REFERENCES
Angell SY, Silver LD, Goldstein GP, Johnson CM, Deitcher DR, Frieden TR,
et al. Cholesterol control beyond the clinic: New york city’s trans fat
restriction. Ann Intern Med. 2009;151:129-134.
https://doi.org/10.7326/0003-4819-151-2-200907210-00010.
Asnaashari M, Farhoosh R, Sharif A. Antioxidant activity of gallic acid
and methyl gallate in triacylglycerols of kilka fish oil and its
oil-in-water emulsion. Food Chem. 2014;159:439-444.
https://doi.org/https://doi.org/10.1016/j.foodchem.2014.03.038.
Choe E, Min DB. Mechanisms and factors for edible oil oxidation. Compr
Rev Food Sci Food Saf. 2006;5:169-186.
https://doi.org/10.1111/j.1541-4337.2006.00009.x.
Choe E, Min DB. Mechanisms of antioxidants in the oxidation of foods.
Compr Rev Food Sci Food Saf. 2009;8:345-358.
https://doi.org/10.1111/j.1541-4337.2009.00085.x.
Dai Z, Deng J, Ansaloni L, Janakiram S, Deng L. Thin-film-composite
hollow fiber membranes containing amino acid salts as mobile carriers
for CO2 separation. J Membr Sci. 2019;578:61-68.
https://doi.org/10.1016/j.memsci.2019.02.023.
Decker EA, Ivanov V, Zhu B-Z, Frei B. Inhibition of low-density
lipoprotein oxidation by carnosine and histidine. J Agric Food Chem.
2001;49:511-516. https://doi.org/10.1021/jf0010533.
Farag RS, Osman SA, HallaBo SAS, Girgis AN, Nasr AA. Linoleic acid
oxidation catalyzed by various amino acids and cupric ions in
freeze-dried model systems. J Am
Oil Chem Soc. 1978;55:708-710. https://doi.org/10.1007/bf02665367.
Farhoosh R, Johnny S, Asnaashari M, Molaahmadibahraseman N, Sharif A.
Structure–antioxidant activity relationships of o-hydroxyl, o-methoxy,
and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem.
2016;194:128-134. https://doi.org/10.1016/j.foodchem.2015.08.003.
Gray JI. Measurement of lipid oxidation: A review. J Am Oil Chem Soc.
1978;55:539-546. https://doi.org/10.1007/BF02668066.
Guillén MD, Uriarte PS. Aldehydes contained in edible oils of a very
different nature after prolonged heating at frying temperature: Presence
of toxic oxygenated α,β unsaturated aldehydes. Food Chem.
2012;131:915-926. https://doi.org/10.1016/j.foodchem.2011.09.079.
Heng HFE, Ong XL, Chow PYE. Antioxidant action and effectiveness of
sulfur-containing amino acid during deep frying. J Food Sci Technol.
2020;57:1150-1157. https://doi.org/10.1007/s13197-019-04150-5.
Hwang H-S, Winkler-Moser J, Bakota E, Berhow M, Liu S. Antioxidant
activity of sesamol in soybean oil under frying conditions. J Am Oil
Chem Soc. 2013;90:659-666. https://doi.org/10.1007/s11746-013-2204-5.
Hwang H-S, Winkler-Moser JK. Antioxidant activity of amino acids in
soybean oil at frying temperature: Structural effects and synergism with
tocopherols. Food Chem. 2017;221:1168-1177.
http://dx.doi.org/10.1016/j.foodchem.2016.11.042.
Hwang HS, Winkler-Moser JK, Doll KM, Gadgil M, Liu SX. Factors affecting
antioxidant activity of amino acids in soybean oil at frying
temperatures. Eur J Lipid Sci Technol. 2019;121.
https://doi.org/10.1002/ejlt.201900091.
Hwang HS, Winkler-Moser JK, Kim Y, Liu SX. Antioxidant activity of spent
coffee ground extracts toward soybean oil and fish oil. Eur J Lipid Sci
Technol. 2019;121:1800372. https://doi.org/10.1002/ejlt.201800372.
Hwang HS, Winkler-Moser JK, Liu SX. Structural effect of lignans and
sesamol on polymerization of soybean oil at frying temperature. J Am Oil
Chem Soc. 2012;89:1067-1076. https://doi.org/10.1007/s11746-011-1994-6.
Hwang HS, Winkler-Moser JK, Liu SX. Study on antioxidant activity of
amino acids at frying temperatures and their interaction with rosemary
extract, green tea extract, and ascorbic acid. J Food Sci.
2019;84:3614-3623. https://doi.org/10.1111/1750-3841.14963 .
Hwang HS, Winkler-Moser JK, Vermillion K, Liu SX. Enhancing antioxidant
activity of sesamol at frying temperature by addition of additives
through reducing volatility. J Food Sci. 2014;79:C2164-2173.
https://doi.org/10.1111/1750-3841.12653.
Ichihara K, Shibahara A, Yamamoto K, Nakayama T. An improved method for
rapid analysis of the fatty acids of glycerolipids. Lipids.
1996;31:535-539. https://doi.org/10.1007/BF02522648.
Ito N, Hirose M, Fukushima S, Tsuda H, Shirai T, Tatematsu M. Studies on
antioxidants: Their carcinogenic and modifying effects on chemical
carcinogenesis. Food Chem Toxicol. 1986;24:1071-1082.
https://doi.org/10.1016/0278-6915(86)90291-7.
Jiang DD. Amino acid salt articles and methods of making and using them.
US 8,500,880 B2 (Patent) 2013.
Karamać M, Buciński A, Pegg RB, Amarowicz R. Antioxidant and antiradical
activity of ferulates. Czech Food Sci. 2005;23:64-68.
https://doi.org/10.17221/3373-CJFS.
Karupaiah T, Sundram K. Effects of stereospecific positioning of fatty
acids in triacylglycerol structures in native and randomized fats: A
review of their nutritional implications. Nutr Metab. 2007;4:16.
https://doi.org/10.1186/1743-7075-4-16.
Marcuse. Antioxidative effect of amino-acids. Nature. 1960;186:886-887.
http://dx.doi.org/10.1038/186886a0 .
Marcuse. The effect of some amino acids on the oxidation of linoleic
acid and its methyl ester. J Am Oil Chem Soc. 1962;39:97-103.
https://doi.org/10.1007/bf02631680.
Marcuse R. Antioxidative effect of amino-acids. Nature. 1960;186:886.
https://doi.org/10.1038/186886a0.
Miura Y, Honda S, Masuda A, Masuda T. Antioxidant activities of cysteine
derivatives against lipid oxidation in anhydrous media. Biosci
Biotechnol Biochem. 2014;78:1452-1455.
https://doi.org/10.1080/09168451.2014.918496.
Pignitter M, Somoza V. Critical evaluation of methods for the
measurement of oxidative rancidity in vegetable oils. J Food Drug Anal.
2012;20:772-777. https://doi.org/10.38212/2224-6614.2024.
Riisom T, Sims RJ, Fioriti JA. Effect of amino acids on the autoxidation
of safflower oil in emulsions. J Am Oil Chem Soc. 1980;57:354-359.
https://doi.org/10.1007/bf02662057.
Seher A, Löschner D. Natürliche antioxidantien vi aminosäure-gemische
als effiziente synergisten. Fette Wiss Technol. 1986;88:1-6.
https://doi.org/10.1002/lipi.19860880102.
Sinha L, Karabacak M, Narayan V, Cinar M, Prasad O. Molecular structure,
electronic properties, nlo, nbo analysis and spectroscopic
characterization of gabapentin with experimental (ft-ir and ft-raman)
techniques and quantum chemical calculations. Spectrochim Acta A Mol
Biomol Spectrosc. 2013;109:298-307.
https://doi.org/10.1016/j.saa.2013.02.035.
Yamaguchi K, Kobuniwa H, Nagami S, Bando T, Hirao A, Nakahama S, et al.
Studies on synthetic ionophores. X. Transport behavior of
Na+ and K+ with an ω-hydroxy
carboxylic acid containing octaether linkages as a synthetic analog of
natural carboxylic acid ionophores through an organic liquid membrane.
Bull the Chem Soc Jpn. 1995;68:315-321.
https://doi.org/10.1246/bcsj.68.315.