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Abstract 18 

Technological advances in DNA sequencing over the last decade now permit the 19 

production and curation of large genomic datasets in an increasing number of non-20 

model species. Additionally, this new data provides the opportunity for combining 21 

datasets, resulting in larger studies with a broader taxonomic range. Whilst the 22 
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benefits of new sequencing platforms are obvious, shifts in sequencing technology 23 

can also pose challenges for those wishing to combine new sequencing data with 24 

data sequenced on older platforms. Here, we outline the types of studies where 25 

the use of curated data might be beneficial, and highlight potential biases that 26 

might be introduced by combining data from different sequencing platforms. As an 27 

example of the challenges associated with combining data across sequencing 28 

platforms, we focus on the impact of the shift in Illumina’s base calling technology 29 

from a four-channel to a two-channel system. We caution that when data is 30 

combined from these two systems, erroneous guanine base calls that result from 31 

the two-channel chemistry can make their way through a bioinformatic pipeline, 32 

eventually leading to inaccurate and potentially misleading conclusions. We also 33 

suggest solutions for dealing with such potential artifacts, which make samples 34 

sequenced on different sequencing platforms appear more differentiated from one 35 

another than they really are. Finally, we stress the importance of archiving tissue 36 

samples and the associated sequences for the continued reproducibility and 37 

reusability of sequencing data in the face of ever-changing sequencing platform 38 

technology. 39 
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Opportunities: Combining and extending data sets across time and 42 

space 43 

DNA sequencing data reflecting the diversity of life is accumulating, as 44 

technological developments continue to increase the basepair yield of sequencing 45 

runs, whilst lowering the per-basepair prices. This data continues to facilitate 46 

comparative studies of genome structure for more and more organisms, spanning 47 

the tree of life (Baker et al., 2020; Cheng et al., 2018; Leebens-Mack et al., 2019; 48 

Morris et al., 2018; Peter et al., 2018; Shen et al., 2018; Shi et al., 2018; Zhang et 49 

al., 2014). Further, the field of molecular ecology is flourishing, with more and 50 

more studies investigating the genetic variation within and among closely related 51 

groups of organisms (Brawand et al., 2014; Lamichhaney et al., 2015; Tollis et al., 52 

2018). However, for molecular ecologists working on non-model species, budgets 53 

still limit the amount of sequence data that can be produced. As a result, 54 

exhaustive experimental designs, which include the sampling of many individuals 55 

from many different populations, are rare (but are emerging; (Feulner et al., 2015; 56 

Greenway et al., 2020; Martin et al., 2016; Soria-Carrasco et al., 2014; Stankowski 57 

et al., 2019; Vijay et al., 2016). The effort to publicly archive sequence data that 58 

has already contributed to publications helps to maintain the reproducibility of 59 

sequencing studies, whilst prolonging the value of such sequence data in 60 

perpetuity. Additionally, this practice of sequence data storage provides the 61 

opportunity to expand datasets beyond those that one laboratory is capable of 62 

producing (in terms of time, labour, and finances) to increase the impact of studies 63 

despite a potentially limited budget. Repositories like the Short Read Archive 64 

(SRA) -- part of the International Nucleotide Sequence Database Collaboration 65 
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(INSDC) that includes the NCBI Sequence Read Archive (SRA), the European 66 

Bioinformatics Institute (EBI), and the DNA Database of Japan (DDBJ) -- are 67 

essential for both the reproducibility of genetic and genomic studies, and the 68 

reusability of sequencing data. Although reusability is challenging for many 69 

sequencing approaches, particularly those that sequenced a reduced 70 

representation of the genome (i.e. restriction site associated DNA sequencing, 71 

genotyping by sequencing, amplified fragment length polymorphism, 72 

microsatellites; but see Marques, Lucek, Sousa, Excoffier, & Seehausen (2019)), 73 

the increasingly common approach of re-sequencing whole-genomes (even for a 74 

broader range of non-model organisms) makes the possibility of combining 75 

datasets more inviting. 76 

Between the continued growth of sequencing data repositories and the continued 77 

ability to sequence more DNA quicker and cheaper the following types of studies 78 

are increasingly carried out: 79 

(1) Broad macroevolutionary studies. Typically, such macroevolutionary studies 80 

benefit from a wide taxon sampling and few individuals suffice, making the 81 

combination of samples from different published datasets particularly useful. Often 82 

these analyses are restricted to more conserved regions of the genome. For 83 

example, Hug et al. (2016) compile a phylogenomic data set containing published 84 

and newly sequenced whole genomes to build a phylogeny including Bacteria, 85 

Archaea and Eukarya using conserved sequences. In another example, Greenway 86 

et al. (2020) focus on the Poeciliidae family of fish, to demonstrate that adaptation 87 

to extreme, here sulfide-rich, environments has evolved convergently in ten 88 
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independent lineages, by combining already published and newly sequenced 89 

transcriptome sequences. 90 

(2) Microevolutionary studies investigating spatial variation across populations or 91 

closely related taxa. Such studies typically focus on one study system but rely on a 92 

larger sampling to reflect the variation within species or populations. These studies 93 

may benefit from combining newly sequenced material with archived sequence 94 

data from previous projects to produce larger within-system datasets. By taking 95 

advantage of existing sequence data, these combined datasets facilitate analyses 96 

of genomic differentiation across a much broader geographic sampling or among 97 

more individuals than would be otherwise possible. Here, the curated data is used 98 

to evaluate patterns in comparable populations to widen the perspective, i.e. to 99 

show whether a pattern is general or specific to the population under investigation. 100 

For example, Ravinet, Kume, Ishikawa, & Kitano (2020) evaluated if patterns of 101 

divergence and introgression between Japan Sea and Pacific Ocean stickleback 102 

resemble patterns at other locations where these species co-occur. In a 103 

comprehensive study conducted by Samuk et al. (2017) the authors compiled 104 

multiple genotyping by sequencing and whole genome sequencing data sets to a 105 

global evaluation of 1300 stickleback individuals across 51 populations, to show 106 

that putative adaptive alleles tend to occur more often in regions of low 107 

recombination. Bergland, Behrman, O’Brien, Schmidt, & Petrov (2014) used 108 

curated data to check haplotypes under seasonal selection in Drosophila 109 

melanogaster for between-species divergence with a sister species (D. simulans). 110 

Most recently, Jones, Mills, Jensen, & Good (2020) combined new and published 111 

whole-genome and exome sequences with targeted genotyping of Agouti, a 112 
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pigmentation gene introgressed from black-tailed jackrabbits, to investigate the 113 

evolutionary history of local seasonal camouflage adaptation in Snowshoe hares 114 

from the Pacific Northwest. 115 

(3) Studies investigating temporal variation within and between population and 116 

species. Such studies involve combining data sets across time scales and often 117 

contain sequencing data that originated from a variety of sample types including 118 

museum collections, long-term preserved fossils or hard tissues, and 119 

contemporary fresh samples. For example, the use of museum specimens 120 

facilitated the investigation of independent temporal genomic contrasts spanning a 121 

century of climate change for two co-distributed chipmunk species (Bi et al., 2019) 122 

and a paleogenomics approach investigated the temporal component of 123 

adaptation to freshwater in sticklebacks by sequencing the genomes of 11-13,000-124 

year-old bones and comparing them with 30 modern stickleback genomes (Kirch, 125 

Romundset, Gilbert, Jones, & Foote, 2020). Experimental approaches combining 126 

previous sequencing efforts with new samples are also commonly used to 127 

increase our understanding of temporal variation. Tenaillon et al. (2016) compiled 128 

sequence data from several other publications in addition to new sequences to 129 

strengthen their conclusions on the tempo and mode of E. coli genome evolution. 130 

Bottery, Wood, & Brockhurst (2019), after having shown that tetracycline 131 

resistance requires multiple mutations, used curated data to investigate if the 132 

mutation establishment order was repeatable. This by no means exhaustive 133 

selection of examples highlights that the growing amount of sequence data 134 

provides the opportunity for endless combinations of datasets to be analysed to 135 

address a multitude of questions. 136 
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Challenges: Biases change with technological developments  137 

One technological advance which sped up the Illumina workflow and made it more 138 

cost-effective was a change from four-channel chemistry, where each of the four 139 

DNA bases is detected by a different fluorescent dye, to a two-channel chemistry, 140 

that uses only two different fluorescent dyes (Illumina). In these two-channel 141 

workflows, as implemented in the NextSeq and NovaSeq platforms, a guanine 142 

base (G) is called in the absence of fluorescence (Figure 1). Hence, it is difficult to 143 

differentiate between no signal and a G, resulting in an overrepresentation of poly-144 

G strings in sequence data from both NextSeq and NovaSeq (Chen, Zhou, Chen, 145 

& Gu, 2018). 146 

To most accurately capture biological variation in a given sample or population, it 147 

is important to differentiate between potentially erroneous and correct base calls, 148 

which is often done using base quality scores. However, erroneous poly G base 149 

calls produced on the NextSeq and NovaSeq platforms can be difficult to detect, 150 

because, as a result of the two-colour chemistry, they are not always associated 151 

with reduced base qualities. Unfortunately, read trimming software packages that 152 

were written for the older four-colour systems do not flag or trim poly G tails. 153 

Although one might think that mapping should remove the effect of these 154 

overrepresented Gs without the need for read trimming, it has been shown that 155 

some may still trickle through a bioinformatics pipeline and influence variant calling 156 

steps. For example, cancer genomics demonstrated using cell lines the existence 157 

of systematic differences between the reads produced by HiSeqX and by 158 

NovaSeq as they noted a mild enrichment of T > G mutations in the variants called 159 

uniquely in NovaSeq and not in HiSeqX data (Arora et al., 2019). To reduce the 160 
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potential down-stream impact of these poly-G strings, newer trimming software 161 

packages such as fastp (Chen et al., 2018) check the source of the data and 162 

implement poly G trimming by default for the two-color systems. This not only 163 

improves the computational efficiency of sequence alignment, but should also 164 

reduce the impact of erroneous variant calling on these bases. 165 

The impact of these changes in base calling and the subsequent erroneous G 166 

calls may also be affected by the experimental design or DNA quality. Although 167 

the biases resulting from not trimming off or filtering out poly-G strings might be 168 

mild or irrelevant when analysing data produced from high quality input DNA from 169 

a single system, this may not be true when data from different technologies are 170 

combined. On top of this, variation in the quality of input DNA may also amplify 171 

biases, potentially producing misleading results. Metagenomic work revealed that 172 

both library preparation and sequencing platform had systematic effects on the 173 

microbial community description (Poulsen, Pamp, Ekstrøm, & Aarestrup, 2019; 174 

Sato et al., 2019). In summary, attention should be paid to DNA quality, library 175 

preparation protocols, and sequencing platform used when analysing and 176 

interpreting publicly available genomic data. 177 

Although the prospect of combining datasets to improve our power to detect 178 

patterns is alluring, it is important to consider the ways in which these data may 179 

result in misleading conclusions. Combining datasets often means combining data 180 

from different sequencing platforms, as DNA sequencing technology continues to 181 

develop through time. Unfortunately, some of the developments (e.g. the change 182 

from four-channel to two-channel chemistry in Illumina sequencing machines) 183 

have changed the way in which uncertainties in base calling are presented in the 184 
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sequencer’s output files. If managed incorrectly, these changes hamper our ability 185 

to combine datasets obtained with different sequencing technologies, and the 186 

subsequent genotyping and analysis of these combined datasets may be biased 187 

(in the worst cases leading to erroneous conclusions). The most straightforward 188 

way to prevent this is a well-thought out experimental design, a step which can 189 

often be overlooked in a time where sequencing data is being produced so rapidly 190 

(see Mason (2017) for sound advice on experimental design). However, it may be 191 

difficult to achieve the ideal or optimal study design when an investigation 192 

integrates new information with already existing data (e.g. with individuals and 193 

treatments randomised across sequencing batches). Despite this limitation there 194 

are a number of approaches that can help to rectify some of these imbalances and 195 

allow the combination of multiple genomic datasets whilst minimising the impact of 196 

cross-platform biases. 197 

How to minimise technological bias when combining datasets 198 

Despite the ease with which new datasets can be produced it is critical that 199 

researchers do not forgo project planning and experimental design steps and aim 200 

to understand and reduce the potential impact of intrinsic data biases. These 201 

planning steps should be similar to those carried out for the sequencing of new 202 

samples and could include an assessment of: 203 

(1) What is the key question that is being addressed and how many samples of 204 

each treatment or population are needed to have the power to draw meaningful 205 

conclusions? What might the tradeoffs be between sequencing new or using 206 

existing data (e.g. if only a handful of samples are missing could it be worthwhile 207 
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to sequence more samples so everything is sequenced similarly and sequence 208 

artifacts will not be problematic)? If we are to combine datasets then which 209 

individuals/populations are available to allow us to address our question? 210 

(2) How many different datasets are combined? What technologies were used for 211 

library preparation and sequencing across the data sets? What is known about the 212 

origin and quality of the input DNA? Can we minimize the number of differences 213 

between data sets being compiled? Can we randomise biological 214 

samples/treatments across different sequencing batches? Do we have the option 215 

to repeat sequencing of one or a few representatives from a curated data set to 216 

evaluate potential biases? We also urge researchers wherever possible to archive 217 

tissue and/or DNA samples. These collections can be of tremendous value for 218 

future research, as they allow one to include repeated sequences of past samples 219 

into newly compiled data sets to determine whether any variants or alleles may 220 

have been erroneously missed because of technological biases. Using archived 221 

tissue or DNA is one of the only ways it is possible to verify new sequence variants 222 

found using future technologies. 223 

(3) How are genetic differences, including those potentially causing biases, 224 

distributed across the compiled data set? What are the critical steps in an 225 

envisioned bioinformatic pipeline that would identify problematic sequence 226 

artifacts? How will we address known artifacts if they are present in our data 227 

and/or could confound our results? Figure 2 provides a suggestion for a pipeline 228 

evaluating known differences between sequencing data produced with four-229 

channel chemistry (e.g. HiSeqX) and two-channel chemistry (e.g. NovaSeq). We 230 

suggest comparing the fastqc report (Andrews, 2010) between samples 231 



 11 

sequenced with the two technologies to each other (see Figure 1 for an example, 232 

revealed by differences in kmer counts). To see if mapping reduces sequencing 233 

artefacts, fastqc can be re-run on only the reads that mapped well and will be used 234 

for genotyping. If biases persist, read trimming should be considered. Here fastp 235 

(Chen et al., 2018) could be used to trim polyG tails efficiently. Once reads have 236 

been mapped, variants have been called, and genotypes have been determined, 237 

genotypes should be evaluated for potential batch effects. Here, we recommend 238 

identifying individuals sampled using different data sets and/or technologies with 239 

specific symbols or colors allowing the possible differences between these artificial 240 

groups to be highlighted (see section above). For example, in a PCA which 241 

represents the various technological and sample differences by different symbols 242 

and biological differences (i.e. populations or species) by color, any PC axis 243 

separating symbols instead of colors suggests there might be some technological 244 

bias causing batch effects (Figure 1). Batch effects might be especially 245 

problematic when one population, timepoint, or treatment is the only one 246 

sequenced with a different technology. In this scenario artifacts and biological 247 

differences would be confounded and as a result would be hard to detect and 248 

correct for. For this reason, we suggest that researchers aim to sequence 249 

biological units, species, populations, or treatments across each batch to avoid 250 

confounding treatments/timesteps/populations with library or other technical 251 

effects. Alternatively, any mutational bias relative to the reference can be 252 

evaluated and be compared to the results established due to difference in 253 

sequencing technology only (see Arora et al. (2019)). To reduce batch effects 254 

once detected, filtering variant calls and genotypes will need to be adjusted. One 255 

way to find the critical filtering settings could be to see which filtering thresholds 256 
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allow you to minimize the differences between the detected batches. One 257 

promising approach might be to compare distributions of quality scores between 258 

reference and alternate allele, which should look very similar in the absence of 259 

batch effects. However, we do not recommend solely relying on this to remove 260 

detectable biases in the reads (such as poly Gs in NovaSeq data) but mention this 261 

option as it might help to reduce other sources of undesired batch effects. If none 262 

of these approaches suffice to identify and remove biases, one potential solution 263 

could be to define variable sites in a subset of the data, which only represents one 264 

technology, and then call genotypes on the whole data set for only those regions. 265 

This comes with a potential ascertainment bias depending on which biological 266 

units are represented in such a subset, but should allow to limit variation due to 267 

technological differences. Such an approach is similar to defining a SNP panel and 268 

then using SNPchips or other technologies to genotype a larger sampling (Kim et 269 

al., 2018). As all data sets are different, different approaches might be needed to 270 

reduce any effects of technological differences in compiled data sets. Critically, in 271 

each of these scenarios the identification and removal of biases associated with 272 

technological shifts serves to reduce the possibility of incorrectly or erroneously 273 

inferring biological patterns or processes.  274 

Finally, we want to emphasise the huge value of our community efforts to archive 275 

sequencing data to make our science reproducible and reusable. We hope that we 276 

have demonstrated how technological shifts may pose challenges for the 277 

meaningful reusability of data, but also that the removal of biases associated with 278 

such shifts allows us to address new and exciting biological questions. We 279 

highlight the importance and value of accurate documentation, archiving of tissue 280 
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and DNA samples, and sequence data, and urge researchers to assess the 281 

experimental design of their research projects to ensure scientifically sound and 282 

robust results. 283 
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 433 
Figure 1: Example of a technological difference between sequencing chemistries, which 434 
introduces a bias (overrepresentation of G kmers) in the sequenced reads and result in a batch 435 
effect visible when genotypes are evaluated in a principal component analysis (PCA). 436 
Top: Schema redrawn from Illumina representing the differences between 4-channel chemistry 437 
evaluating each of the four bases by a distinct fluorescence label, and 2-channel chemistry 438 
representing the four bases with two dyes only. 439 
Middle: Redrawn examples of the one aspect of a typical fastqc (Andrews, 2010) report, which 440 
evaluates the count of each short nucleotide of length k (default = 7) starting at each position along 441 
the read. Any given Kmer should be evenly represented across the length of the read. The y axis 442 
reports the relative enrichment (log2 observed over expected counts) of the 7mers over the read 443 
length (x axis). The graph presents those kmers which appear at specific positions with greater 444 
than expected frequency. In the left panel reads sequenced with 4-channel chemistry are 445 
represented which show a slight overrepresentation of two random 7mers represented by different 446 
colors (typically the report would plot the first six hits). The overrepresentation is small and most 447 
pronounced at the beginning of the read (to the left of the x axis), a pattern often found in high 448 
quality sequencing libraries due to slight, sequence dependent efficiency of DNA shearing or a 449 
result of random priming. In the right panel, an overrepresentation of poly Gmers toward the end of 450 
the reads is exemplified as typical for raw reads sequenced with 2-channel chemistry. Note the 451 
difference in the logarithmic scale between left and right panel. 452 
Bottom: Each sample's genotype, compiled of a large number of loci distributed across the whole 453 
genome, is represented as a colored symbol in multivariate space, where PC axis one and two are 454 
presented here which explain some majority of variation across genotypes. Symbols in the PCA 455 
differentiate samples sequenced with either 2-channel (diamond) or 4-channel (cross) chemistry, 456 
colors differentiate different populations or species (biological differences). The left panel is 457 
imagined to be based on a data set of untrimmed reads, PC axis 2 separates samples due to 458 
technological differences. That effect is gone in the right panel, after read trimming was applied.  459 
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 460 
Figure 2: Flow diagram of an exemplified pipeline evaluating and accounting for biases caused by 461 
different sequencing technologies in a compiled data set. For more details see text. 462 
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