References
1. Loh W, Tang M. The Epidemiology of
Food Allergy in the Global Context. Int J Environ Res Public
Health. 2018;15.
2. Lowe A, Leung D, Tang M, Su J,
Allen K. The skin as a target for prevention of the atopic march.Ann Allergy Asthma Immunol. 2018;120(2):145-151.
3. Dharmage S, Lowe A, Matheson M,
Burgess J, Allen K, Abramson M. Atopic dermatitis and the atopic march
revisited. Allergy. 2014;69(1):17-27.
4. Davidson WF, Leung DY, Beck LA, et
al. Report from the National Institute of Allergy and Infectious
Diseases workshop on “Atopic dermatitis and the atopic march:
Mechanisms and interventions”. J Allergy Clin Immunol.2019;143(3):894-913.
5. Perkin M, Logan K, Tseng A, Raji B,
Ayis S, Peacock J. Randomized Trial of Introduction of Allergenic Foods
in Breast-Fed Infants. N Engl J Med. 2016;374(18):1733-1743.
6. Gupta R, Warren C, Smith B. The
Public Health Impact of Parent- Reported Childhood Food Allergies in the
United States. Pediatrics. 2018;142(6).
7. Osborne NJ, Koplin JJ, Martin PE,
et al. Prevalence of challenge-proven IgE-mediated food allergy using
population-based sampling and predetermined challenge criteria in
infants. J Allergy Clin Immunol. 2011;127(3):668- 676.
8. Peters R, Koplin J, Gurrin L. The
prevalence of food allergy and other allergic diseases in early
childhood in a population-based study: HealthNuts age 4- year follow-up.J Allergy Clin Immunol. 2017;140(1):145- 153.
9. Tang M, Mullins R. Food allergy: is
prevalence increasing? Intern Med J. 2017;47(3):256-261.
10. Warren C, Jiang J, Gupta R.
Epidemiology and Burden of Food Allergy. Curr Allergy Asthma Rep.2020;20(2).
11. Lyons SA, Clausen M, Knulst AC,
et al. Prevalence of Food Sensitization and Food Allergy in Children
Across Europe. J Allergy Clin Immunol Pract. 2020;8(8):2736-2746
e2739.
12. Venter C, Pereira B, Voigt K, et
al. Prevalence and cumulative incidence of food hypersensitivity in the
first 3 years of life. Allergy. 2008;63(3):354-359.
13. Prescott S, Pawankar R, Allen K.
A global survey of changing patterns of food allergy burden in children.World Allergy Organ J. 2013;6(1).
14. Du Toit G, Katz Y, Sasieni P.
Early consumption of peanuts in infancy is associated with a low
prevalence of peanut allergy. J Allergy Clin Immunol.2008;122(5):984-991.
15. Togias A, Cooper SF, Acebal ML,
et al. Addendum guidelines for the prevention of peanut allergy in the
United States: Report of the National Institute of Allergy and
Infectious Diseases-sponsored expert panel. J Allergy Clin
Immunol. 2017;139(1):29-44.
16. Fleischer DM, Chan ES, Venter C,
et al. A Consensus Approach to the Primary Prevention of Food Allergy
Through Nutrition: Guidance from the American Academy of Allergy,
Asthma, and Immunology; American College of Allergy, Asthma, and
Immunology; and the Canadian Society for Allergy and Clinical
Immunology. J Allergy Clin Immunol Pract. 2021;9(1):22-43 e24.
17. Halken S, Muraro A, de Silva D,
et al. EAACI guideline: Preventing the development of food allergy in
infants and young children (2020 update). Pediatr Allergy
Immunol. 2021.
18. Warren C, Otto A, Walkner M,
Gupta R. Quality of Life Among Food Allergic Patients and Their
Caregivers. Curr Allergy Asthma Rep. 2016;16(5).
19. Macdougall JD, Burks AW, Kim EH.
Current Insights into Immunotherapy Approaches for Food Allergy.ImmunoTargets Ther. 2021;10:1.
20. Brough H, Nadeau K, Sindher S.
Epicutaneous sensitization in the development of food allergy: What is
the evidence and how can this be prevented? Allergy.2020;75(9):2185-2205.
21. Odhiambo J, Williams H, Clayton
T, Robertson C, Asher M. Global variations in prevalence of eczema
symptoms in children from ISAAC Phase Three. J Allergy Clin
Immunol. 2009;124(6):1251-1258.
22. Strid J, Hourihane J, Kimber I,
Callard R, Strobel S. Epicutaneous exposure to peanut protein prevents
oral tolerance and enhances allergic sensitization. Clin Exp
Allergy. 2005;35(6):757-766.
23. Lack G, Fox D, Northstone K,
Golding J. Factors Associated with the Development of Peanut Allergy in
Childhood. N Engl J Med. 2003;348(11):977-985.
24. Fox A, Sasieni P, du Toit G, Syed
H, Lack G. Household peanut consumption as a risk factor for the
development of peanut allergy. J Allergy Clin Immunol.2009;123(2):417-423.
25. Leung DY, Guttman-Yassky E.
Deciphering the complexities of atopic dermatitis: Shifting paradigms in
treatment approaches. J Allergy Clin Immunol.2014;134(4):769-779.
26. Leung DY, Berdyshev E, Goleva E.
Cutaneous barrier dysfunction in allergic diseases. J Allergy Clin
Immunol. 2020;145(6):1485-1497.
27. Brough HA, Simpson A, Makinson K,
et al. Peanut allergy: effect of environmental peanut exposure in
children with filaggrin loss-of-function mutations. J Allergy Clin
Immunol. 2014;134(4):867-875 e861.
28. Brough H, Liu A, Sicherer S.
Atopic dermatitis increases the effect of exposure to peanut antigen in
dust on peanut sensitization and likely peanut allergy. J Allergy
Clin Immunol. 2015;135(1):164-170.
29. Brough H, Kull I, Richards K,
Hallner E, Soderhall C, Douiri A. Environmental peanut exposure
increases the risk of peanut sensitization in high-risk children.Clin Exp Allergy. 2018;48(5):586-593.
30. Guttman‐Yassky E, Krueger J,
Lebwohl M. Systemic immune mechanisms in atopic dermatitis and psoriasis
with implications for treatment. Exp Dermatol.2018;27(4):409-417.
31. Ewald D, Malajian D, Krueger J.
Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a
robust AD signature highlighting the involvement of atherosclerosis and
lipid metabolism pathways. BMC Med Genomics. 2015;8(1).
32. Suárez-Fariñas M, Ungar B, Correa
da Rosa J, Ewald D, Rozenblit M, Gonzalez J. RNA sequencing atopic
dermatitis transcriptome profiling provides insights into novel disease
mechanisms with potential therapeutic implications. J Allergy Clin
Immunol. 2015;135(5):1218-1227.
33. Renert-Yuval Y, Thyssen JP,
Bissonnette R, et al. Biomarkers in atopic dermatitis-a review on behalf
of the international eczema council. J Allergy Clin Immunol.2021.
34. Brunner P, Guttman-Yassky E,
Leung D. The immunology of atopic dermatitis and its reversibility with
broad-spectrum and targeted therapies. J Allergy Clin Immunol.2017;139(4s):S65-s76.
35. Czarnowicki T, Krueger J,
Guttman-Yassky E. Skin Barrier and Immune Dysregulation in Atopic
Dermatitis: An Evolving Story with Important Clinical Implications.J Allergy Clin Immunol. 2014;2(4):371-379.
36. Guttman-Yassky E, Suárez-Fariñas
M, Chiricozzi A. Broad defects in epidermal cornification in atopic
dermatitis identified through genomic analysis. J Allergy Clin
Immunol. 2009;6(124):1235-1244.
37. Berdyshev E, Goleva E, Bronova I,
et al. Lipid abnormalities in atopic skin are driven by type 2
cytokines. JCI insight. 2018;3(4).
38. Danso M, Van Drongelen V, Mulder
A. TNF-α and Th2 cytokines induce atopic dermatitis-like features on
epidermal differentiation proteins and stratum corneum lipids in human
skin equivalents. J Investigative Derma. 2014;7(134):1941-1950.
39. Wang F, Kim B. A Paradigm of
Neuroimmune Crosstalk. Immunity. 2020;52(5):753-766.
40. Stott B, Lavender P, Lehmann S,
Pennino D, Durham S, Schmidt-Weber C. Human IL-31 is induced by IL-4 and
promotes TH2-driven inflammation. J Allergy Clin Immunol.2013;2(132):446-454.
41. Saleem M, Oussedik E, D’Amber V,
Feldman S. Interleukin-31 pathway and its role in atopic dermatitis: a
systematic review. J Dermatolog Treat. 2017;28(7):591-599.
42. Oetjen LK, Mack MR, Feng J, et
al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to
Mediate Chronic. Cell. 2017;1(171):217-228.
43. Raap U, Weibmantel S, Gehring M,
Eisenberg A, Kapp A. Fölster‐Holst R. IL‐31 significantly correlates
with disease activity and Th2 cytokine levels in children with atopic
dermatitis. Pediatr Allergy Immunol. 2012;3(23):285-288.
44. Neis M, Peters B, Dreuw A.
Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in
atopic and allergic contact dermatitis. J Allergy Clin Immunol.2006;4(118):930-937.
45. Nograles K, Zaba L,
Guttman‐Yassky E. Th17 cytokines interleukin (IL)‐17 and IL‐22 modulate
distinct inflammatory and keratinocyte‐response pathways. Br J
Dermatol. 2008;159(5):1092-1102.
46. Sa S, Valdez P, Wu J. The effects
of IL-20 subfamily cytokines on reconstituted human epidermis suggest
potential roles in cutaneous innate defense and pathogenic adaptive
immunity in psoriasis. J Immunol. 2007;178(4):2229-2240.
47. Suárez-Fariñas M, Dhingra N,
Gittler J, Shemer A, Cardinale I, de Guzman Strong C. Intrinsic atopic
dermatitis shows similar TH2 and higher TH17 immune activation compared
with extrinsic atopic dermatitis. J Allergy Clin Immunol.2013;132(2):361-370.
48. Nomura T, Wu J, Kabashima K,
Guttman-Yassky E. Endophenotypic Variations of Atopic Dermatitis by Age,
Race, and Ethnicity. J Allergy Clin Immunol. 2020;8(6):1840-1852.
49. Noda S, Suárez-Fariñas M, Ungar
B. The Asian atopic dermatitis phenotype combines features of atopic
dermatitis and psoriasis with increased TH17 polarization. J
Allergy Clin Immunol. 2015;136(5):1254-1264.
50. Chan T, Sanyal R, Pavel A. Atopic
dermatitis in Chinese patients shows T(H)2/T(H)17 skewing with
psoriasiform features. J Allergy Clin Immunol.2018;142(3):1013-1017.
51. Wen H, Czarnowicki T, Noda S.
Serum from Asian patients with atopic dermatitis is characterized by
T(H)2/T(H)22 activation, which is highly correlated with nonlesional
skin measures. J Allergy Clin Immunol. 2018;142(1):324-328.
52. He H, Bissonnette R, Wu J. Tape
strips detect distinct immune and barrier profiles in atopic dermatitis
and psoriasis. J Allergy Clin Immunol. 2020.
53. Pavel A, Renert-Yuval Y, Wu J.
Tape-strips from early-onset pediatric atopic dermatitis highlight
disease abnormalities in non-lesional skin. Allergy. 2020.
54. Guttman-Yassky E, Diaz A, Pavel
A. Use of Tape Strips to Detect Immune and Barrier Abnormalities in the
Skin of Children With Early-Onset Atopic Dermatitis. JAMA
Dermatol. 2019.
55. Esaki H, Brunner P, Renert-Yuval
Y. Early-onset pediatric atopic dermatitis is TH2 but also TH17
polarized in skin. J Allergy Clin Immunol. 2016;138(6):1639-1651.
56. Brunner P, Israel A, Zhang N,
Leonard A, Wen H-C, Huynh T. Early- onset pediatric atopic dermatitis is
characterized by TH2/TH17/TH22-centered inflammation and lipid
alterations. J Allergy Clin Immunol. 2018;141(6):2094-2106.
57. Brunner P, He H, AB, Pavel The
blood proteomic signature of early-onset pediatric atopic dermatitis
shows systemic inflammation and is distinct from adult long-standing
disease. J Am Acad Dermatol. 2019;81(2):510-519.
58. Chinthrajah R, Hernandez J, Boyd
S, Galli S, Nadeau K. Molecular and cellular mechanisms of food allergy
and food tolerance. J Allergy Clin Immunol. 2016;137(4):984-997.
59. Werfel T, Allam J, Biedermann T,
Eyerich K, Gilles S, Guttman-Yassky E. Cellular and molecular
immunologic mechanisms in patients with atopic dermatitis. J
Allergy Clin Immunol. 2016;138(2):336-349.
60. Humeniuk P, Dubiela P,
Hoffmann-Sommergruber K. Dendritic cells and their role in allergy:
uptake, proteolytic processing and presentation of allergens. Int
J Mol Sci. 2017;18(7):1491.
61. Satitsuksanoa P, Daanje M, Akdis
M, Boyd SD, van de Veen W. Biology and dynamics of B cells in the
context of IgE-mediated food allergy. Allergy. 2020.
62. Palomares O, Akdis M,
Martin-Fontecha M, Akdis C. Mechanisms of immune regulation in allergic
diseases: the role of regulatory T and B cells. Immunol Rev.2017;278(1):219-236.
63. Leyva-Castillo J-M, Galand C, Kam
C, et al. Mechanical skin injury promotes food anaphylaxis by driving
intestinal mast cell expansion. Immunity. 2019;50(5):1262-1275.
e1264.
64. Chinthrajah S, Cao S, Liu C, et
al. Phase 2a randomized, placebo-controlled study of anti-IL-33 in
peanut allergy. JCI Insight. 2019;4(22).
65. Leung DY, Calatroni A, Zaramela
LS, et al. The nonlesional skin surface distinguishes atopic dermatitis
with food allergy as a unique endotype. Sci Transl Med.2019;11(480).
66. Brown SJ, Asai Y, Cordell HJ, et
al. Loss-of-function variants in the filaggrin gene are a significant
risk factor for peanut allergy. J Allergy Clin Immunol.2011;127(3):661-667.
67. Keet C, Pistiner M, Plesa M, et
al. Age and eczema severity, but not family history, are major risk
factors for peanut allergy in infancy. J Allergy Clin Immunol.2021;147(3):984-991. e985.
68. Martin P, Eckert J, Koplin J.
Which infants with eczema are at risk of food allergy? Results from a
population-based cohort. Clin Exp Allergy. 2015:255-264.
69. Park HY, Kim CR, Huh IS, et al.
Staphylococcus aureus Colonization in Acute and Chronic Skin Lesions of
Patients with Atopic Dermatitis. Ann Dermatol.2013;25(4):410-416.
70. Blicharz L, Rudnicka L,
Samochocki Z. Staphylococcus aureus: an underestimated factor in the
pathogenesis of atopic dermatitis? Postepy Dermatol Alergol.2019;36(1):11-17.
71. Nguyen HLT, Trujillo-Paez JV,
Umehara Y, et al. Role of Antimicrobial Peptides in Skin Barrier Repair
in Individuals with Atopic Dermatitis. Int J Mol Sci.2020;21(20).
72. Huang JT, Abrams M, Tlougan B,
Rademaker A, Paller AS. Treatment of Staphylococcus aureus colonization
in atopic dermatitis decreases disease severity. Pediatrics.2009;123(5):e808-814.
73. Simpson EL, Villarreal M, Jepson
B, et al. Patients with Atopic Dermatitis Colonized with Staphylococcus
aureus Have a Distinct Phenotype and Endotype. J Invest Dermatol.2018;138(10):2224-2233.
74. Broberg A, Faergemann J. Topical
antimycotic treatment of atopic dermatitis in the head/neck area. A
double-blind randomised study. Acta Derm Venereol.1995;75(1):46-49.
75. Bäck O, Bartosik J. Systemic
ketoconazole for yeast allergic patients with atopic dermatitis. J
Eur Acad Dermatol Venereol. 2001;15(1):34-38.
76. Lintu P, Savolainen J,
Kortekangas-Savolainen O, Kalimo K. Systemic ketoconazole is an
effective treatment of atopic dermatitis with IgE-mediated
hypersensitivity to yeasts and Asthma Proceedings. Allergy.2001;56:512-517.
77. Kanda N, Enomoto U, Watanabe S.
Anti-mycotics suppress interleukin-4 and interleukin-5 production in
anti-CD3 plus anti-CD28-stimulated T cells from patients with atopic
dermatitis. J Invest Dermatol 2001;117:1635-1646.
78. Kaffenberger BH, Mathis J, Zirwas
MJ. A retrospective descriptive study of oral azole antifungal agents in
patients with patch test-negative head and neck predominant atopic
dermatitis. J Am Acad Dermatol. 2014;71:480-483.
79. Halkjaer LB, Loland L, Buchvald
FF, et al. Development of atopic dermatitis during the first 3 years of
life: the Copenhagen prospective study on asthma in childhood cohort
study in high-risk children. Arch Dermatol. 2006;142(5):561-566.
80. Jagielski T, Rup E, Ziolkowska A,
Roeske K, Macura AB, Bielecki J. Distribution of Malassezia species on
the skin of patients with atopic dermatitis, psoriasis, and healthy
volunteers assessed by conventional and molecular identification
methods. BMC Dermatol. 2014;14:3.
81. Kato H, Sugita T, Ishibashi Y,
Nishikawa A. Detection and quantification of specific IgE antibodies
against eight Malassezia species in sera of patients with atopic
dermatitis by using an enzyme-linked immunosorbent assay.Microbiol Immunol. 2006;50(11):851-856.
82. Watanabe S, Kano R, Sato H,
Nakamura Y, Hasegawa A. The effects of Malassezia yeasts on cytokine
production by human keratinocytes. J Invest Dermatol.2001;116(5):769-773.
83. Devos SA, van der Valk PG. The
relevance of skin prick tests for Pityrosporum ovale in patients with
head and neck dermatitis. Allergy. 2000;55(11):1056-1058.
84. Brasch J, Morig A, Neumann B,
Proksch E. Expression of antimicrobial peptides and toll-like receptors
is increased in tinea and pityriasis versicolor. Mycoses.2014;57(3):147-152.
85. Baroni A, Orlando M, Donnarumma
G, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling
in human keratinocytes in response to Malassezia furfur. Arch
Dermatol Res. 2006;297(7):280-288.
86. Ishibashi Y, Sugita T, Nishikawa
A. Cytokine secretion profile of human keratinocytes exposed to
Malassezia yeasts. FEMS Immunol Med Microbiol.2006;48(3):400-409.
87. Kroger S, Neuber K, Gruseck E,
Ring J, Abeck D. Pityrosporum ovale extracts increase interleukin-4,
interleukin-10 and IgE synthesis in patients with atopic eczema.Acta Derm Venereol. 1995;75(5):357-360.
88. Goleva E, Calatroni A, LeBeau P,
et al. Skin tape proteomics identifies pathways associated with
transepidermal water loss and allergen polysensitization in atopic
dermatitis. J Allergy Clin Immunol. 2020;146(6):1367-1378.
89. Imayama S, Ueda S, Isoda M.
Histologic changes in the skin of hairless mice following peeling with
salicylic acid. Arch Dermatol. 2000;136(11):1390-1395.
90. Wu J, Guttman-Yassky E. Efficacy
of biologics in atopic dermatitis. Expert Opin Biol Ther.2020;20(5):525-538.
91. Feingold KR, Elias PM. Role of
lipids in the formation and maintenance of the cutaneous permeability
barrier. Biochim Biophys Acta. 2014;1841(3):280-294.
92. Van Smeden J, Bouwstra JA.
Stratum Corneum Lipids: Their Role for the Skin Barrier Function in
Healthy Subjects and Atopic Dermatitis Patients. Curr Probl
Dermatol. 2016;49:8-26.
93. Palmer CN, Irvine AD,
Terron-Kwiatkowski A, et al. Common loss-of-function variants of the
epidermal barrier protein filaggrin are a major predisposing factor for
atopic dermatitis. Nat Genet. 2006;38(4):441-446.
94. Sandilands A, Sutherland C,
Irvine AD, McLean WI. Filaggrin in the frontline: role in skin barrier
function and disease. J Cell Sci. 2009 122(9):1285–1294.
95. Van Zuuren E, Fedorowicz Z,
Arents B. Emollients and moisturizers for eczema: abridged Cochrane
systematic review including GRADE assessments. Br J Dermatol.2017;177(5):1256-1271.
96. van Zuuren EJ, Fedorowicz Z,
Christensen R, Lavrijsen A, Arents BWM. Emollients and moisturisers for
eczema. Cochrane Database Syst Rev. 2017;2(2):Cd012119.
97. Sindher S, Alkotob SS, Shojinaga
MN, et al. Increases in plasma IgG4/IgE with trilipid vs
paraffin/petrolatum-based emollients for dry skin/eczema. Pediatr
Allergy Immunol. 2020;31(6):699-703.
98. Miller DW, Koch SB, Yentzer BA,
et al. An over-the-counter moisturizer is as clinically effective as,
and more cost-effective than, prescription barrier creams in the
treatment of children with mild-to-moderate atopic dermatitis: a
randomized, controlled trial. J Drugs Dermatol.2011;10(5):531-537.
99. Czarnowicki T, Dohlman AB, Malik
K, et al. Effect of short-term liver X receptor activation on epidermal
barrier features in mild to moderate atopic dermatitis: A randomized
controlled trial. Ann Allergy Asthma Immunol. 2018;120(6):631-640
e611.
100. Renert-Yuval Y, Guttman-Yassky
E. New treatments for atopic dermatitis targeting beyond IL-4/IL-13
cytokines. Ann Allergy Asthma Immunol. 2020;124(1):28-35.
101. Li R, Hadi S, Guttman-Yassky E.
Current and emerging biologic and small molecule therapies for atopic
dermatitis. Expert Opin Biol Ther. 2019;19(4):367-380.
102. Diaz A, Guttman-Yassky E.
Topical agents for the treatment of atopic dermatitis. Expert Rev
Clin Immunol. 2019;15(4):369-382.
103. He H, Guttman-Yassky E. JAK
Inhibitors for Atopic Dermatitis: An Update. Am J Clin Dermatol.2019;20(2):181-192.
104. Simpson E, Imafuku S, Poulin Y.
A Phase 2 Randomized Trial of Apremilast in Patients with Atopic
Dermatitis. J Investigative Derma. 2019;139(5):1063-1072.
105. Wollenberg A, Howell MD,
Guttman-Yassky E, et al. Treatment of atopic dermatitis with
tralokinumab, an anti–IL-13 mAb. J Allergy Clin Immunol.2019;143(1):135-141.
106. Olesen C, Pavel A, Wu J.
Tape-strips provide a minimally-invasive approach to track therapeutic
response to topical corticosteroids in atopic dermatitis patients.J Allergy Clin Immunol. 2020.
107. Bissonnette R, Pavel A, Diaz A.
Crisaborole and atopic dermatitis skin biomarkers: An intrapatient
randomized trial. J Allergy Clin Immunol. 2019;144(5):1274-1289.
108. Pavel A, Song T, Kim H-J, Del
Duca E, Krueger J, Dubin C. Oral Janus kinase/SYK inhibition (ASN002)
suppresses inflammation and improves epidermal barrier markers in
patients with atopic dermatitis. J Allergy Clin Immunol.2019;144(4):1011-1024.
109. Guttman-Yassky E, Pavel A, Zhou
L. GBR 830, an anti-OX40, improves skin gene signatures and clinical
scores in patients with atopic dermatitis. J Allergy Clin
Immunol. 2019;144(2):482-493.
110. Hamilton J, Suárez-Fariñas M,
Dhingra N. Dupilumab improves the molecular signature in skin of
patients with moderate-to-severe atopic dermatitis. J Allergy Clin
Immunol. 2014;134(6):1293-1300.
111. Bissonnette R, Maari C, Forman
S, et al. The oral Janus kinase/spleen tyrosine kinase inhibitor ASN002
demonstrates efficacy and improves associated systemic inflammation in
patients with moderate-to-severe atopic dermatitis: results from a
randomized double-blind placebo-controlled study. Br J Dermatol.2019;181(4):733-742.
112. Callewaert C, Nakatsuji T,
Knight R. IL-4Rα Blockade by Dupilumab Decreases Staphylococcus aureus
Colonization and Increases Microbial Diversity in Atopic Dermatitis.J Invest Dermatol. 2020;140(1):191-202.
113. Pabst O, Mowat AM. Oral
tolerance to food protein. Mucosal Immunol. 2012;5(3):232-239.
114. Hadis U, Wahl B, Schulz O, et
al. Intestinal tolerance requires gut homing and expansion of FoxP3+
regulatory T cells in the lamina propria. Immunity.2011;34(2):237-246.
115. Benson MJ, Pino-Lagos K,
Rosemblatt M, Noelle R. All-trans retinoic acid mediates enhanced T reg
cell growth, differentiation, and gut homing in the face of high levels
of co-stimulation. J Exp Med. 2007:1765-1774.
116. Coombes JL, Siddiqui KR,
Arancibia-Carcamo CV, et al. A functionally specialized population of
mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and
retinoic acid-dependent mechanism. J Exp Med.2007;204(8):1757-1764.
117. Sun CM, Hall JA, Blank RB, et
al. Small intestine lamina propria dendritic cells promote de novo
generation of Foxp3 T reg cells via retinoic acid. J Exp Med.2007;204(8):1775-1785.
118. Kim KS, Hong SW, Han D, et al.
Dietary antigens limit mucosal immunity by inducing regulatory T cells
in the small intestine. Science. 2016;351(6275):858-863.
119. Atarashi K, Tanoue T, Shima T,
et al. Induction of colonic regulatory T cells by indigenous Clostridium
species. Science. 2011;331(6015):337-341.
120. Iweala OI, Nagler CR. The
Microbiome and Food Allergy. Annu Rev Immunol. 2019;37:377-403.
121. Feehley T, Plunkett CH, Bao R,
et al. Healthy infants harbor intestinal bacteria that protect against
food allergy. Nat Med. 2019;25(3):448-453.
122. Bao R, Hesser LA, He Z, Zhou X,
Nadeau KC, Nagler CR. Fecal microbiome and metabolome differ in healthy
and food-allergic twins. J Clin Invest. 2021;131(2).
123. Stefka AT, Feehley T, Tripathi
P, et al. Commensal bacteria protect against food allergen
sensitization. Proc Natl Acad Sci U S A.2014;111(36):13145-13150.
124. Wesemann DR, Nagler CR. The
Microbiome, Timing, and Barrier Function in the Context of Allergic
Disease. Immunity. 2016;44(4):728-738.
125. Tan JK, McKenzie C, Marino E,
Macia L, Mackay CR. Metabolite-Sensing G Protein-Coupled
Receptors-Facilitators of Diet-Related Immune Regulation. Annu Rev
Immunol. 2017;35:371-402.
126. Furusawa Y, Obata Y, Fukuda S,
et al. Commensal microbe-derived butyrate induces differentiation of
colonic regulatory T cells. Nature. 2013;504(7480):446-450.
127. Tan J, McKenzie C, Vuillermin
PJ, et al. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and
Protect against Food Allergy through Diverse Cellular Pathways.Cell Rep. 2016;15(12):2809-2824.
128. Donohoe DR, Garge N, Zhang N,
et al. The microbiome and butyrate regulate energy metabolism and
autophagy in the mammalian colon. Cell Metab. 2011;13(5):517-526.
129. Byndloss MX, Olsan EE,
Rivera-Chavez F, et al. Microbiota-activated PPAR-gamma signaling
inhibits dysbiotic Enterobacteriaceae expansion. Science.2017;357(6351):570-575.
130. Macia L, Mackay CR.
Dysfunctional microbiota with reduced capacity to produce butyrate as a
basis for allergic diseases. J Allergy Clin Immunol.2019;144(6):1513-1515.
131. Zelante T, Iannitti RG, Cunha
C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon
receptor and balance mucosal reactivity via interleukin-22.Immunity. 2013;39(2):372-385.
132. Hang S, Paik D, Yao L, et al.
Bile acid metabolites control TH17 and Treg cell differentiation.Nature. 2019;576(7785):143-148.
133. Garcia-Larsen V, Lerodiakonou
D, Jarrold K. Diet during pregnancy and infancy and risk of allergic or
autoimmune disease: A systematic review and meta-analysis. PLoS
Med. 2018;15(2).
134. Du Toit G, Roberts G, Sayre PH,
et al. Randomized trial of peanut consumption in infants at risk for
peanut allergy. N Engl J Med. 2015;372(9):803-813.
135. du Toit G, Sayre PH, Roberts G,
et al. Allergen specificity of early peanut consumption and effect on
development of allergic disease in the Learning Early About Peanut
Allergy study cohort. J Allergy Clin Immunol.2018;141(4):1343-1353.
136. Perkin MR, Logan K, Tseng A, et
al. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed
Infants. N Engl J Med. 2016;374(18):1733-1743.
137. de Silva D, Halken S, Singh C,
et al. Preventing food allergy in infancy and childhood: systematic
review of randomised controlled trials. Pediatr Allergy Immunol.2020;31(7):813-826.
138. Obbagy JE, English LK, Wong YP,
et al. Complementary feeding and food allergy, atopic dermatitis/eczema,
asthma, and allergic rhinitis: a systematic review. Am J Clin
Nutr. 2019;109(Suppl_7):890s-934s.
139. Burgess JA, Dharmage SC, Allen
K, et al. Age at introduction to complementary solid food and food
allergy and sensitization: A systematic review and meta-analysis.Clin Exp Allergy. 2019;49(6):754-769.
140. Urashima M, Mezawa H, Okuyama
M, et al. Primary Prevention of Cow’s Milk Sensitization and Food
Allergy by Avoiding Supplementation With Cow’s Milk Formula at Birth: A
Randomized Clinical Trial. JAMA Pediatr. 2019;173(12):1137-1145.
141. Fisher HR, Du Toit G, Bahnson
HT, Lack G. The challenges of preventing food allergy: Lessons learned
from LEAP and EAT. Ann Allergy Asthma Immunol.2018;121(3):313-319.
142. Perkin MR, Logan K, Marrs T, et
al. Enquiring About Tolerance (EAT) study: Feasibility of an early
allergenic food introduction regimen. J Allergy Clin Immunol.2016;137(5):1477-1486.e1478.
143. Koplin JJ, Peters RL, Dharmage
SC, et al. Understanding the feasibility and implications of
implementing early peanut introduction for prevention of peanut allergy.J Allergy Clin Immunol. 2016;138(4):1131-1141.e1132.
144. Venter C, Agostoni C, Arshad
SH, et al. Dietary factors during pregnancy and atopic outcomes in
childhood: a systematic review from the European Academy of Allergy and
Clinical Immunology. Pediatr Allergy Immunol. 2020;31(8):889-912.
145. Netting M, Middleton P,
Makrides M. Does maternal diet during pregnancy and lactation affect
outcomes in offspring? A systematic review of food-based approaches.Nutrition. 2014;30:1225-1241.
146. Grimshaw K, Maskell J, Oliver
E. Diet and food allergy development during infancy: birth cohort study
findings using prospective food diary data. J Allergy Clin
Immunol. 2014;133(2):511-519.
147. Venter C, Greenhawt M, Meyer R,
et al. EAACI position paper on diet diversity in pregnancy, infancy and
childhood: Novel concepts and implications for studies in allergy and
asthma. Allergy. 2020;3(75):497-523.
148. Roduit C, Frei R, Depner M.
Increased food diversity in the first year of life is inversely
associated with allergic diseases. J Allergy Clin Immunol.2014;133(4):1056-1064.
149. Sausenthaler S, Heinrich J,
Koletzko S. Early diet and the risk of allergy: what can we learn from
the prospective birth cohort studies GINIplus and LISAplus? Am J
Clin Nutr. 2011;94(6 ):2012-2017.
150. Zutavern A, Brockow, Schaaf B.
Timing of solid food introduction in relation to eczema, asthma,
allergic rhinitis, and food and inhalant sensitization at the age of 6
years: results from the prospective birth cohort study LISA.Pediatrics. 2008;121(1):44-52.
151. Zutavern A, Brockow I, Schaaf
B. Timing of solid food introduction in relation to atopic dermatitis
and atopic sensitization: results from a prospective birth cohort study.Pediatrics. 2006;117(2):401-411.
152. Fergusson D, Horwood L, Shannon
F. Risk factors in childhood eczema. . J Epidemiol Community
Health. 1982;36(2):118-122.
153. Nwaru B, Takkinen H, M, Kaila
Food diversity in infancy and the risk of childhood asthma and
allergies. J Allergy Clin Immunol. 2014;133(4):1084-1091.
154. Roduit C, Frei R, G, Loss
Development of atopic dermatitis according to age of onset and
association with early-life exposures. J Allergy Clin Immunol.2012;130(1):130-136.
155. Turati F, Bertuccio P, Galeone
C. Early weaning is beneficial to prevent atopic dermatitis occurrence
in young children. Allergy. 2016;71(6):878-888.
156. Sharief S, Jariwala S, Kumar J,
Muntner P, Melamed M. Vitamin D levels and food and environmental
allergies in the United States: results from the National Health and
Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol.2011;127(5):1195- 1202.
157. Allen KJ, Koplin J, Ponsonby A.
Vitamin D insufficiency is associated with challenge-proven food allergy
in infants. J Allergy Clin Immunol. 2013;131(4):1109- 1116.
158. Hennessy Á, Hourihane JOB,
Malvisi L, et al. Antenatal vitamin D exposure and childhood eczema,
food allergy, asthma and allergic rhinitis at 2 and 5 years of age in
the atopic disease‐specific Cork BASELINE Birth Cohort Study.Allergy. 2018;73(11):2182-2191.
159. Thorisdottir B, Gunnarsdottir
I, Vidarsdottir A, Sigurdardottir S, Birgisdottir B, Thorsdottir I.
Infant Feeding, Vitamin D and IgE Sensitization to Food Allergens at 6
Years in a Longitudinal Icelandic Cohort. Nutrients. 2019;11(7).
160. Hollams E, Teo S, Kusel M.
Vitamin D over the first decade and susceptibility to childhood allergy
and asthma. J Allergy Clin Immunol. 2017;139(2):472-481.
161. Litonjua AA, Carey VJ, Laranjo
N. Effect of Prenatal Supplementation With Vitamin D on Asthma or
Recurrent Wheezing in Offspring by Age 3 Years: The VDAART Randomized
Clinical Trial. JAMA Dermatol. 2016;315(4):362-370.
162. Rosendahl J, Pelkonen A, Helve
O. High-Dose Vitamin D Supplementation Does Not Prevent Allergic
Sensitization of Infants. J Pediatr. 2019:139-145.
163. Yepes-Nunez J, Brozek J,
Fiocchi A. Vitamin D supplementation in primary allergy prevention:
Systematic review of randomized and non-randomized studies.Allergy. 2018;73(1):37-49.
164. Hawrylowicz C, Santos A.
Vitamin D: can the sun stop the atopic epidemic? Curr Opin Allergy
Clin Immunol. 2020;20(2):181-187.
165. Greer F, Sicherer SH, Burks A.
Committee On N, Section On A, Immunology. The Effects of Early
Nutritional Interventions on the Development of Atopic Disease in
Infants and Children: The Role of Maternal Dietary Restriction,
Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of
Allergenic Complementary Foods. Pediatrics. 2019;143(4).
166. Greer FR, Sicherer SH, Burks
AW, Committee On N, Section On A, Immunology. The Effects of Early
Nutritional Interventions on the Development of Atopic Disease in
Infants and Children: The Role of Maternal Dietary Restriction,
Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of
Allergenic Complementary Foods. Pediatrics. 2019;143(4).
167. American Academy of Pediatrics.
Committee on Nutrition. Hypoallergenic infant formulas.Pediatrics. 2000;106(2 Pt 1):346-349.
168. Greer FR, Sicherer SH, Burks
AW, American Academy of Pediatrics Committee on N, American Academy of
Pediatrics Section on A, Immunology. Effects of early nutritional
interventions on the development of atopic disease in infants and
children: the role of maternal dietary restriction, breastfeeding,
timing of introduction of complementary foods, and hydrolyzed formulas.Pediatrics. 2008;121(1):183-191.
169. Gupta RS, Bilaver LA, Johnson
JL, et al. Assessment of Pediatrician Awareness and Implementation of
the Addendum Guidelines for the Prevention of Peanut Allergy in the
United States. JAMA Netw Open. 2020;3(7):e2010511.
170. Joshi PA, Smith J, Vale S,
Campbell DE. The Australasian Society of Clinical Immunology and Allergy
infant feeding for allergy prevention guidelines. Med J Aust.2019;210(2):89-93.
171. Perkin MR, Logan K, Marrs T, et
al. Association of frequent moisturizer use in early infancy with the
development of food allergy. J Allergy Clin Immunol.2021;147(3):967-976 e961.
172. Kelleher MM, Cro S, Cornelius
V, et al. Skin care interventions in infants for preventing eczema and
food allergy. Cochrane Database of Systematic Reviews. 2021(2).
173. Group OCfE-BMLoEW. The Oxford
2011 Levels of Evidence. In:2011.
174. Cohen SG. Food allergens:
landmarks along a historic trail. J Allergy Clin Immunol.2008;121(6):1521-1524, 1524 e1521.
175. Kay AB. 100 years of ’Allergy’:
can von Pirquet’s word be rescued? Clin Exp Allergy.2006;36(5):555-559.
176. Schofield A. A case of egg
poisoning. The Lancet. 1908;171(4410):716.
177. Schloss OM. A case of allergy
to common foods. American Journal of Diseases of Children.1912;3(6):341-362.
178. Prausnitz C, Küstner H. Studien
über die Überempfindlichkeit. Zentralbl Bakteriol.1921;86:160-169.
179. Loveless MH. Allergy for corn
and its derivatives: experiments with a masked ingestion test for its
diagnosis. J Allergy. 1950;21(6):500-509.
180. Platts-Mills TAE. The
continuing effect of the discovery of IgE by Kimishige Ishizaka. J
Allergy Clin Immunol. 2018;142(3):788-789.
181. Immunoglobulin E, a new class
of human immunoglobulin. Bull World Health Organ.1968;38(1):151-152.
182. Bock SA, Lee WY, Remigio L,
Holst A, May CD. Appraisal of skin tests with food extracts for
diagnosis of food hypersensitivity. Clin Allergy.1978;8(6):559-564.
183. Bock SA, Sampson HA, Atkins FM,
et al. Double-blind, placebo-controlled food challenge (DBPCFC) as an
office procedure: a manual. J Allergy Clin Immunol.1988;82(6):986-997.
184. Lack G, Golding J. Peanut and
nut allergy. Reduced exposure might increase allergic sensitisation.BMJ. 1996;313(7052):300.
185. Sampson HA, Ho DG. Relationship
between food-specific IgE concentrations and the risk of positive food
challenges in children and adolescents. J Allergy Clin Immunol.1997;100(4):444-451.
186. Sampson HA. Utility of
food-specific IgE concentrations in predicting symptomatic food allergy.J Allergy Clin Immunol. 2001;107(5):891-896.
187. Sampson HA. Food allergy: Past,
present and future. Allergol Int. 2016;65(4):363-369.
188. Smith M. Another person’s
poison. Lancet. 2014;384(9959):2019-2020.
189. May CD. Food allergy: lessons
from the past. J Allergy Clin Immunol. 1982;69(3):255-259.
190. Saloga J, Renz H, Larsen GL,
Gelfand EW. Increased airways responsiveness in mice depends on local
challenge with antigen. Am J Respir Crit Care Med.1994;149(1):65-70.
191. Lack G, Fox D, Northstone K,
Golding J, Avon Longitudinal Study of P, Children Study T. Factors
associated with the development of peanut allergy in childhood. N
Engl J Med. 2003;348(11):977-985.
192. Horimukai K, Morita K, Narita
M, et al. Application of moisturizer to neonates prevents development of
atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):824-830
e826.
193. Du Toit G, Roberts G, Sayre PH,
et al. Randomized trial of peanut consumption in infants at risk for
peanut allergy. N Engl J Med. 2015;372(9):803-813.
194. Du Toit G, Sayre PH, Roberts G,
et al. Effect of Avoidance on Peanut Allergy after Early Peanut
Consumption. N Engl J Med. 2016;374(15):1435-1443.
195. Lowe AJ, Su JC, Allen KJ, et
al. A randomized trial of a barrier lipid replacement strategy for the
prevention of atopic dermatitis and allergic sensitization: the PEBBLES
pilot study. Br J Dermatol. 2018;178(1):e19-e21.
196. Leung DYM, Calatroni A,
Zaramela LS, et al. The nonlesional skin surface distinguishes atopic
dermatitis with food allergy as a unique endotype. Sci Transl
Med. 2019;11(480).
197. Miyaji Y, Yang L,
Yamamoto-Hanada K, Narita M, Saito H, Ohya Y. Earlier aggressive
treatment to shorten the duration of eczema in infants resulted in fewer
food allergies at 2 years of age. J Allergy Clin Immunol Pract.2020;8(5):1721-1724 e1726.
198. Chalmers JR, Haines RH,
Bradshaw LE, et al. Daily emollient during infancy for prevention of
eczema: the BEEP randomised controlled trial. Lancet.2020;395(10228):962-972.
199. de Silva D, Halken S, Singh C,
et al. Preventing food allergy in infancy and childhood: Systematic
review of randomised controlled trials. Pediatr Allergy Immunol.2020;31(7):813-826.
200. Skjerven HO, Rehbinder EM,
Vettukattil R, et al. Skin emollient and early complementary feeding to
prevent infant atopic dermatitis (PreventADALL): a factorial,
multicentre, cluster-randomised trial. Lancet.2020;395(10228):951-961.