References
Akiyama, H. (1983). Bryophytes of Mt. Hakusan 1. Hepaticopsida & Anthocerotopsida. Annual report of Hakusan Nature Conservation Center, 9 , 13–24.
Akiyama, H. (1984). Bryophytes of Mt. Hakusan 2. Bryopsida. Annual report of Hakusan Nature Conservation Center, 11 , 25–46.
Bhattarai, K. R., & Vetaas, O. R. (2003). Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography, 12 (4), 327–340. https://doi.org/10.1046/j.1466-822X.2003.00044.x
Bhattarai, K. R., & Vetaas, O. R. (2006). Can Rapoport’s rule explain tree species richness along the Himalayan elevation gradient, Nepal?Diversity and Distributions, 12 (4), 373–378. https://doi.org/10.1111/j.1366-9516.2006.00244.x
Biodiversity centre of Japan (2018). National vegetation survey database. Retrieved from http://gis.biodic.go.jp/webgis/files/veg_survey_db.zip
Bruun, H. H., Moen, J., Virtanen, R., Grytnes, J. A., Oksanen, L., & Angerbjörn, A. (2006). Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Science, 17 (1), 37–46. https://doi.org/10.1111/j.1654-1103.2006.tb02421.x
Colwell, R. K. (2006). RangeModel A Monte Carlo simulation tool for assessing geometric constraints on species richness. Version 5. Retrieved from http://viceroy.eeb.uconn.edu/rangemodel.
Colwell, R. K., & Hurtt, G. C. (1994). Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144 (4), 570–595.
Colwell, R. K., & Lees, D. C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 15 (2), 70–76. https://doi.org/10.1016/S0169-5347(99)01767-X
Colwell, R. K., Rahbek, C., & Gotelli, Nicholas J. (2004). The mid‐domain effect and species richness patterns: what have we learned so far? The American Naturalist, 163 (3), E1–E23. https://doi.org/10.1086/382056
Culmsee, H., & Leuschner, C. (2013). Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. Journal of Biogeography, 40 (10), 1997–2010. https://doi.org/10.1111/jbi.12138
Duckworth, J. C., Kent, M., & Ramsay, P. M. (2000). Plant functional types: an alternative to taxonomic plant community description in biogeography? Progress in Physical Geography, 24 , 515–542. https://doi.org/10.1177/030913330002400403
Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., . . . Hülber, K. (2012). Extinction debt of high-mountain plants under twenty-first-century climate change.Nature Climate Change, 2 , 619. https://doi.org/10.1038/nclimate1514
Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., AraÚJo, M. B., . . . Guisan, A. (2011). 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17 (7), 2330–2341. https://doi.org/10.1111/j.1365-2486.2010.02393.x
Grau, O., Grytnes, J. A., & Birks, H. (2007). A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. Journal of Biogeography, 34 (11), 1907–1915. https://doi.org/10.1111/j.1365-2699.2007.01745.x
Grytnes, J. A. (2003). Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography, 26 (3), 291–300. https://doi.org/10.1034/j.1600-0587.2003.03358.x
Grytnes, J. A., Heegaard, E., & Ihlen, P. G. (2006). Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecologica, 29 (3), 241–246. https://doi.org/10.1016/j.actao.2005.10.007
Grytnes, J. A., Heegaard, E., & Romdal, T. S. (2008). Can the mass effect explain the mid-altitudinal peak in vascular plant species richness? Basic and Applied Ecology, 9 (4), 373–382. https://doi.org/10.1016/j.baae.2007.05.001
Hardy, J. P., Groffman, P. M., Fitzhugh, R. D., Henry, K. S., Welman, A. T., Demers, J. D., . . . Nolan, S. (2001). Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry, 56 (2), 151–174. https://doi.org/10.1023/a:1013036803050
Hattori, S. (1958). The hepaticae of Ontake Mountain, middle Japan.Journal of Hattori Botanical Laboratory, 20 , 33–53.
Inoue, H. (1981). Hepaticae of Mt. Fuji, central Japan. Memoirs of the National Science Museum, 14 , 59–74.
Jan, H., & Wolf, D. (1993). Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the Northern Andes. Annals of the Missouri Botanical Garden , 80 (4), 928-960. https://doi:10.2307/2399938
Japan Meteorological Agency. (2018). Past meteorological data (Nobeyama). Retrieved from http://www.data.jma.go.jp/obd/stats/etrn/view/nml_amd_ym.php?prec_no=48&block_no=0415&year=&month=&day=&view=
Jiang, Z., Ma, K., Liu, H., & Tang, Z. (2018). A trait-based approach reveals the importance of biotic filter for elevational herb richness pattern. Journal of Biogeography, 45 (10), 2288–2298. https://doi.org/10.1111/jbi.13398
Jung, S. H., Lim, C. H., Kim, A. R., Woo, D. M., Kwon, H. J., Cho, Y. C., & Lee, C. S. (2017). Edge effects confirmed at the clear-cut area of Korean red pine forest in Uljin, eastern Korea. Journal of Ecology and Environment, 41 (1), 36. https://doi.org/10.1186/s41610-017-0051-2
Kodama, T. (1971). Liverworts of Kinki District, central Japan, preserved in the Osaka Museum of Natural History. Part 1 . Osaka, Japan: Osaka Museum of Natural History (in Japanese).
Kodama, T. (1972). Liverworts of Kinki District, central Japan, preserved in the Osaka Museum of Natural History. Part 2 . Osaka, Japan: Osaka Museum of Natural History (in Japanese).
Koleff, P., Gaston, K. J., & Lennon, J. J. (2003). Measuring beta diversity for presence–absence data. Journal of Animal Ecology, 72 (3), 367–382. https://doi.org/10.1046/j.1365-2656.2003.00710.x
Körner, C. (2003). Carbon limitation in trees. Journal of Ecology, 91 (1), 4–17. https://doi.org/10.1046/j.1365-2745.2003.00742.x
Körner, C. (2007). The use of ‘altitude’ in ecological research.Trends in Ecology & Evolution, 22 (11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006
Lee, C.-B., Chun, J.-H., Song, H.-K., & Cho, H.-J. (2013). Altitudinal patterns of plant species richness on the Baekdudaegan Mountains, South Korea: mid-domain effect, area, climate, and Rapoport’s rule.Ecological Research, 28 (1), 67–79. https://doi.org/10.1007/s11284-012-1001-1
Lee, T. D., & La Roi, G. H. (1979). Bryophyte and understory vascular plant beta diversity in relation to moisture and elevation gradients.Vegetation, 40 (1), 29–38.
Litaor, M. I., Williams, M., & Seastedt, T. R. (2008). Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. Journal of Geophysical Research: Biogeosciences, 113 , G02008. https://doi.org/10.1029/2007JG000419
Lomolino, M. V. (2001). Elevation gradients of species‐density: historical and prospective views. Global Ecology and Biogeography, 10 (1), 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x
Manabe, S. (1957). On the modification of air-mass over the Japan Sea when the outburst of cold air predominates. Journal of the Meteorological Society of Japan. Ser. II, 35 (6), 311–326. https://doi.org/10.2151/jmsj1923.35.6_311
Marschall, M., & Proctor, M. C. F. (2004). Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany ,94 (4), 593-603. https://doi:10.1093/aob/mch178
Masuzaki, H., & Katagiri, T. (2010). Liverworts on Mt. Kitadake & Mt. Ainodake. In T. Masuzawa (Ed.), Minami alps: geography and biota(pp. 257–276). Shizuoka, Japan: Shizuoka Prefecture (in Japanese).
Miyajima, Y., Sato, T., & Takahashi, K. (2007). Altitudinal changes in vegetation of tree, herb and fern species on Mount Norikura, central Japan. Vegetation Science, 24 (1), 29–40. https://doi.org/10.15031/vegsci.24.29
Nabe‐Nielsen, J., Normand, S., Hui, F. K., Stewart, L., Bay, C., Nabe‐Nielsen, L. I., & Schmidt, N. M. (2017). Plant community composition and species richness in the High Arctic tundra: From the present to the future. Ecology and Evolution, 7 (23), 10233–10242. https://doi.org/10.1002/ece3.3496
Nogués-Bravo, D., Araújo, M. B., Errea, M. P., & Martínez-Rica, J. P. (2007). Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change, 17 (3), 420–428. https://doi.org/10.1016/j.gloenvcha.2006.11.007
Okitsu, S. (1984). Comparative studies on the Japanese alpine zone with special reference to the ecology of Pinus pumila thickets.Geographical Review of Japan Ser. A, 57 (11), 791–802. https://doi.org/10.4157/grj1984a.57.11_791 (in Japanese)
Riehl, H. (1962). Jet streams of the atmosphere. Fort Collins, Colorado: Colorado State University.
Roberts, M. R., & Zhu, L. (2002). Early response of the herbaceous layer to harvesting in a mixed coniferous–deciduous forest in New Brunswick, Canada. Forest Ecology and Management , 155 (1), 17–31. https://doi.org/10.1016/S0378-1127(01)00544-8
Rosbakh, S., Leingärtner, A., Hoiss, B., Krauss, J., Steffan-Dewenter, I., & Poschlod, P. (2017). Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient.Frontiers in plant science , 8 , 1478–1478. https://doi:10.3389/fpls.2017.01478
Roux, P. C., Aalto, J., & Luoto, M. (2013). Soil moisture’s underestimated role in climate change impact modelling in low‐energy systems. Global Change Biology, 19 (10), 2965–2975. https://doi.org/10.1111/gcb.12286
Sánchez‐González, A., & López‐Mata, L. (2005). Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Diversity and Distributions, 11 (6), 567–575. https://doi.org/10.1111/j.1366-9516.2005.00186.x
Shmida, A., & Wilson, M. V. (1985). Biological determinants of species diversity. Journal of Biogeography , 1–20. https://doi.org/10.2307/2845026
Song, B., Sun, L., Lev-Yadun, S., Moles, A. T., Zhang, S., Jiang, X., . . . Sun, H. (2020). Plants are more likely to be spiny at mid-elevations in the Qinghai-Tibetan Plateau, south-western China. Journal of Biogeography, 47 (1), 250–260. https://doi.org/10.1111/jbi.13724
Song, X., Hogan, J. A., Brown, C., Cao, M., & Yang, J. (2017). Snow damage to the canopy facilitates alien weed invasion in a subtropical montane primary forest in southwestern China. Forest Ecology and Management, 391, 275–281. https://doi.org/10.1016/j.foreco.2017.02.031
Speziale, K. L., Ruggiero, A., & Ezcurra, C. (2010). Plant species richness–environment relationships across the Subantarctic–Patagonian transition zone. Journal of Biogeography, 37 (3), 449–464. https://doi.org/10.1111/j.1365-2699.2009.02213.x
Stehn, S. E., Webster, C. R., Glime, J. M., & Jenkins, M. A. (2010). Elevational gradients of bryophyte diversity, life forms, and community assemblage in the southern Appalachian Mountains. Canadian Journal of Forest Research , 40(11) , 2164–2174. https://doi:10.1139/X10-156
Stevens, G. C. (1992). The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. The American Naturalist, 140 (6), 893–911. https://doi.org/10.1139/X10-156
Sun, S.-Q., Wu, Y.-H., Wang, G.-X., Zhou, J., Yu, D., Bing, H.-J., & Luo, J. (2013). Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China. PLoS ONE, 8 (3), e58131. https://doi.org/10.1371/journal.pone.0058131
Takaki, N., Amakawa, T., Osada, T., & Sakuma, E. (1970). bryophytes flora of Mt. kaikoma, Mt. Senjo and Mt. Kitadake (Southern Japan Alps).Journal of Hattori Botanical Laboratory, 33 , 171–202.
Tanaka, T., & Sato, T. (2013). Elevational patterns of fern species assemblages and richness in central Japan. Plant Ecology, 214 (9), 1189–1197. https://doi.org/10.1007/s11258-013-0243-5
Tanaka, T., & Sato, T. (2014). Species richness of seed plants and ferns along a temperate elevational gradient in central Japan.Plant Ecology, 215 (11), 1299–1311. https://doi.org/10.1007/s11258-014-0388-x
Thomas, S. C., Halpern, C. B., Falk, D. A., Liguori, D. A., & Austin, K. A. (1999). Plant diversity in managed forests: understory responses to thinning and fertilization. Ecological Applications ,9 (3), 864-879. https://doi:10.1890/1051-0761(1999)009[0864:Pdimfu]2.0.Co;2
Trigas, P., Panitsa, M., & Tsiftsis, S. (2013). Elevational gradient of vascular plant species richness and endemism in Crete–the effect of post-isolation mountain uplift on a continental island system.PLoS One, 8 (3), e59425. https://doi.org/10.1371/journal.pone.0059425
Ueda, H., Kibe, A., Saitoh, M., & Inoue, T. (2015). Snowfall variations in Japan and its linkage with tropical forcing. International Journal of Climatology, 35 (6), 991–998. https://doi.org/10.1002/joc.4032
Zhou, Y., Ochola, A. C., Njogu, A. W., Boru, B. H., Mwachala, G., Hu, G., . . . Wang, Q. (2019). The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecology and Evolution, 9 (8), 4495–4503. https://doi.org/10.1002/ece3.5027