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Abstract

In this work we the study of the asymptotic behavior in the whole line of a thermoelastic structure
with interfacial slip and second sound. We prove several polynomial decay estimates depending on
the smoothness of initial data. The proof is based on the semigroup approach, the energy method by
introducing a Lyapunov functional and Fourier transform.
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1 Introduction

In case of bounded domain, the well-posedness and stability of structure of two-layered beams with
interfacial slip have been studied by many authors for the last twenty years. Let us mention here some
of these works. In [7], it was derived the following model for two-layered beams with structural damping
due to the interfacial slip:

peu+G W —¢s)z =0
Ip (Sstt _wtt) _G('(/)_Qoa:) _D(gsll _wwm) =0 (11)
31,84 +3G(W —y) +460S+47 St —3D Sy =0

where z € (0, 1), t > 0, p(z, t) denotes the transverse displacement, ¥ (z, t) represents the rotation angle
and S(z, t) is proportional to the amount of slip along the interface at time ¢ and longitudinal spatial
variable z, and p, G, I,, D, dp and o are the density of the beams, the shear stiffness, mass moment of
inertia, flexural rigidity, adhesive stiffness and adhesive damping of the beams, respectively. For papers
that deal with interfacial slip we mention, for instance, [1, 7, 10, 15, 19].

In [5], Guesmia considered the system (1.1) in more general form: 3 I, and 3G in (1.1)3 were replaced by
positive constants p3 and ks, respectively. The subject of [5] was stabilizing the system by one control
defined in term of an infinite memory or in term of a frictional damping, and acting only on one equation.
The author proved that this control is capable alone to guarantee the strong and polynomial stability
of the system; that is bringing it back to its equilibrium state with a decay rate of type t~¢, where d
is a positive constant depending on the regularity of initial data. Moreover, it was also proved that,
when the control is effective on the first equation, the system is not exponentially stable independently
of the values of the parameters and, when the control is effective on the second or the third equation the
exponential stability is equivalent to the equality between the three speeds of wave propagations.
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From now we consider s(x, t) =3S(z, t), pr=p, p2=1,, k=G, b=D, § = %50 and v = %’yo. Then
we deduce from (1.1) the following system:

p1ow+ k(P —pr)e =0,
p2(s =) = b(s = V)aa — k(¢ — ¢z) =0, (1.2)
pQStt_bsmz+3k(/‘/)_§0z)+453+4’}/8t:0

Note that, (1.2) can be derived from the following more general model related to Bresse-type systems
(known as the circular arch problem):

pl@tt*kl (me+w+€w)m*€k3(wm7€<p) :07
P2 ’(/Jtt - k2 ¢mx +k1 (SO:E +1/)+€U1) = Ou (13)
p1 Wit — k3 (Wy — L)y + Lk1 (pz + 9+ Lw) =0,

where ¢ and k; are positive constants. On the other hand, combining the last two equations in (1.2), we
have

P1w+ k(Y = ¢z)e =0, (1.4)
P2t — bihoe + 4k (Y —pg) +45s+ 475, =0.
For s =0 in (1.4), we obtain the following system:
P1 (ptt+k(w_(pz>z =0, (1 5)
P2t — bthey + 4Kk (b —z) =0,

that is, a conservative system closely related with Timoshenko theory.

In [19], it was proved that the frictional damping created by the interfacial slip alone is not enough to
stabilize the system (1.1) exponentially to its equilibrium state, then another dissipative mechanism is
necessary to be introduced to stabilize this system. In this direction, Raposo [15] proved the exponential
stability for the model of structure taking in account the frictional damping as bellow

prow+ k(Y —pp)e +apr =0,
Pz(s—¢)tt—b(3—¢)m—k(w—%)+ﬁ(5—¢)t=0,
P25t —bSpe +3k (0 — ) +45s+4vs =0.

About thermoelastic Timoshenko’s system, for the problem

P1 @1t — 0 (s V) + pripr = 0,

p2ptt — bzs + k(0o + ) + 86, =0,
p30: + vz + 0y =0,

Toqt +q+ kb, =0,

in the presence of the frictional damping and heat conduction modeled by Cattaneo’s law, Messoaudi et
al. [11] gave the exponential stability in linear and nonlinear cases.

In the absence of the frictional damping, Sare and Racke [18] showed that the coupling via Cattaneo’s
law; that is

p1¢1t — 0 (z + )z =0,

P2t — btpue + k(¢ +10) + 66, =0,
P39t+’YQz+51/)m =0,
Tq+q+r0,=0,

causes loss of the exponential decay usually obtained in the case of coupling via Fourier’s law.



For Timoshenko systems of classical thermoelasticity, Rivera and Racke [13] considered the system

p1¢u — 0 (Yo, ¥)z =0,
pZ@tt_b¢xx+k(@x+w)+70x =0,
p39t*k0zz +7wzt =0

and proved several exponential decay results for the linearized system and non-exponential stability result
for the case of different wave speeds.

For more information on thermoelastic Timoshenko system, see [4, 6] and references therein, where it was
investigated the decay property in bounded domain for frictional damping, infinite memory, and Fourier
or Cattaneo law of heat conduction. For thermoelastic Timoshenko system with second sound, we cite
also [12, 14] and references therein.

The stability of Bresse type systems in unbounded domain has been also treated in the literature for the
last ten years. In this direction, we mention the papers [2, 3, 17] (see also references therien), where some
polynomial stability estimates for L2-norm have been proved using frictinal dampings or heat conduction
effects or memory controls. In some particular cases, the optimality of the decay rate was also proved.
Similar results exist in the literature for Timoshenko type systems, see [8, 9, 16] and references therein.

In the best of our knowledge, the stability of structures with interfacial slip in unbounded domains has
never been considered in the literature. For this reason, we are interested in studying the asymptotic
behavior in the whole line R of a thermoelastic structure with interfacial slip, derived from (1.1). More
precisely, we deal with the system below

prose + k(Y —9z)e +v00e =0,
p2(s=1V)it —b(s =V)ew =k (W — ) +B(s —9); =0, (1.6)
P2 51t —bSpe +3k (Y —0p) +475: =0

with initial data

(1.7)

(QOt(.’E, 0)7 wt(xa 0)7 St(xa O)) = (801(1")7 S (J? ¢1($))
In this system, z € R, t > 0, p1, p2, k and b are positive constants, and S, v and -y are nonnegative
constants. We will prove the polynomial stability of the system (1.6)-(1.7) and present several decay
estimates depending on the smoothness of initial data and the coefficients 8, v and ~q.

{((p(;& O)’ ¢($7 0)’ S(:,C, 0)) = (cpo(x), 80($)7 1/J0($))7
1(@),

This paper is organized as follows: in Section 2, we deal with the formulation of the problem in a first
order system. In Section 3, we show the polynomial stability.

2 Formulation of the problem

Without loss of generality, we consider p; = ps = 1. For convenience, we introduce the variable © of the
effective rotation angle given by

O=s5— ¢7
then (1.6)-(1.7) change to

(Ptt+k(s_®_(pz)z+’70@t:0a
@tt_b@ajz_k(s_@_@a:)'i_ﬁet:oy (21)
Stt —bSpr +3k(s—0O — @) +4vs, =0

with initial data

(‘P(ma O)? @(Z‘, 0), S(l‘, 0)) = @O(x)a @O(x)7 50(37»7
(@t(x, 0)7 @t(l‘, 0)7 St(xa 0 ) = (301(3")7 el(x)’ 51(33)),



where Og(x) = so(x) — Po(z) and O1(x) = s1(x) — 91 (). Taking the new variables

YL = u, O, =1y, sp =1,

2.3
s—@—gozzv, @x:Z, Sz = @, ( )
we get from (2.1) the following system:
vitus, +y—n=0,
up +kvg +vu=0,
Yy —bz, —kv+ By =0, '
¢t —Na = 0
e —boy +3kv+4yn=0.
Let
U= (Ua Uu, 2, Y, ¢, U)T,
Uo(z) = (v(z, 0), u(x, 0), 2(z, 0), y(z, 0), ¢(x, 0), n(x, 0))T.
The system (2.4) is equivalent to
Ui(z, t) + AU, (z, t) + LU (z, t) = 0, (2.5)
Uz, 0) = Up(z), '
where
Uy Yy—n
kv Yo U
— — Yz o 0
AU = | 77 and LU= | T e (2.6)
— Nz 0
—bo, 3kv+4vn

Using the Fourier transform (with respect to the space variable z) for (2.5), we obtain the following
Cauchy problem of a first order system:

Uil€. 1) + 16 AT(E, 1) + LU 1) =0, 20
U(&, 0) = U(§),
or
D+ifu+g—1n=0,
U +iEkD+0 =0,
ity =0 (2.8)
yp—1&bz—kv+ By =0,
oy *ifﬁf 0
m—iEbd+3kD+4y=0,

for £ € R. The solution of (2.7) is given by 17(5, t) = eFO1t ﬁo(f), where
Fe) = — (i€ A+ L),

Let E be the total energy associated to system (2.7) given by

B 1) = 106 1P



_ % 3k (312 + 362 + 36|22 + 3 (5% + b2 + 177] . (2.9)
Then simple and direct computations give
SE(E ) = - 30l - 38137 — 47177, (210)
which shows the dissipative nature of system (2.7) if (o, 8, ) # (0, 0, 0); that is
E(¢,t) < E(&,0), Yit>0.
If (y0, B, ) = (0, 0, 0), then (2.7) is conservative; that is

E(¢, t) = E(£,0), Vt>0.

3 Polynomial stability

This section is dedicated, first, to the investigation of the asymptotic behavior of E when at least two
controlers are effective; that is, when at least two constants amoung 7, 7o and 3 are positive. We show
that E converges exponentially to zero with respect of time ¢. And then, we deduce some polynomial
decay estimates on [|OFU||r2(r), where k € N and the decay rate depends on the smoothness of Uy.

In this section, C' denotes a generic positive constant, and C, denotes a generic positive constant depending
on some positive value . We distinguish four cases.
3.1 Case 1: vy, £, v>0.

We start by proving a crucial decay estimate on |U(, ).

Lemma 3.1 We assume that vg, 5, v > 0. Let U be the solution of (2.7). Then there exist ¢, ¢ > 0
such that the following estimate holds:

U, > <ce IO Do), VEER, V>0, (3.1)
where _ {52 54}
min{&=,
f(&) = A+etey (3.2)

Proof. Multiplying (2.8)4 by i £ 2, we get

PG 2+ bE2|ZP —iEkDZ+iEBT2=0. (3.3)
Multiplying (2.8)3 by i £ 7, we find B
i£Zy+Ey* =0 (3.4)
Taking the real part of (3.3) and (3.4) and subtracting the resulting equations, we obtain
d PN 2 ~2 ~2\ _ NN AN
ﬁRe (zfy Z) +& (b2 = |91°) = k Re (zfv z) — B Re (z{y z) . (3.5)

Using the Young inequality, it follows from (3.5) that, for any &g, 1 > 0,

d = N N _
- Re (ify z) <—(b—go—e1) 3+ Coy (14 ) [ + C-, [0 (3.6)

On the other hand, multiplying (2.8); by i £ 4, we have

iEv u—EaP+icgu—iénu=0. (3.7)



Multiplying (2.8)2 by — i &0, we find
— €U D+ REEO? —inéuv=0. (3.8)

Adding (3.7) and (3.8) and taking the real part, we obtain

%Re (ig@ﬁ) +& (k[0]* — [u]*) = — Re(i£5 ) 4+ o Re(i£ T D) + Re(i &7 ). (3.9)

Using the Young inequality, it follows from (3.9) that, for any ¢ > 0,

d .. = - N N .
G Re(ivu) < = (k —eo) 0] + Cey (1+€%) (I + [al* + 7). (3.10)

Now, multiplying (2.8)5 by — i {7, we see that
— &g - €A =0. (3.11)
Multiplying (2.8)g by ig;, it follows that
6T G+ bE |G+ BikET +AivER =0, (3.12)
Adding (3.11) and (3.12), and taking the real part, we have

%Re (—z'gg?sﬁ) 42 (b|<?s|2 - |ﬁ|2) — — 3kRe (igﬁﬁ) — 4yRe (ifﬁ@. (3.13)

Using the Young inequality, we conclude that, for any g, €1 > 0,

G Re(—i€07) <~ (b—c0— 20 € 10 + Coy (14 E) [P + O, 0 (3.14)

Let us define the functional F as follows:
2 e~ e~ = 2 L=
F(&, 1) = €2Re (zgy z) + MRe (zfy u) + €2 Re (—zfd) n) : (3.15)
and introduce the Perturbed Energy L as follows:

1

F(& 1), (3.16)

where A\ and Ay are positive constants to be defined later. We put (3.6), (3.10), (3.14) into (3.15), and
we deduce that

%-7:(5, < —(b—eo—e1) & F? — (b—e0 —e1) €40 — M (k — o) — Co,] €2 [0]?

+ Cep, ny (L+E+EY (0P + 111 +1T)?) (3.17)

Cey
k}*EO :

We choose 0 < g9 < min{b, k} and 0 < g1 < b—eg. After, we choose Ay large enough such that A; >

Hence, using the definition of E, (3.17) leads to, for some positive constant ¢y,
F(& 1) < - er minf€®, Y EE )+ 0 (1+6 +&) (A1° + [31° + @) - (3.18)

Then from (2.10), (3.16) and (3.18) we have, for co = min{3+y, 35, 47},

%ﬁ(f, t) < — e fOEE t) = (ea A= O) (1] + |51° + [al*) , (3.19)



where f is defined in (3.2). Moreover, using the definition of E, F and L, we get, for some ¢g > 0 (not
depending on \),
co (I€] + 1€1°)

L&) = ABE DI < (- a e

E(E 1) <co B 1). (3.20)
Therefore, for A large enough so that A > max {%, CO}, we deduce from (3.19) and (3.20) that

d

ZLE D+ f©) B 1) <0 (3:21)

and
s B(E ) < LE t) < e B(E, 1), (3.22)

where ¢ = A — ¢g and ¢4 = A+ ¢p. Consequently, a combination of (3.21) and the second inequality in
(3.22) leads to, for some positive constant c,

SL(E ) +e fELE 1) <0 (3.29)

Finally, by integration (3.23) and using the first inequality in (3.22), the Lemma 3.1 follows with ¢ = %
Theorem 3.2 We assume that vy, 8, v > 0. Let N, { € N* such that { < N,
Up € HY(R) N L' (R)

and U be the solution of (2.5). Then, for any j =0, ..., N — {, there exists ¢ > 0 such that, for any
t>0,
182U | 2y < @(1+ )7 579/ | Ul 1y + (1 + ) =210 Ul 2 (my- (3.24)

Proof. From (3.2) we have (low and high frequences)
s¢t it g <,
GER S (3.25)
3 572 if |£| > 1.
Applying Plancherel’s theorem and lemma 3.1, we have
102U 1172y = 102U (2, D)1 Z2 )
[ o a
R
< 7 @Oy de
R

= ’5/ ¢2i eft:f(ﬁ)t@o(g)ﬁ d€+g/ €2j676f(€)t|ﬁ0(5)|2 d¢
lg1<1 1€1>1
= L+h (3.26)
To complete our proof, we prove the following lemma:
Lemma 3.3 Let 0 > —1 and p, ¢ > 0. Then there exists Cy, , z > 0 such that

1
/ et e < Chpe (1 +1)~ /P i >0, (3.27)
0



ole+1)/p
o+1

1 1 1
/ €7 et g = / Eotlmp =Tt ep—1 ge / (fp)(a-‘rl—p)/p e Cte gp—1 ge.
0 0 0

Taking 7 = ¢t £P. Then

Proof. 1In fact, for 0 <t <1, (3.27) is evident, for any Cy p, z >

. For t > 1, we have

r
p—
¢ ct

Replacing in the above integral, we find

1 ct o+1—
0 0

1
and el de = — dr.
pct

ct pct
1 oo . 9(e+1)/p e
< p(ct)<v+1>/p/0 Ao =D /p =7 g < s O 41 (o+1)/p,

where
+oo
Cop = / rlotl=p)/p =7 gr
0

which is a convergent integral, for any ¢ > 0 and p > 0. This completes the proof of (3.27), where

o(e+1)/p  9(o+1)/p
Cop.e = max { o+1 7 p(e)eth/p C"’p}

Now, using (3.25) and (3.27) (with 0 = 25 and p = 4), it follows, for low frequency region,

1< 02, /|£|

In the high frequency region, we have

€9 em 518 de <O (1L+1)7 10 0|2, . (3.28)
<1

e R I
1€1>1
< € sp {ja e 9T [ 6RO oo de,
1€1>1 l€1>1
then
L<C+6)"" 05 U0 |17y, (329)
since, by classical and direct arguments, we see that there exists C' > 0 such that
sup |¢] 2 e 5t <o), ve>o. (3.30)
[§1>1

So, by combining (3.26), (3.28) and (3.29), we get (3.24).

3.2 Case 2: v, f>0and v=0.

We start by proving the following lemma:

Lemma 3.4 We assume that v =0 and vy, 8 > 0. Let U be the solution of (2.7). Then there ezist c,
¢ > 0 such that we have the following estimate:

U )P <Ce e TOTy()2, VEER, V>0, (3.31)
where
56
(1+&E2+446064¢8)

f(&) = (3.32)



Proof. Multiplying (3.5) by ¢* and using the Young inequality, it follows that, for any &g, 1 > 0,

d s - _ -
G Re(€T2) < —(b—co—e) 2+ Coy (€ + ) [ + Ce, £ [0 (3.33)

Multiplying (3.9), first by £2, second by ¢, and third by £°, and using the Young inequality in each time,
it follows that, for any 9 > 0,

%RdM%ﬁDS—“waﬁﬁw+aﬁﬂm”+Qo0+§+fﬂ0ﬂ”Hm5, (3.34)

%Rdw%ﬁbs—wk—aﬁéWF+aﬁﬂm2+am@2+é+f%(@2+mﬁ) (3.35)
and P

T Re(i€70 1) < = (k —0) & [0 + 0 €° 7" + Ccq (€1 +€°+€7) (91 + [al*) . (3.36)

On the other hand, multiplying (3.13) by £*, noting that v = 0 and using the Young inequality, it follows
that, for any 1 > 0,

d = " —~ ~
GRe(=i€ M) < —(b—e) o + AP + Cc, €1 [0 (3.37)

Now, multiplying (2.8); by —&°7 and (2.8)s by —£°0, noting that v = 0, adding the obtained formulas
and taking the real part, we see that
d ~= ~ ~ L~ = . T= ~=
ﬁRe (—§6v 17) =¢5 (3k 5] — |n\2) + £°Re (zfu n—1ibédpv+7y 17) . (3.38)

Using the Young inequality, we conclude from (3.38) that, for any &g, 1 > 0,

d = N ~
ZRe (=€) < —(1—c0) & + 18[9
+ Coy (84 &) [0+ Ccy (€°4+6°) (18P + 1) - (3.39)

Let us define the functional F and the Perturbed Energy L as follows:
_ NI N .03 5 7= 6~ =
f(f,t)fRe(zf (yz+n¢)>+)\1Re(z(£ +¢ +§)vu>+>\2Re(—§ vn) (3.40)

and

1
(T4 +& 480 +¢8°)
where A, Ay and Ay are positive constants to be defined later. Replacing (3.33) and (3.37) together with
(3.34), (3.35), (3.36) and (3.39) into (3.40) and (3.41) we deduce that

L& t)=NE(E )+ F(E, 1), (3.41)

d
%‘7(57 t)

< —(b—eo—e) €2~ (b—e1 —e1 M) €8 []? — (1 — £0) A2 — B9 A1) E° |2
— [\ (k—20) = Ce, 1€ + [\ (k —e0) = A2 Cc, ] (€% + €3)] [0
+ Coponn, 2o 1+ E+EH+E4+88) (1917 + @) . (3.42)

We choose 0 < 1 < min{g, E}, 1 <A < bg% and A\; > max { CZl : %} After, we choose g9 small
enough such that

b—€1,

. >\2—1 )\1]€—O€1 )\1]€—>\QO€1
O<60<m1n{>\2+3)\1, )\1 y 2 }



Hence, using the definition of E, (3.42) implies that, for some positive constant ¢y,
d ~ — ~
TFEN < —alEEH+C 1+ +++8) (1917 + ). (3.43)
Then from (2.10) (with v = 0), (3.41) and (3.43) we have, for co = min{3~y, 35},
Ly, < - E(, 1) — (cax—O) ([ + [ 3.44
SLE ) < — e JOBE 1) — (A= C) (7P +[3P), (3.44)

where f is defined in (3.32). Moreover, using the definition of E, F and L, we get, for some ¢y > 0 (not
depending on \),

26, 1) — A Be, 1)) < U IEP + e+ 1¢]7)

STArerarere) DoNstoED (345)

Therefore, for A large enough so that A > max {CQ 400} , we deduce from (3.59) and (3.45) that (3.21)

) )
and (3.22) are satisfied with ¢ = A —4¢g, ¢4 = A+4 ¢ and f is defined (3.32). Consequently, (3.21) and
the second inequality in (3.22) imply (3.23). So, an integration of (3.23) and use of the first inequality
in (3.22) lead to (3.31), which ends the proof of Lemma 3.4.

Theorem 3.5 We assume that v =0 and vy, 8 > 0. Let N, £ € N* such that { < N,
Up € HY(R) N LY(R)

and U be the solution of (2.5). Then, for any j =0, ..., N — {, there exists ¢ > 0 such that, for any
t>0,

102U | 2y < E(1+6)"V 120U | pagmy + 21+ 6) ™2 00 Vo 2 () - (3.46)
Proof. From (3.32) we have (low and high frequences)
s€0 i g <1,
f) = (3.47)
L2 it ¢ > 1.

As for (3.26), applying Plancherel’s theorem and using (3.31) and (3.47), we get

e 8| Uy(¢)? de + @ / €27 e~ 5177 |U(6)[ de. (3.48)

1€1>1

102U 12 ) < 5/

l€1<1

Then, using (3.27) (with o = 2j and p = 6) and proceeding as for (3.28) and (3.29), we get
. _ 1 . _ .
[02U 122y < C (L4 6)7 2 Vol gy + C (1 48) ™" ([0 To [72s;
which implies (3.46).

3.3 Case 3: v, v>0and g =0.

As in the previous two subsections, we start by proving the following lemma:

Lemma 3.6 The result of Lemma 3.4 holds true also when 8 =0 and vy, v > 0.

10



Proof. Multiplying (3.5) by ¢*, noting that 8 = 0 and using the Young inequality, it follows that, for
any €1 > 0,

d 5~= ~ ~ .

- Re (z €7 z) <—(b—e1) €532 + €871 + C., V02 (3.49)
Multiplying (3.9), first by &2, second by &%, and third by &5, and using the Young inequality in each time,
it follows that, for any 9 > 0,

d _
- Re (z 835 a) < —(k—eo) E* [ + 20 8171 + Cep (14 €2+ Y (I + [a)?) (3.50)
d [ 5= N _ S
ZRe (i€57) < — (k- 0) € 512 + 20 € [j1* + Cuy (67 +€°) (il + [02) (3.51)
and
d, (= R _ SN
ZRe (i€ 07) < — (k—20) € [0 +20 € [j17 + Cey (60 + %) (il + [@2). (3.52)

On the other hand, multiplying (3.13) by ¢* and using the Young inequality, it follows that, for any
€0, €1 > 0,

G Re (~i€237) <~ (02— ) €3 + oy € + oy (68 +€°) P (3.53)

Now, multiplying (2.8); by €67 and (2.8)4 by &6 0, noting that 8 = 0, adding the obtained formulas and
taking the real part, we see that

d ~ = ~ —~ . o~ = . ~ = ~ =
—Re (§6v y) =& (k9> — |7]?) + €° Re <fz§u Y+iblzZv+7 y) . (3.54)
dt
Using the Young inequality, we conclude from (3.54) that, for any &g, &1 > 0,
d = I ~
ZRe(£97) < —(1-e) € [+ € B
+C, (40P +C (€°+€%) (I + [af?) - (3.55)
Let us define the functional F by
F o o 5 T = 6~ = - /+3 5 T\~ = .5 A=
(€, 1) 736( i G T+ 5% y) 4 i Re (z(§ LN u) + X Re (zf 7 z) (3.56)

and the Perturbed Energy L by (3.41), where A, A; and A2 are positive constants to be fixed later.
Replacing (3.53) and (3.55) together with (3.50), (3.51), (3.52) and (3.33) into (3.56), we deduce that

GFEA) <~ o lb—c) - )€ |51

< —(b—eo—e) PP — (1 — (c0 + 30 M1 + X)) E° G2
—[[A1(k—e0) = A2 Cc, ] € + [M1 (k — 20) — Cc, ] (€° + €%)] 0]

4+ Cepny 1+ E+EM+5+68) (10 + [a?). (3.57)
We choose 0 < g1 < %, bflsl < Ay <1 and A} > max { Clzl , A2 551 } After, we choose g9 small enough
such that Lo
0 < o <min{3)\1+21, b—e1, Mk—C.,, Alkxgcgl}.
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Hence, using the definition of E, (3.57) implies that, for some positive constant ¢y,
d =~ —~ ~
TFE NS —al BE)+C 1+ &+ 4+ +8) (17 + [al?) .- (3.58)

Then from (2.10) (with 8 = 0), (3.41) and (3.58) we find, for ¢z = min{3~,, 4~},
d ~
ZLE D) < = fIOEE ) = (e A= CO) (I + [a?), (3.59)

where f is defined in (3.32). Moreover, using the definition of E, F and L, we get (3.45). So the proof
of (3.31) can be ended as in the proof of Lemma 3.4.

Theorem 3.7 The result of Theorem 3.5 holds true also when 8 =0 and 7y, v > 0.

Proof. The proof is identical to the one of Theorem 3.5.

3.4 Case4: 5, v>0and vy, =0.

As in the previous three subsections, we start by proving the following lemma;:
Lemma 3.8 The result of Lemma 3.1 holds true also when vy =0 and 8, v > 0.

Proof. Multiplying (3.5) by £2 and using the Young inequality, it follows that, for any g > 0,

%Re (z ¢ g?) < —(b—eo)EXEP + k€ Re (i{ﬁ?) O, (24 EY 72 (3.60)

Multiplying (3.9) by — 1, noting that vy = 0 and using the Young inequality, it follows that, for any
g >0,

d = _ _ JP
—Re (—zfv u) < —(1—e0)E [ + (k +20) 232 + Cey (1% + 71%) - (3.61)

On the other hand, multiplying (3.13) by ¢ and using the Young inequality, it follows that, for any
g9, €1 > 0,

d PSS W - 1./ 172, 3k o0 2 e\ (52
Ghe(-ie0T) < (b= e ) @R gL CRP+O, @+ AR 36

Now, multiplying (2.8); by — &2 7 and (2.8)4 by — &2 9, adding the obtained formulas and taking the real
part, we see that

Lan (o9
— b€’ Re (ifﬁ?) +E (k[ + [9?) + € Re (i&ﬂ?—s—,@ﬂ?—ﬁﬁ). (3.63)

Using the Young inequality, we conclude from (3.63) that, for any ¢ > 0,

d ~ = . ~ = o~
aRe (—fgy v) < b&%Re (zﬁv z) — (k—¢go) €2 |02
+eo & [al* + Cey (62 +€") (P +15°) - (3.64)

Multiplying (2.8)2 by €2 Z and (2.8)3 by &2 4, noting that 79 = 0, adding the obtained formulas and
taking the real part, we see that

4 pe (5217?) — _ k€% Re (ifﬁ?) + €2 Re (z'ggi

= . (3.65)

SN—
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Using the Young inequality, we conclude from (3.65) that, for any ¢ > 0,

d 243 2 N 2 |52 41742
el < _ . .
dtRe<g uz) < ke Re(zfvz)+sof af? + C., €4 7] (3.66)
Let us define the functional F by
Flet) = Re(—igm—z‘g3$ﬁ)+Re(¢g3g§)

_ b _

2= 9 2 ~ =
+)\1Re< §yv)+<1+k/\1>Re(£uz) (3.67)

and the Perturbed Energy L by (3.16), where A and Ay are positive constants to be choosen later. Replacing
(3.61), (3.62) together with (3.60), (3.64) and (3.66) into (3.67), we deduce that

%f(g, ) < —[1—50 <2+A1+2A1)]£2|m2—(b—so—?a)«ﬁ‘*lﬂgﬁ

— (b—eo) € 2 - [k (A1 ~-1- 23> —(1+ )\1)50} €[5

€1
+ Copny (L+E+8Y (107 +151) - (3.68)
Wechoose0<€1<%, )\1>1+% and
3
0<eg<min{b 3k5 ! k(Al_l_H)
min — — 1, ,
’ 2 U 24 A+ 2N T+ M\

Hence, using the definition of E7 (3.68) implies that, for some positive constant ¢y,
d . = . ~
76 1) < = eomin{€, BB 1) +C (1€ + ") (1 + [5) (3.69)

Then from (2.10) (with 7o = 0), (3.16) and (3.69) we find, for co = min{3 3, 4~},

d =~ _ ~

L&) < —aflE)EE )~ (2A-0) (I +19%) .
where f is defined in (3.2). So the end of proof is identical to the one of Lemma 3.1.
Theorem 3.9 The result of Theorem 3.2 holds true also when vo =0 and 3, v > 0.

Proof. The proof is identical to the one of Theorem 3.2.

Comments. 1. The function f tends to 0 when £ goes to infinity. This means that the dissipation is
very weak in the high frequency region, which leads to the regularity loss in the estimate on [|01U || 2.
2. It would be interesting to study the cases where only one damping is considered; that is [ =~v =0
and v9 > 0] or [yo=v=0and 8 > 0] or [5 =9 =0 and v > 0].
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