REFERENCES
Angell SY, Silver LD, Goldstein GP, Johnson CM, Deitcher DR, Frieden TR, et al. Cholesterol control beyond the clinic: New york city’s trans fat restriction. Ann Intern Med. 2009;151:129-134. https://doi.org/10.7326/0003-4819-151-2-200907210-00010.
Asnaashari M, Farhoosh R, Sharif A. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of kilka fish oil and its oil-in-water emulsion. Food Chem. 2014;159:439-444. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.03.038.
Choe E, Min DB. Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci Food Saf. 2006;5:169-186. https://doi.org/10.1111/j.1541-4337.2006.00009.x.
Choe E, Min DB. Mechanisms of antioxidants in the oxidation of foods. Compr Rev Food Sci Food Saf. 2009;8:345-358. https://doi.org/10.1111/j.1541-4337.2009.00085.x.
Dai Z, Deng J, Ansaloni L, Janakiram S, Deng L. Thin-film-composite hollow fiber membranes containing amino acid salts as mobile carriers for CO2 separation. J Membr Sci. 2019;578:61-68. https://doi.org/10.1016/j.memsci.2019.02.023.
Decker EA, Ivanov V, Zhu B-Z, Frei B. Inhibition of low-density lipoprotein oxidation by carnosine and histidine. J Agric Food Chem. 2001;49:511-516. https://doi.org/10.1021/jf0010533.
Farag RS, Osman SA, HallaBo SAS, Girgis AN, Nasr AA. Linoleic acid oxidation catalyzed by various amino acids and cupric ions in freeze-dried model systems. J Am Oil Chem Soc. 1978;55:708-710. https://doi.org/10.1007/bf02665367.
Farhoosh R, Johnny S, Asnaashari M, Molaahmadibahraseman N, Sharif A. Structure–antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem. 2016;194:128-134. https://doi.org/10.1016/j.foodchem.2015.08.003.
Gray JI. Measurement of lipid oxidation: A review. J Am Oil Chem Soc. 1978;55:539-546. https://doi.org/10.1007/BF02668066.
Guillén MD, Uriarte PS. Aldehydes contained in edible oils of a very different nature after prolonged heating at frying temperature: Presence of toxic oxygenated α,β unsaturated aldehydes. Food Chem. 2012;131:915-926. https://doi.org/10.1016/j.foodchem.2011.09.079.
Heng HFE, Ong XL, Chow PYE. Antioxidant action and effectiveness of sulfur-containing amino acid during deep frying. J Food Sci Technol. 2020;57:1150-1157. https://doi.org/10.1007/s13197-019-04150-5.
Hwang H-S, Winkler-Moser J, Bakota E, Berhow M, Liu S. Antioxidant activity of sesamol in soybean oil under frying conditions. J Am Oil Chem Soc. 2013;90:659-666. https://doi.org/10.1007/s11746-013-2204-5.
Hwang H-S, Winkler-Moser JK. Antioxidant activity of amino acids in soybean oil at frying temperature: Structural effects and synergism with tocopherols. Food Chem. 2017;221:1168-1177. http://dx.doi.org/10.1016/j.foodchem.2016.11.042.
Hwang HS, Winkler-Moser JK, Doll KM, Gadgil M, Liu SX. Factors affecting antioxidant activity of amino acids in soybean oil at frying temperatures. Eur J Lipid Sci Technol. 2019;121. https://doi.org/10.1002/ejlt.201900091.
Hwang HS, Winkler-Moser JK, Kim Y, Liu SX. Antioxidant activity of spent coffee ground extracts toward soybean oil and fish oil. Eur J Lipid Sci Technol. 2019;121:1800372. https://doi.org/10.1002/ejlt.201800372.
Hwang HS, Winkler-Moser JK, Liu SX. Structural effect of lignans and sesamol on polymerization of soybean oil at frying temperature. J Am Oil Chem Soc. 2012;89:1067-1076. https://doi.org/10.1007/s11746-011-1994-6.
Hwang HS, Winkler-Moser JK, Liu SX. Study on antioxidant activity of amino acids at frying temperatures and their interaction with rosemary extract, green tea extract, and ascorbic acid. J Food Sci. 2019;84:3614-3623. https://doi.org/10.1111/1750-3841.14963 .
Hwang HS, Winkler-Moser JK, Vermillion K, Liu SX. Enhancing antioxidant activity of sesamol at frying temperature by addition of additives through reducing volatility. J Food Sci. 2014;79:C2164-2173. https://doi.org/10.1111/1750-3841.12653.
Ichihara K, Shibahara A, Yamamoto K, Nakayama T. An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids. 1996;31:535-539. https://doi.org/10.1007/BF02522648.
Ito N, Hirose M, Fukushima S, Tsuda H, Shirai T, Tatematsu M. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem Toxicol. 1986;24:1071-1082. https://doi.org/10.1016/0278-6915(86)90291-7.
Jiang DD. Amino acid salt articles and methods of making and using them. US 8,500,880 B2 (Patent) 2013.
Karamać M, Buciński A, Pegg RB, Amarowicz R. Antioxidant and antiradical activity of ferulates. Czech Food Sci. 2005;23:64-68. https://doi.org/10.17221/3373-CJFS.
Karupaiah T, Sundram K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutr Metab. 2007;4:16. https://doi.org/10.1186/1743-7075-4-16.
Marcuse. Antioxidative effect of amino-acids. Nature. 1960;186:886-887. http://dx.doi.org/10.1038/186886a0 .
Marcuse. The effect of some amino acids on the oxidation of linoleic acid and its methyl ester. J Am Oil Chem Soc. 1962;39:97-103. https://doi.org/10.1007/bf02631680.
Marcuse R. Antioxidative effect of amino-acids. Nature. 1960;186:886. https://doi.org/10.1038/186886a0.
Miura Y, Honda S, Masuda A, Masuda T. Antioxidant activities of cysteine derivatives against lipid oxidation in anhydrous media. Biosci Biotechnol Biochem. 2014;78:1452-1455. https://doi.org/10.1080/09168451.2014.918496.
Pignitter M, Somoza V. Critical evaluation of methods for the measurement of oxidative rancidity in vegetable oils. J Food Drug Anal. 2012;20:772-777. https://doi.org/10.38212/2224-6614.2024.
Riisom T, Sims RJ, Fioriti JA. Effect of amino acids on the autoxidation of safflower oil in emulsions. J Am Oil Chem Soc. 1980;57:354-359. https://doi.org/10.1007/bf02662057.
Seher A, Löschner D. Natürliche antioxidantien vi aminosäure-gemische als effiziente synergisten. Fette Wiss Technol. 1986;88:1-6. https://doi.org/10.1002/lipi.19860880102.
Sinha L, Karabacak M, Narayan V, Cinar M, Prasad O. Molecular structure, electronic properties, nlo, nbo analysis and spectroscopic characterization of gabapentin with experimental (ft-ir and ft-raman) techniques and quantum chemical calculations. Spectrochim Acta A Mol Biomol Spectrosc. 2013;109:298-307. https://doi.org/10.1016/j.saa.2013.02.035.
Yamaguchi K, Kobuniwa H, Nagami S, Bando T, Hirao A, Nakahama S, et al. Studies on synthetic ionophores. X. Transport behavior of Na+ and K+ with an ω-hydroxy carboxylic acid containing octaether linkages as a synthetic analog of natural carboxylic acid ionophores through an organic liquid membrane. Bull the Chem Soc Jpn. 1995;68:315-321. https://doi.org/10.1246/bcsj.68.315.