References
1. Loh W, Tang M. The Epidemiology of Food Allergy in the Global Context. Int J Environ Res Public Health. 2018;15.
2. Lowe A, Leung D, Tang M, Su J, Allen K. The skin as a target for prevention of the atopic march.Ann Allergy Asthma Immunol. 2018;120(2):145-151.
3. Dharmage S, Lowe A, Matheson M, Burgess J, Allen K, Abramson M. Atopic dermatitis and the atopic march revisited. Allergy. 2014;69(1):17-27.
4. Davidson WF, Leung DY, Beck LA, et al. Report from the National Institute of Allergy and Infectious Diseases workshop on “Atopic dermatitis and the atopic march: Mechanisms and interventions”. J Allergy Clin Immunol.2019;143(3):894-913.
5. Perkin M, Logan K, Tseng A, Raji B, Ayis S, Peacock J. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants. N Engl J Med. 2016;374(18):1733-1743.
6. Gupta R, Warren C, Smith B. The Public Health Impact of Parent- Reported Childhood Food Allergies in the United States. Pediatrics. 2018;142(6).
7. Osborne NJ, Koplin JJ, Martin PE, et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J Allergy Clin Immunol. 2011;127(3):668- 676.
8. Peters R, Koplin J, Gurrin L. The prevalence of food allergy and other allergic diseases in early childhood in a population-based study: HealthNuts age 4- year follow-up.J Allergy Clin Immunol. 2017;140(1):145- 153.
9. Tang M, Mullins R. Food allergy: is prevalence increasing? Intern Med J. 2017;47(3):256-261.
10. Warren C, Jiang J, Gupta R. Epidemiology and Burden of Food Allergy. Curr Allergy Asthma Rep.2020;20(2).
11. Lyons SA, Clausen M, Knulst AC, et al. Prevalence of Food Sensitization and Food Allergy in Children Across Europe. J Allergy Clin Immunol Pract. 2020;8(8):2736-2746 e2739.
12. Venter C, Pereira B, Voigt K, et al. Prevalence and cumulative incidence of food hypersensitivity in the first 3 years of life. Allergy. 2008;63(3):354-359.
13. Prescott S, Pawankar R, Allen K. A global survey of changing patterns of food allergy burden in children.World Allergy Organ J. 2013;6(1).
14. Du Toit G, Katz Y, Sasieni P. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J Allergy Clin Immunol.2008;122(5):984-991.
15. Togias A, Cooper SF, Acebal ML, et al. Addendum guidelines for the prevention of peanut allergy in the United States: Report of the National Institute of Allergy and Infectious Diseases-sponsored expert panel. J Allergy Clin Immunol. 2017;139(1):29-44.
16. Fleischer DM, Chan ES, Venter C, et al. A Consensus Approach to the Primary Prevention of Food Allergy Through Nutrition: Guidance from the American Academy of Allergy, Asthma, and Immunology; American College of Allergy, Asthma, and Immunology; and the Canadian Society for Allergy and Clinical Immunology. J Allergy Clin Immunol Pract. 2021;9(1):22-43 e24.
17. Halken S, Muraro A, de Silva D, et al. EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update). Pediatr Allergy Immunol. 2021.
18. Warren C, Otto A, Walkner M, Gupta R. Quality of Life Among Food Allergic Patients and Their Caregivers. Curr Allergy Asthma Rep. 2016;16(5).
19. Macdougall JD, Burks AW, Kim EH. Current Insights into Immunotherapy Approaches for Food Allergy.ImmunoTargets Ther. 2021;10:1.
20. Brough H, Nadeau K, Sindher S. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy.2020;75(9):2185-2205.
21. Odhiambo J, Williams H, Clayton T, Robertson C, Asher M. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J Allergy Clin Immunol. 2009;124(6):1251-1258.
22. Strid J, Hourihane J, Kimber I, Callard R, Strobel S. Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization. Clin Exp Allergy. 2005;35(6):757-766.
23. Lack G, Fox D, Northstone K, Golding J. Factors Associated with the Development of Peanut Allergy in Childhood. N Engl J Med. 2003;348(11):977-985.
24. Fox A, Sasieni P, du Toit G, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. J Allergy Clin Immunol.2009;123(2):417-423.
25. Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: Shifting paradigms in treatment approaches. J Allergy Clin Immunol.2014;134(4):769-779.
26. Leung DY, Berdyshev E, Goleva E. Cutaneous barrier dysfunction in allergic diseases. J Allergy Clin Immunol. 2020;145(6):1485-1497.
27. Brough HA, Simpson A, Makinson K, et al. Peanut allergy: effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J Allergy Clin Immunol. 2014;134(4):867-875 e861.
28. Brough H, Liu A, Sicherer S. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol. 2015;135(1):164-170.
29. Brough H, Kull I, Richards K, Hallner E, Soderhall C, Douiri A. Environmental peanut exposure increases the risk of peanut sensitization in high-risk children.Clin Exp Allergy. 2018;48(5):586-593.
30. Guttman‐Yassky E, Krueger J, Lebwohl M. Systemic immune mechanisms in atopic dermatitis and psoriasis with implications for treatment. Exp Dermatol.2018;27(4):409-417.
31. Ewald D, Malajian D, Krueger J. Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways. BMC Med Genomics. 2015;8(1).
32. Suárez-Fariñas M, Ungar B, Correa da Rosa J, Ewald D, Rozenblit M, Gonzalez J. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015;135(5):1218-1227.
33. Renert-Yuval Y, Thyssen JP, Bissonnette R, et al. Biomarkers in atopic dermatitis-a review on behalf of the international eczema council. J Allergy Clin Immunol.2021.
34. Brunner P, Guttman-Yassky E, Leung D. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol.2017;139(4s):S65-s76.
35. Czarnowicki T, Krueger J, Guttman-Yassky E. Skin Barrier and Immune Dysregulation in Atopic Dermatitis: An Evolving Story with Important Clinical Implications.J Allergy Clin Immunol. 2014;2(4):371-379.
36. Guttman-Yassky E, Suárez-Fariñas M, Chiricozzi A. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol. 2009;6(124):1235-1244.
37. Berdyshev E, Goleva E, Bronova I, et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI insight. 2018;3(4).
38. Danso M, Van Drongelen V, Mulder A. TNF-α and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J Investigative Derma. 2014;7(134):1941-1950.
39. Wang F, Kim B. A Paradigm of Neuroimmune Crosstalk. Immunity. 2020;52(5):753-766.
40. Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber C. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol.2013;2(132):446-454.
41. Saleem M, Oussedik E, D’Amber V, Feldman S. Interleukin-31 pathway and its role in atopic dermatitis: a systematic review. J Dermatolog Treat. 2017;28(7):591-599.
42. Oetjen LK, Mack MR, Feng J, et al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic. Cell. 2017;1(171):217-228.
43. Raap U, Weibmantel S, Gehring M, Eisenberg A, Kapp A. Fölster‐Holst R. IL‐31 significantly correlates with disease activity and Th2 cytokine levels in children with atopic dermatitis. Pediatr Allergy Immunol. 2012;3(23):285-288.
44. Neis M, Peters B, Dreuw A. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J Allergy Clin Immunol.2006;4(118):930-937.
45. Nograles K, Zaba L, Guttman‐Yassky E. Th17 cytokines interleukin (IL)‐17 and IL‐22 modulate distinct inflammatory and keratinocyte‐response pathways. Br J Dermatol. 2008;159(5):1092-1102.
46. Sa S, Valdez P, Wu J. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol. 2007;178(4):2229-2240.
47. Suárez-Fariñas M, Dhingra N, Gittler J, Shemer A, Cardinale I, de Guzman Strong C. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol.2013;132(2):361-370.
48. Nomura T, Wu J, Kabashima K, Guttman-Yassky E. Endophenotypic Variations of Atopic Dermatitis by Age, Race, and Ethnicity. J Allergy Clin Immunol. 2020;8(6):1840-1852.
49. Noda S, Suárez-Fariñas M, Ungar B. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol. 2015;136(5):1254-1264.
50. Chan T, Sanyal R, Pavel A. Atopic dermatitis in Chinese patients shows T(H)2/T(H)17 skewing with psoriasiform features. J Allergy Clin Immunol.2018;142(3):1013-1017.
51. Wen H, Czarnowicki T, Noda S. Serum from Asian patients with atopic dermatitis is characterized by T(H)2/T(H)22 activation, which is highly correlated with nonlesional skin measures. J Allergy Clin Immunol. 2018;142(1):324-328.
52. He H, Bissonnette R, Wu J. Tape strips detect distinct immune and barrier profiles in atopic dermatitis and psoriasis. J Allergy Clin Immunol. 2020.
53. Pavel A, Renert-Yuval Y, Wu J. Tape-strips from early-onset pediatric atopic dermatitis highlight disease abnormalities in non-lesional skin. Allergy. 2020.
54. Guttman-Yassky E, Diaz A, Pavel A. Use of Tape Strips to Detect Immune and Barrier Abnormalities in the Skin of Children With Early-Onset Atopic Dermatitis. JAMA Dermatol. 2019.
55. Esaki H, Brunner P, Renert-Yuval Y. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J Allergy Clin Immunol. 2016;138(6):1639-1651.
56. Brunner P, Israel A, Zhang N, Leonard A, Wen H-C, Huynh T. Early- onset pediatric atopic dermatitis is characterized by TH2/TH17/TH22-centered inflammation and lipid alterations. J Allergy Clin Immunol. 2018;141(6):2094-2106.
57. Brunner P, He H, AB, Pavel The blood proteomic signature of early-onset pediatric atopic dermatitis shows systemic inflammation and is distinct from adult long-standing disease. J Am Acad Dermatol. 2019;81(2):510-519.
58. Chinthrajah R, Hernandez J, Boyd S, Galli S, Nadeau K. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol. 2016;137(4):984-997.
59. Werfel T, Allam J, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138(2):336-349.
60. Humeniuk P, Dubiela P, Hoffmann-Sommergruber K. Dendritic cells and their role in allergy: uptake, proteolytic processing and presentation of allergens. Int J Mol Sci. 2017;18(7):1491.
61. Satitsuksanoa P, Daanje M, Akdis M, Boyd SD, van de Veen W. Biology and dynamics of B cells in the context of IgE-mediated food allergy. Allergy. 2020.
62. Palomares O, Akdis M, Martin-Fontecha M, Akdis C. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev.2017;278(1):219-236.
63. Leyva-Castillo J-M, Galand C, Kam C, et al. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity. 2019;50(5):1262-1275. e1264.
64. Chinthrajah S, Cao S, Liu C, et al. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. JCI Insight. 2019;4(22).
65. Leung DY, Calatroni A, Zaramela LS, et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci Transl Med.2019;11(480).
66. Brown SJ, Asai Y, Cordell HJ, et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol.2011;127(3):661-667.
67. Keet C, Pistiner M, Plesa M, et al. Age and eczema severity, but not family history, are major risk factors for peanut allergy in infancy. J Allergy Clin Immunol.2021;147(3):984-991. e985.
68. Martin P, Eckert J, Koplin J. Which infants with eczema are at risk of food allergy? Results from a population-based cohort. Clin Exp Allergy. 2015:255-264.
69. Park HY, Kim CR, Huh IS, et al. Staphylococcus aureus Colonization in Acute and Chronic Skin Lesions of Patients with Atopic Dermatitis. Ann Dermatol.2013;25(4):410-416.
70. Blicharz L, Rudnicka L, Samochocki Z. Staphylococcus aureus: an underestimated factor in the pathogenesis of atopic dermatitis? Postepy Dermatol Alergol.2019;36(1):11-17.
71. Nguyen HLT, Trujillo-Paez JV, Umehara Y, et al. Role of Antimicrobial Peptides in Skin Barrier Repair in Individuals with Atopic Dermatitis. Int J Mol Sci.2020;21(20).
72. Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics.2009;123(5):e808-814.
73. Simpson EL, Villarreal M, Jepson B, et al. Patients with Atopic Dermatitis Colonized with Staphylococcus aureus Have a Distinct Phenotype and Endotype. J Invest Dermatol.2018;138(10):2224-2233.
74. Broberg A, Faergemann J. Topical antimycotic treatment of atopic dermatitis in the head/neck area. A double-blind randomised study. Acta Derm Venereol.1995;75(1):46-49.
75. Bäck O, Bartosik J. Systemic ketoconazole for yeast allergic patients with atopic dermatitis. J Eur Acad Dermatol Venereol. 2001;15(1):34-38.
76. Lintu P, Savolainen J, Kortekangas-Savolainen O, Kalimo K. Systemic ketoconazole is an effective treatment of atopic dermatitis with IgE-mediated hypersensitivity to yeasts and Asthma Proceedings. Allergy.2001;56:512-517.
77. Kanda N, Enomoto U, Watanabe S. Anti-mycotics suppress interleukin-4 and interleukin-5 production in anti-CD3 plus anti-CD28-stimulated T cells from patients with atopic dermatitis. J Invest Dermatol 2001;117:1635-1646.
78. Kaffenberger BH, Mathis J, Zirwas MJ. A retrospective descriptive study of oral azole antifungal agents in patients with patch test-negative head and neck predominant atopic dermatitis. J Am Acad Dermatol. 2014;71:480-483.
79. Halkjaer LB, Loland L, Buchvald FF, et al. Development of atopic dermatitis during the first 3 years of life: the Copenhagen prospective study on asthma in childhood cohort study in high-risk children. Arch Dermatol. 2006;142(5):561-566.
80. Jagielski T, Rup E, Ziolkowska A, Roeske K, Macura AB, Bielecki J. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatol. 2014;14:3.
81. Kato H, Sugita T, Ishibashi Y, Nishikawa A. Detection and quantification of specific IgE antibodies against eight Malassezia species in sera of patients with atopic dermatitis by using an enzyme-linked immunosorbent assay.Microbiol Immunol. 2006;50(11):851-856.
82. Watanabe S, Kano R, Sato H, Nakamura Y, Hasegawa A. The effects of Malassezia yeasts on cytokine production by human keratinocytes. J Invest Dermatol.2001;116(5):769-773.
83. Devos SA, van der Valk PG. The relevance of skin prick tests for Pityrosporum ovale in patients with head and neck dermatitis. Allergy. 2000;55(11):1056-1058.
84. Brasch J, Morig A, Neumann B, Proksch E. Expression of antimicrobial peptides and toll-like receptors is increased in tinea and pityriasis versicolor. Mycoses.2014;57(3):147-152.
85. Baroni A, Orlando M, Donnarumma G, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res. 2006;297(7):280-288.
86. Ishibashi Y, Sugita T, Nishikawa A. Cytokine secretion profile of human keratinocytes exposed to Malassezia yeasts. FEMS Immunol Med Microbiol.2006;48(3):400-409.
87. Kroger S, Neuber K, Gruseck E, Ring J, Abeck D. Pityrosporum ovale extracts increase interleukin-4, interleukin-10 and IgE synthesis in patients with atopic eczema.Acta Derm Venereol. 1995;75(5):357-360.
88. Goleva E, Calatroni A, LeBeau P, et al. Skin tape proteomics identifies pathways associated with transepidermal water loss and allergen polysensitization in atopic dermatitis. J Allergy Clin Immunol. 2020;146(6):1367-1378.
89. Imayama S, Ueda S, Isoda M. Histologic changes in the skin of hairless mice following peeling with salicylic acid. Arch Dermatol. 2000;136(11):1390-1395.
90. Wu J, Guttman-Yassky E. Efficacy of biologics in atopic dermatitis. Expert Opin Biol Ther.2020;20(5):525-538.
91. Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta. 2014;1841(3):280-294.
92. Van Smeden J, Bouwstra JA. Stratum Corneum Lipids: Their Role for the Skin Barrier Function in Healthy Subjects and Atopic Dermatitis Patients. Curr Probl Dermatol. 2016;49:8-26.
93. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441-446.
94. Sandilands A, Sutherland C, Irvine AD, McLean WI. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009 122(9):1285–1294.
95. Van Zuuren E, Fedorowicz Z, Arents B. Emollients and moisturizers for eczema: abridged Cochrane systematic review including GRADE assessments. Br J Dermatol.2017;177(5):1256-1271.
96. van Zuuren EJ, Fedorowicz Z, Christensen R, Lavrijsen A, Arents BWM. Emollients and moisturisers for eczema. Cochrane Database Syst Rev. 2017;2(2):Cd012119.
97. Sindher S, Alkotob SS, Shojinaga MN, et al. Increases in plasma IgG4/IgE with trilipid vs paraffin/petrolatum-based emollients for dry skin/eczema. Pediatr Allergy Immunol. 2020;31(6):699-703.
98. Miller DW, Koch SB, Yentzer BA, et al. An over-the-counter moisturizer is as clinically effective as, and more cost-effective than, prescription barrier creams in the treatment of children with mild-to-moderate atopic dermatitis: a randomized, controlled trial. J Drugs Dermatol.2011;10(5):531-537.
99. Czarnowicki T, Dohlman AB, Malik K, et al. Effect of short-term liver X receptor activation on epidermal barrier features in mild to moderate atopic dermatitis: A randomized controlled trial. Ann Allergy Asthma Immunol. 2018;120(6):631-640 e611.
100. Renert-Yuval Y, Guttman-Yassky E. New treatments for atopic dermatitis targeting beyond IL-4/IL-13 cytokines. Ann Allergy Asthma Immunol. 2020;124(1):28-35.
101. Li R, Hadi S, Guttman-Yassky E. Current and emerging biologic and small molecule therapies for atopic dermatitis. Expert Opin Biol Ther. 2019;19(4):367-380.
102. Diaz A, Guttman-Yassky E. Topical agents for the treatment of atopic dermatitis. Expert Rev Clin Immunol. 2019;15(4):369-382.
103. He H, Guttman-Yassky E. JAK Inhibitors for Atopic Dermatitis: An Update. Am J Clin Dermatol.2019;20(2):181-192.
104. Simpson E, Imafuku S, Poulin Y. A Phase 2 Randomized Trial of Apremilast in Patients with Atopic Dermatitis. J Investigative Derma. 2019;139(5):1063-1072.
105. Wollenberg A, Howell MD, Guttman-Yassky E, et al. Treatment of atopic dermatitis with tralokinumab, an anti–IL-13 mAb. J Allergy Clin Immunol.2019;143(1):135-141.
106. Olesen C, Pavel A, Wu J. Tape-strips provide a minimally-invasive approach to track therapeutic response to topical corticosteroids in atopic dermatitis patients.J Allergy Clin Immunol. 2020.
107. Bissonnette R, Pavel A, Diaz A. Crisaborole and atopic dermatitis skin biomarkers: An intrapatient randomized trial. J Allergy Clin Immunol. 2019;144(5):1274-1289.
108. Pavel A, Song T, Kim H-J, Del Duca E, Krueger J, Dubin C. Oral Janus kinase/SYK inhibition (ASN002) suppresses inflammation and improves epidermal barrier markers in patients with atopic dermatitis. J Allergy Clin Immunol.2019;144(4):1011-1024.
109. Guttman-Yassky E, Pavel A, Zhou L. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;144(2):482-493.
110. Hamilton J, Suárez-Fariñas M, Dhingra N. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol. 2014;134(6):1293-1300.
111. Bissonnette R, Maari C, Forman S, et al. The oral Janus kinase/spleen tyrosine kinase inhibitor ASN002 demonstrates efficacy and improves associated systemic inflammation in patients with moderate-to-severe atopic dermatitis: results from a randomized double-blind placebo-controlled study. Br J Dermatol.2019;181(4):733-742.
112. Callewaert C, Nakatsuji T, Knight R. IL-4Rα Blockade by Dupilumab Decreases Staphylococcus aureus Colonization and Increases Microbial Diversity in Atopic Dermatitis.J Invest Dermatol. 2020;140(1):191-202.
113. Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol. 2012;5(3):232-239.
114. Hadis U, Wahl B, Schulz O, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity.2011;34(2):237-246.
115. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle R. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med. 2007:1765-1774.
116. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med.2007;204(8):1757-1764.
117. Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med.2007;204(8):1775-1785.
118. Kim KS, Hong SW, Han D, et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science. 2016;351(6275):858-863.
119. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337-341.
120. Iweala OI, Nagler CR. The Microbiome and Food Allergy. Annu Rev Immunol. 2019;37:377-403.
121. Feehley T, Plunkett CH, Bao R, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019;25(3):448-453.
122. Bao R, Hesser LA, He Z, Zhou X, Nadeau KC, Nagler CR. Fecal microbiome and metabolome differ in healthy and food-allergic twins. J Clin Invest. 2021;131(2).
123. Stefka AT, Feehley T, Tripathi P, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A.2014;111(36):13145-13150.
124. Wesemann DR, Nagler CR. The Microbiome, Timing, and Barrier Function in the Context of Allergic Disease. Immunity. 2016;44(4):728-738.
125. Tan JK, McKenzie C, Marino E, Macia L, Mackay CR. Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation. Annu Rev Immunol. 2017;35:371-402.
126. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446-450.
127. Tan J, McKenzie C, Vuillermin PJ, et al. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways.Cell Rep. 2016;15(12):2809-2824.
128. Donohoe DR, Garge N, Zhang N, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517-526.
129. Byndloss MX, Olsan EE, Rivera-Chavez F, et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science.2017;357(6351):570-575.
130. Macia L, Mackay CR. Dysfunctional microbiota with reduced capacity to produce butyrate as a basis for allergic diseases. J Allergy Clin Immunol.2019;144(6):1513-1515.
131. Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22.Immunity. 2013;39(2):372-385.
132. Hang S, Paik D, Yao L, et al. Bile acid metabolites control TH17 and Treg cell differentiation.Nature. 2019;576(7785):143-148.
133. Garcia-Larsen V, Lerodiakonou D, Jarrold K. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med. 2018;15(2).
134. Du Toit G, Roberts G, Sayre PH, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372(9):803-813.
135. du Toit G, Sayre PH, Roberts G, et al. Allergen specificity of early peanut consumption and effect on development of allergic disease in the Learning Early About Peanut Allergy study cohort. J Allergy Clin Immunol.2018;141(4):1343-1353.
136. Perkin MR, Logan K, Tseng A, et al. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants. N Engl J Med. 2016;374(18):1733-1743.
137. de Silva D, Halken S, Singh C, et al. Preventing food allergy in infancy and childhood: systematic review of randomised controlled trials. Pediatr Allergy Immunol.2020;31(7):813-826.
138. Obbagy JE, English LK, Wong YP, et al. Complementary feeding and food allergy, atopic dermatitis/eczema, asthma, and allergic rhinitis: a systematic review. Am J Clin Nutr. 2019;109(Suppl_7):890s-934s.
139. Burgess JA, Dharmage SC, Allen K, et al. Age at introduction to complementary solid food and food allergy and sensitization: A systematic review and meta-analysis.Clin Exp Allergy. 2019;49(6):754-769.
140. Urashima M, Mezawa H, Okuyama M, et al. Primary Prevention of Cow’s Milk Sensitization and Food Allergy by Avoiding Supplementation With Cow’s Milk Formula at Birth: A Randomized Clinical Trial. JAMA Pediatr. 2019;173(12):1137-1145.
141. Fisher HR, Du Toit G, Bahnson HT, Lack G. The challenges of preventing food allergy: Lessons learned from LEAP and EAT. Ann Allergy Asthma Immunol.2018;121(3):313-319.
142. Perkin MR, Logan K, Marrs T, et al. Enquiring About Tolerance (EAT) study: Feasibility of an early allergenic food introduction regimen. J Allergy Clin Immunol.2016;137(5):1477-1486.e1478.
143. Koplin JJ, Peters RL, Dharmage SC, et al. Understanding the feasibility and implications of implementing early peanut introduction for prevention of peanut allergy.J Allergy Clin Immunol. 2016;138(4):1131-1141.e1132.
144. Venter C, Agostoni C, Arshad SH, et al. Dietary factors during pregnancy and atopic outcomes in childhood: a systematic review from the European Academy of Allergy and Clinical Immunology. Pediatr Allergy Immunol. 2020;31(8):889-912.
145. Netting M, Middleton P, Makrides M. Does maternal diet during pregnancy and lactation affect outcomes in offspring? A systematic review of food-based approaches.Nutrition. 2014;30:1225-1241.
146. Grimshaw K, Maskell J, Oliver E. Diet and food allergy development during infancy: birth cohort study findings using prospective food diary data. J Allergy Clin Immunol. 2014;133(2):511-519.
147. Venter C, Greenhawt M, Meyer R, et al. EAACI position paper on diet diversity in pregnancy, infancy and childhood: Novel concepts and implications for studies in allergy and asthma. Allergy. 2020;3(75):497-523.
148. Roduit C, Frei R, Depner M. Increased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol.2014;133(4):1056-1064.
149. Sausenthaler S, Heinrich J, Koletzko S. Early diet and the risk of allergy: what can we learn from the prospective birth cohort studies GINIplus and LISAplus? Am J Clin Nutr. 2011;94(6 ):2012-2017.
150. Zutavern A, Brockow, Schaaf B. Timing of solid food introduction in relation to eczema, asthma, allergic rhinitis, and food and inhalant sensitization at the age of 6 years: results from the prospective birth cohort study LISA.Pediatrics. 2008;121(1):44-52.
151. Zutavern A, Brockow I, Schaaf B. Timing of solid food introduction in relation to atopic dermatitis and atopic sensitization: results from a prospective birth cohort study.Pediatrics. 2006;117(2):401-411.
152. Fergusson D, Horwood L, Shannon F. Risk factors in childhood eczema. . J Epidemiol Community Health. 1982;36(2):118-122.
153. Nwaru B, Takkinen H, M, Kaila Food diversity in infancy and the risk of childhood asthma and allergies. J Allergy Clin Immunol. 2014;133(4):1084-1091.
154. Roduit C, Frei R, G, Loss Development of atopic dermatitis according to age of onset and association with early-life exposures. J Allergy Clin Immunol.2012;130(1):130-136.
155. Turati F, Bertuccio P, Galeone C. Early weaning is beneficial to prevent atopic dermatitis occurrence in young children. Allergy. 2016;71(6):878-888.
156. Sharief S, Jariwala S, Kumar J, Muntner P, Melamed M. Vitamin D levels and food and environmental allergies in the United States: results from the National Health and Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol.2011;127(5):1195- 1202.
157. Allen KJ, Koplin J, Ponsonby A. Vitamin D insufficiency is associated with challenge-proven food allergy in infants. J Allergy Clin Immunol. 2013;131(4):1109- 1116.
158. Hennessy Á, Hourihane JOB, Malvisi L, et al. Antenatal vitamin D exposure and childhood eczema, food allergy, asthma and allergic rhinitis at 2 and 5 years of age in the atopic disease‐specific Cork BASELINE Birth Cohort Study.Allergy. 2018;73(11):2182-2191.
159. Thorisdottir B, Gunnarsdottir I, Vidarsdottir A, Sigurdardottir S, Birgisdottir B, Thorsdottir I. Infant Feeding, Vitamin D and IgE Sensitization to Food Allergens at 6 Years in a Longitudinal Icelandic Cohort. Nutrients. 2019;11(7).
160. Hollams E, Teo S, Kusel M. Vitamin D over the first decade and susceptibility to childhood allergy and asthma. J Allergy Clin Immunol. 2017;139(2):472-481.
161. Litonjua AA, Carey VJ, Laranjo N. Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in Offspring by Age 3 Years: The VDAART Randomized Clinical Trial. JAMA Dermatol. 2016;315(4):362-370.
162. Rosendahl J, Pelkonen A, Helve O. High-Dose Vitamin D Supplementation Does Not Prevent Allergic Sensitization of Infants. J Pediatr. 2019:139-145.
163. Yepes-Nunez J, Brozek J, Fiocchi A. Vitamin D supplementation in primary allergy prevention: Systematic review of randomized and non-randomized studies.Allergy. 2018;73(1):37-49.
164. Hawrylowicz C, Santos A. Vitamin D: can the sun stop the atopic epidemic? Curr Opin Allergy Clin Immunol. 2020;20(2):181-187.
165. Greer F, Sicherer SH, Burks A. Committee On N, Section On A, Immunology. The Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of Allergenic Complementary Foods. Pediatrics. 2019;143(4).
166. Greer FR, Sicherer SH, Burks AW, Committee On N, Section On A, Immunology. The Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of Allergenic Complementary Foods. Pediatrics. 2019;143(4).
167. American Academy of Pediatrics. Committee on Nutrition. Hypoallergenic infant formulas.Pediatrics. 2000;106(2 Pt 1):346-349.
168. Greer FR, Sicherer SH, Burks AW, American Academy of Pediatrics Committee on N, American Academy of Pediatrics Section on A, Immunology. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas.Pediatrics. 2008;121(1):183-191.
169. Gupta RS, Bilaver LA, Johnson JL, et al. Assessment of Pediatrician Awareness and Implementation of the Addendum Guidelines for the Prevention of Peanut Allergy in the United States. JAMA Netw Open. 2020;3(7):e2010511.
170. Joshi PA, Smith J, Vale S, Campbell DE. The Australasian Society of Clinical Immunology and Allergy infant feeding for allergy prevention guidelines. Med J Aust.2019;210(2):89-93.
171. Perkin MR, Logan K, Marrs T, et al. Association of frequent moisturizer use in early infancy with the development of food allergy. J Allergy Clin Immunol.2021;147(3):967-976 e961.
172. Kelleher MM, Cro S, Cornelius V, et al. Skin care interventions in infants for preventing eczema and food allergy. Cochrane Database of Systematic Reviews. 2021(2).
173. Group OCfE-BMLoEW. The Oxford 2011 Levels of Evidence. In:2011.
174. Cohen SG. Food allergens: landmarks along a historic trail. J Allergy Clin Immunol.2008;121(6):1521-1524, 1524 e1521.
175. Kay AB. 100 years of ’Allergy’: can von Pirquet’s word be rescued? Clin Exp Allergy.2006;36(5):555-559.
176. Schofield A. A case of egg poisoning. The Lancet. 1908;171(4410):716.
177. Schloss OM. A case of allergy to common foods. American Journal of Diseases of Children.1912;3(6):341-362.
178. Prausnitz C, Küstner H. Studien über die Überempfindlichkeit. Zentralbl Bakteriol.1921;86:160-169.
179. Loveless MH. Allergy for corn and its derivatives: experiments with a masked ingestion test for its diagnosis. J Allergy. 1950;21(6):500-509.
180. Platts-Mills TAE. The continuing effect of the discovery of IgE by Kimishige Ishizaka. J Allergy Clin Immunol. 2018;142(3):788-789.
181. Immunoglobulin E, a new class of human immunoglobulin. Bull World Health Organ.1968;38(1):151-152.
182. Bock SA, Lee WY, Remigio L, Holst A, May CD. Appraisal of skin tests with food extracts for diagnosis of food hypersensitivity. Clin Allergy.1978;8(6):559-564.
183. Bock SA, Sampson HA, Atkins FM, et al. Double-blind, placebo-controlled food challenge (DBPCFC) as an office procedure: a manual. J Allergy Clin Immunol.1988;82(6):986-997.
184. Lack G, Golding J. Peanut and nut allergy. Reduced exposure might increase allergic sensitisation.BMJ. 1996;313(7052):300.
185. Sampson HA, Ho DG. Relationship between food-specific IgE concentrations and the risk of positive food challenges in children and adolescents. J Allergy Clin Immunol.1997;100(4):444-451.
186. Sampson HA. Utility of food-specific IgE concentrations in predicting symptomatic food allergy.J Allergy Clin Immunol. 2001;107(5):891-896.
187. Sampson HA. Food allergy: Past, present and future. Allergol Int. 2016;65(4):363-369.
188. Smith M. Another person’s poison. Lancet. 2014;384(9959):2019-2020.
189. May CD. Food allergy: lessons from the past. J Allergy Clin Immunol. 1982;69(3):255-259.
190. Saloga J, Renz H, Larsen GL, Gelfand EW. Increased airways responsiveness in mice depends on local challenge with antigen. Am J Respir Crit Care Med.1994;149(1):65-70.
191. Lack G, Fox D, Northstone K, Golding J, Avon Longitudinal Study of P, Children Study T. Factors associated with the development of peanut allergy in childhood. N Engl J Med. 2003;348(11):977-985.
192. Horimukai K, Morita K, Narita M, et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):824-830 e826.
193. Du Toit G, Roberts G, Sayre PH, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372(9):803-813.
194. Du Toit G, Sayre PH, Roberts G, et al. Effect of Avoidance on Peanut Allergy after Early Peanut Consumption. N Engl J Med. 2016;374(15):1435-1443.
195. Lowe AJ, Su JC, Allen KJ, et al. A randomized trial of a barrier lipid replacement strategy for the prevention of atopic dermatitis and allergic sensitization: the PEBBLES pilot study. Br J Dermatol. 2018;178(1):e19-e21.
196. Leung DYM, Calatroni A, Zaramela LS, et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci Transl Med. 2019;11(480).
197. Miyaji Y, Yang L, Yamamoto-Hanada K, Narita M, Saito H, Ohya Y. Earlier aggressive treatment to shorten the duration of eczema in infants resulted in fewer food allergies at 2 years of age. J Allergy Clin Immunol Pract.2020;8(5):1721-1724 e1726.
198. Chalmers JR, Haines RH, Bradshaw LE, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet.2020;395(10228):962-972.
199. de Silva D, Halken S, Singh C, et al. Preventing food allergy in infancy and childhood: Systematic review of randomised controlled trials. Pediatr Allergy Immunol.2020;31(7):813-826.
200. Skjerven HO, Rehbinder EM, Vettukattil R, et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet.2020;395(10228):951-961.