. Towards a molecular description of intermediate filament structure and assembly.Experimental Cell Research. 2007;313:2204–2216.
16. Steinert PM, Parry DAD. The conserved H1 domain of the Type II keratin 1 chain plays an essential role in the alignment of nearest neighbour molecules in mouse and human keratin 1/keratin 10 intermediate filaments at the two- to four-molecule level of structure. Journal of Biological Chemistry. 1993;268:2878-2887.
17. Fraser RDB, Parry DAD. Structural changes in the trichocyte intermediate filaments accompanying the transition from the reduced to the oxidized form. Journal of Structural Biology.2007;159(1):36-45.
18. Fraser RDB, Parry DAD. The role of disulfide bond formation in the structural transition observed in the intermediate filaments of developing hair. Journal of Structural Biology. 2012;180:117-124.
19. Wang H, Parry DAD, Jones LN, Idler WW, Marekov LN, Steinert PM. In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding.Journal of Cell Biology. 2000;151(7):1459-1468.