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1. Introduction

We study the existence of weak solutions for the following class of elliptic problem

−∆u− λg1u+ h(u)g2 = f in V \ V0

u = 0 on V0,
(1.1)

where V denotes the Sierpiński gasket in R
N−1(N ≥ 2), V0 is its boundary (consisting of its N

corners). ∆ denotes the Laplacian operator on V , λ ∈ R and f, g1, g2 : V → R, h : R → R are

functions satisfying the following hypotheses:

(H1) Let h : R → R be a bounded (i.e., |h(t)| ≤ A, t ∈ R, A > 0) and continuous function;

(H2) Assume g1 ∈ L∞(V ), g2 ∈ L2(V ) and f ∈ L2(V ).

Recently, there has been a considerable interest in the study of nonlinear partial differential

equations on fractal domains and in particular on the Sierpiński gasket. Many physical problems

on fractal regions such as reaction-diffusion problems, elastic properties of fractal media and flow

through fractal regions are modeled by nonlinear equations. Now, a natural question is whether

the classical existence results (we refer to [1, 24, 28]) in the standard framework of the Laplacian

also hold in the corresponding fractal framework. To answer this we have to overcome several

difficulties that arise due to the geometrical structure of fractal domains. The one main difficulty

is that how to define differential operators, like the Laplacian operator, on the fractal domains
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for there is no concept of a generalized derivative of functions defined on the fractal domains.

However, a Laplacian is defined on a few special fractals, we refer to [2, 3, 20, 21] and a Hilbert

space structure is introduced in [15]. This enables us to investigate the existence of solutions for

equations of type (1.1) defined on fractal domains.

The study of nonlinear elliptic equations on the Sierpinski gasket was essentially initiated by

Falconer and Hu in the paper [15]. Since then many authors have contributed to the literature in

this direction. In [15], Falconer and Hu, considered the problem

∆u+ a(x)u = f(x, u) x ∈ V \ V0

u|V0
= 0,

(1.2)

where V denotes the Sierpinki gasket with boundary V0 and a ∈ L1(V ) satisfies suitable conditon.

The nonlinearity f(x, u) satisfies the condition

(f) there exists constants ν > 2 and r ≥ 0 such that for |t| ≥ r

tf(x, t) < νF (x, t) < 0 (1.3)

where F (x, t) =
∫ t

0
f(x, s) ds.

A typical example of the function f is f(x, t) = −t|t|p−1, p > 1. The authors formulated the

problem in a suitable function space over Sierpinski gasket and used the Mountain Pass Theorem

[1] to prove the existence of a solution. In [5], Molica Bisci et.al. considered a similar problem

∆u+ α(x)u = λf(x, u) x ∈ V \ V0

u|V0
= 0,

where λ is a positive real parameter and proved the existence of at least two solutions for small

values of λ. The authors used a recent result in variational principle due to Ricceri [25] to prove

the existence of solutions. In [8], Breckner et. al. studied the existence of infinitely many solutions

of the problem

∆u(x) + α(x)u(x) = g(x)f (u(x)) x ∈ V \ V0

u|V0
= 0.

The authors proved the existence of infinitely many solutions by extending a method introduced

by Faraci and Kristály [16] in the framework of Sobolev spaces to the case of function spaces on

fractal domains. For more results on existence and multiplicity of solutions on the Sierpinski gasket

we refer to the papers [4, 6-11, 13, 14] and [18, 19, 26, 27] as well as the references therein. The

main tool used in these papers to prove the existence of nontrivial solutions are basically Mountain

Pass theorems, saddle-point theorems or certain minimization procedures.

If the condition (f) does not hold then the functional associated to the problem (1.2) does not

satisfy the Mountain Pass structure and so we can not use the Mountain Pass theorem to prove the

existence of solutions. In this paper, we show an application of demicontinuous operators to the

nonlinear elliptic problems in the fractal setting. In particular, the main tool we used to establish

the existence of a solution is a result due to P. Hess [12] on linear demicontinuous operators. We

note that the class of functions satisfying (H1) is different than that of functions considered in

[15]. For example, the function f(x, u) = 1/(1+u2) is bounded but does not satisfy (f). The study

is inspired by a problem in bounded domain given in the book by Zeidler [30].

This paper is organized as follows; Section 2 deals with preliminaries and weak formulation of

the problem. Section 3 concerns with the main result namely the existence of a weak solution of
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(1.1). Finally, Section 4 deals with an extension to a class of continuous functions h that are not

necessarily bounded.

2. Preliminaries

We recall the definition of the Sierpiński gasket in RN−1 (N ≥ 2) and the Hilbert space H1
0 (V ) as

introduced in [15] (also we refer to [3,4,5–10]). Let p1, p2, ..., pN ∈ R
N−1 be such that |pi−pj | = 1

for i 6= j. Define, the map Fi : R
N−1 → R

N−1 by

Fi(x) =
1

2
x+

1

2
pi.

Let F := {F1, F2, ..., FN} and for any subset A of RN−1, define the map L : P(RN−1) → P(RN−1)

by

L(A) =
N
⋃

i=1

Fi(A).

Then, by [13, Theorem 9.1] there exists a unique non-empty compact subset V of RN−1, called

the attractor of the family F , such that L(V ) = V . The set V with boundary V0 = {p1, p2, ..., pN}

is called the Sierpiński gasket in R
N−1.

Let C(V ) denotes the space of real-valued continuous functions on V and C0(V ) = {u ∈ C(V ) :

u|V0
= 0} both equipped with the usual supremum norm ‖ · ‖∞. For m ∈ N let V∗ :=

⋃

m≥0 Vm,

where Vm = L(Vm−1). Now, for any function u : V∗ → R and x, y ∈ Vm define

Wm(u) :=

(

N + 2

N

)m
∑

|x−y|=2−m

(u(x) − u(y))2.

It turns out that, Wm(u) ≤ Wm+1(u) (we refer to [21]) and hence, the function W (u) defined as

W (u) = lim
m→∞

Wm(u).

is well defined. Let H1
0 (V ) be the space of functions given by

H1
0 (V ) := {u ∈ C0(V ) : W (u) < ∞}

with the norm

‖u‖H1

0
(V ) =

√

W (u).

Let H−1(V ) be the closure of L2(V ) with respect to the pre-norm

‖u‖−1 = sup
v∈H1

0
(V )

|〈u, v〉|,

where

〈u, v〉 =

∫

V

uvdµ

for u ∈ L2(V ), v ∈ H1
0 (V ) and µ denotes restriction of the normalized logN/ log 2−dimensional

Hausdorff measure on RN−1 such that µ(V ) = 1 (we refer to [8]). Note that with this structure

H−1(V ) is a Hilbert space. Here the space H−1(V ) denotes the dual of H1
0 (V ).

Let the space H1
0 (V ) be given with the inner product

W(u, v) = lim
m→∞

(

N + 2

N

)m
∑

x,y∈Vm,|x−y|=2−m

(u(x)− u(y))(v(x) − v(y)).

By the Cauchy–Schwarz inequality, W(u, v) as defined above exists and is finite. The space H1
0 (V )

with the inner product W(u, v) is a separable Hilbert space (we refer to [9]). Also we have

|W(u, v)| ≤ ‖u‖H1

0
(V )‖v‖H1

0
(V ), for all u, v ∈ H1

0 (V ) (2.4)
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Since H−1(V ) is a Hilbert space, for each u ∈ H1
0 (V ), the relation

−W(u, v) = 〈∆u, v〉 for all v ∈ H1
0 (V )

uniquely defines a function ∆u ∈ H−1(V ). The operator ∆ is denoted as the weak Laplacian of u

on V . Now, we can define the weak solution for the problem (1.1).

Definition 2.1. We say that a function u ∈ H1
0 (V ) is a weak solution of (1.1) if it satisfies

W(u, v)− λ

∫

V

g1(x)u(x)v(x) dµ +

∫

V

h(u(x))g2(x)v(x) dµ =

∫

V

f(x)v(x) dµ (2.5)

for all v ∈ H1
0 (V ).

For further details on Laplacian operator on Sierpiński gasket, we refer to the paper [20].

We note that, if the functions f, g1, g2 and h are continuous then, the weak solutions of the

equation (1.1) are also strong solutions which, is the following.

Lemma 2.2. Assume that u ∈ H1
0 (V ) is a weak solution to the problem (1.1). If the functions

f, g1, g2 ∈ C(V ) and h ∈ C(R) then, u is a strong solution to (1.1).

Proof. The proof is similar to [15, Lemma 2.16], hence omitted.

At each step, a generic constant is denoted by C or c to avoid too many suffixes. We recall

the embedding properties of H1
0 (V ) into the space C0(V ) and to the space L2(V, µ) (we refer to

[15]), for sake of completeness.

Lemma 2.3. The embedding j : H1
0 (V ) →֒ C0(V ) is compact and

|u(x)| ≤ (2N + 3)‖u‖H1

0
(V ) for any x ∈ V. (2.6)

Also we have that the embedding j : H1
0 (V ) →֒ L2(V ) is compact and

‖u‖2 ≤ C‖u‖H1

0
(V ), (2.7)

where ‖u‖2 =
(∫

V
|u(x)|2dµ

) 1

2 .

Let Y ∗ denotes the dual of the real Banach space Y . Let ‖.‖ and ‖.‖Y ∗ denote the norm on

Banach space Y and dual space Y ∗ respectively. For x ∈ Y and f ∈ Y ∗, let (f |x) denotes the

evaluation of linear functional f at x.

Definition 2.4. Let B, N : Y → Y ∗ be operators on the real separable reflexive Banach space

Y . Then,

(i) B +N is asymptotically linear if B is linear and

‖Nu‖

‖u‖
→ 0, as ‖u‖ → ∞.

(ii) B satisfies condition (S) if

un ⇀ u and lim
n→∞

(Bun − Bu|un − u) = 0, implies un → u. (2.8)

We say that B is a (S)-operator if B satisfies condition (S) .

The following is on a real G̊arding form G, (compare with [29, page 364]):
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Definition 2.5. Let X and Z be Hilbert spaces over R with the continuous embedding X ⊆ Z.

Then, G : X × X → R is called a G̊arding form iff G is bilinear and bounded, and there is a

constant c > 0 and a real constant C such that

G(u, u) ≥ c ‖u‖2X − C ‖u‖2Z , for all u ∈ X. (2.9)

The equation (2.9) is called G̊arding inequality. If C = 0 then, G is called a strict G̊arding form.

The G̊arding form G is called regular iff the embedding X ⊆ Z is compact.

In Section 3, we need the following result.

Proposition 2.6. Let B,N : Y → Y ∗ be operators on the real separable reflexive Banach space

Y . Assume:

(i) the operator B : Y → Y ∗ is linear and continuous;

(ii) the operator N : Y → Y ∗ is demicontinuous and bounded;

(iii) B +N is asymptotically linear;

(iv) for each T ∈ Y ∗ and for each t ∈ [0, 1], the operator At(u) = Bu + t(Nu − T ) satisfies

condition (S) in Y .

If Bu = 0 implies u = 0 then, for each T ∈ Y ∗, the equation Bu+Nu = T has a solution in Y .

For a detailed proof of the above theorem, we refer to [12] or to [30, Theorem 29.C].

We define the functionals B1, B2 : H1
0 (V )×H1

0 (V ) → R by

B1(u, ϕ) = W(u,ϕ) − λ

∫

V

u(x)g1(x)ϕ(x) dµ

B2(u, ϕ) =

∫

V

h(u(x))g2(x)ϕ(x) dµ.

Also define T : H1
0 (V ) → R by

T (ϕ) =

∫

V

f(x)ϕ(x) dµ.

A function u ∈ H1
0 (V ) is a solution of (1.1) if

B1(u,ϕ) + B2(u, ϕ) = T (ϕ), ∀ϕ ∈ H1
0 (V ).

By applying Cauchy-Schwarz inequality, we note that

|B1(u, ϕ)| ≤ |W(u,ϕ)|+ λ

∫

V

|g1(x)||u(x)||ϕ(x)| dµ

(2.10)

= ‖u‖H1

0
(V )‖ϕ‖H1

0
(V ) + |λ|‖g1‖∞‖u‖2‖ϕ‖2

≤ (1 + C|λ|‖g1‖∞)‖u‖H1

0
(V )‖ϕ‖H1

0
(V ), (2.11)

where C is a constant arising out of the inequality (2.7) in Lemma 2.3.

By hypotheses (H1),(H2) and Holder’s inequality, we have

|B2(u, ϕ)| ≤

∫

V

|h(u(x))||ϕ(x)||g2| dµ

≤ A

∫

V

|ϕ(x)||g2(x)| dµ

≤ A‖ϕ‖2‖g2‖2 ≤ AC‖ϕ‖H1

0
(V )‖g2‖2. (2.12)

Also, we have

|T (ϕ)| ≤

∫

V

|f(x)||ϕ(x)| dµ ≤
∥

∥f
∥

∥

2
‖ϕ‖2 ≤ C

∥

∥f
∥

∥

2
‖ϕ‖H1

0
(V ), (2.13)



6

where C is a constant arising out of the inequality (2.7). Now, B1(u, ·) and B2(u, ·) are linear and

bounded. We define the operators

B,N : H1
0 (V ) → H−1(V )

as
(Bu|ϕ) = B1(u, ϕ), (Nu|ϕ) = B2(u, ϕ), for u, ϕ ∈ H1

0 (V ).

Then, (1.1) is equivalent to operator equation Bu+Nu = T , u ∈ H1
0 (V ).

3. Main results

In this section, we study the existence of a weak solution for (1.1).

Theorem 3.1. Assume (H1) and (H2). Let λ >0 not be an eigenvalue of

−∆u− λu(x)g1(x) = 0 in V \ V0,

u = 0 on V0,
(3.14)

and in addition, let

1 > λ C
∥

∥g1
∥

∥

∞
, (3.15)

where, C is a constant arising out of the inequality (2.7). Then, the BVP (1.1) has a weak solution

u ∈ H1
0 (V ). Moreover, every (weak) solution u of (1.1) satisfies

‖u‖H1

0
(V ) ≤

C
{

A‖g2‖2 + ‖f‖2}

(1 − Cλ‖g1‖∞)
,

where A is a constant from hypotheses (H1).

Proof. First we write the BVP (1.1) as operator equation

u ∈ H1
0 (V ) : Bu+Nu = T in H−1(V ), (3.16)

where T ∈ H−1(V ), B,N : H1
0 (V ) → H−1(V ) satisfies all the conditions given in Proposition

2.6. For convenience, we divide the proof into five steps.

Step-1 : From the previous section we know that the operator B is linear and continuous. By

Lemma 2.3 the embedding of H1
0 (V ) →֒ L2(V ) is compact which shows that B1(·, ·) is a strict

regular G̊arding form [29, p.364]. In fact, we have

B1(u, u) =W(u, u)− λ

∫

V

u2(x)g1(x) dµ

≥ ‖u‖2
H1

0
(V )

− λ‖g1‖∞‖u‖22. (3.17)

Let uk ⇀ u weakly in H1
0 (V ) and

lim
k→∞

(Buk − Bu|uk − u) = 0, (3.18)

Claim: B satisfies condition (S). Since B is linear, as in (3.17) we have,

(Buk − Bu|uk − u) = (B(uk − u)|uk − u) = B1(uk − u, uk − u)

≥ ‖uk − u‖2
H1

0
(V )

− λ‖g1‖∞‖uk − u‖22

≥ (1− Cλ‖g1‖∞)‖uk − u‖2
H1

0
(V )

. (3.19)

From (3.18) and (3.19), we note

0 ≤ (1 − Cλ‖g1‖∞) lim
k→∞

‖uk − u‖2
H1

0
(V )

≤ lim
k→∞

(Buk − Bu|uk − u) = 0.
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Since (1−Cλ‖g1‖∞) > 0, we have ‖uk−u‖2
H1

0
(V )

→ 0 as k → ∞, which implies ‖uk−u‖H1

0
(V ) → 0,

as k → ∞. Hence, B satisfies condition (S).

Step-2: Claim : B +N is asymptotically linear. By (H1), we have,

|(Nu|ϕ)| = |B2(u, ϕ)| ≤ AC ‖g2‖2‖ϕ‖H1

0
(V ), ∀u ∈ H1

0 (V ),

which implies

‖Nu‖H−1(V ) ≤ C′,

where C′ = AC‖g2‖2 is a constant depending on V . Consequently,

‖Nu‖H−1(V )

‖u‖H1

0
(V )

→ 0 as ‖u‖H1

0
(V ) → ∞, (3.20)

which shows that B + N is asymptotically linear and the operator N is strongly continuous (we

refer to [30, Corollary 26.14]).

Step-3: From Step-2, we note that the operator B satisfies condition (S). Since, N is strongly

continuous, we note that t(Nu − T ) is strongly continuous, for t ∈ [0, 1]. For each t ∈ [0, 1], the

operator At(u) = Bu + t(Nu − T ) is a strongly continuous perturbation of the (S)-operator B.

So, the operator At(u) satisfies condition (S)(we refer to [30, Proposition 27.12]).

Step-4: Now, Bu = 0 implies

W(u, u)− λ

∫

V

u2(x)g1(x) dµ = 0.

Consequently, we have

(1− Cλ‖g1‖∞)‖u‖2
H1

0
(V )

≤ 0

which shows that u = 0, since 1− Cλ‖g1‖∞ > 0 and λ is not an eigenvalue of (3.14).

By Proposition 2.6, Bu + Nu = T has a solution u ∈ H1
0 (V ) which equivalently shows, the

BVP (1.1) has a solution u ∈ H1
0 (V ).

Step-5: As in (3.19) (with the help of embedding in Lemma 2.3), we obtain

B1(u, u) ≥
(

1− Cλ‖g1‖∞
)

‖u‖2
H1

0
(V )

.

Since, 1 > Cλ‖g1‖∞, we have

‖u‖2
H1

0
(V )

≤
( 1

1− Cλ‖g1‖∞

)

B1(u, u). (3.21)

Also, we note that

|B1(u, u)| ≤ C
{

A‖g2‖2 + ‖f‖2
}

‖u‖H1

0
(V ). (3.22)

By (3.21) and (3.22), we have

‖u‖H1

0
(V ) ≤

C
{

A‖g2‖2 + ‖f‖2}

(1 − Cλ‖g1‖∞)
.

Next, we dispense with the condition (3.15) when g1 does not change sign. The two results

are related to the cases when g1 ≥ 0 with λ ≤ 0 and g1 ≤ 0 with λ > 0. These results are similar

to that of Theorem 3.1 but with suitable changes.

Theorem 3.2. Suppose that (H1) and (H2) hold. Let g1 ≥ 0 and λ ≤ 0 then, the BVP (1.1) has

a solution u ∈ H1
0 (V ) and

‖u‖H1

0
(V ) ≤ C

{

A‖g2‖2 + ‖f‖2},

where C is a constant arising out of the inequality (2.7).
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Proof. As in Theorem 3.1, the basic idea is to reduce the problem (1.1) into an operator equation

Bu+Nu = T and then, study the existence result with the help of Proposition 2.6. To do proceed,

we define B,N and T , as in Theorem 3.1 and by a similar argument for estimates (2.11),(2.12)

and (2.13), we have

|B1(u, ϕ)| ≤ (1 + C|λ|‖g1‖∞)‖u‖H1

0
(V )‖ϕ‖H1

0
(V )

|B2(u, ϕ)| ≤ CA‖g2‖2‖ϕ‖H1

0
(V )

|T (ϕ)| ≤ C‖f‖2‖ϕ‖H1

0
(V )

where C is the constant as in Lemma 2.3. The compact embedding of H1
0 (V ) →֒ L2(V ), shows

that B1(·, ·) is a strict regular G̊arding form. Also, λ ≤ 0 and g1 ≥ 0 yields

B1(u, u) = W(u, u)− λ

∫

V

u2(x)g1(x) dµ ≥ ‖u‖2
H1

0
(V )

(3.23)

Let uk ⇀ u weakly in H1
0 (V ) and

lim
k→∞

(Buk − Bu|uk − u) = 0. (3.24)

We claim that B satisfies condition (S). Since B is linear, as in (3.23) we have,

(Buk − Bu|uk − u) = (B(uk − u)|uk − u)

= B1(uk − u, uk − u) ≥ ‖uk − u‖2
H1

0
(V )

. (3.25)

From (3.24) and (3.25), we note that

0 ≤ lim
k→∞

‖uk − u‖2
H1

0
(V )

≤ lim
k→∞

(Buk − Bu|uk − u) = 0

which implies ‖uk − u‖H1

0
(V ) → 0, as k → ∞ and consequently, B satisfies condition (S). Next,

we show that B + N is asymptotically linear and N is strongly continuous. The proof is similar

to that of Theorem 3.1 and we omit it for brevity. Since λ ≤ 0, we get Bu = 0 implies u = 0 and

hence, we note that λ ≤ 0 is not an eigenvalue of (3.14). By Proposition 2.6, Bu+Nu = T has a

solution u ∈ H1
0 (V ) which equivalently shows that the BVP (1.1) has a solution u ∈ H1

0 (V ). Since

λ ≤ 0 and g1 ≥ 0, we obtain (as in (3.23)) B1(u, u) ≥ ‖u‖2
H1

0
(V )

. Then, by a similar argument as

in Theorem 3.1, we have

‖u‖H1

0
(V ) ≤ C

{

A‖g2‖2 + ‖f‖2},

where C is a constant arising out of the inequality (2.7).

With suitable modifications in the proof of Theorem 3.2, we have the following result.

Theorem 3.3. Suppose that (H1) and (H2) hold. Let g1 ≤ 0 and λ > 0 then, (1.1) has a weak

solution u ∈ H1
0 (V ) and there is a constant k0 such that ‖u‖H1

0
(V ) ≤ k0 for every (weak) solution

u.

4. Extensions

In Section 3, the nonlinearity h is assumed to be continuous and bounded. In this section, we extend

these results for a class of functions h which are continuous only. Generalized Hölder’s inequality

comes handy for getting suitable estimates. We establish the existence of a weak solution for (1.1),

where h : R → R is required to be continuous and to satisfy |h(t)| ≤ |t|ǫ, 0 < ǫ < 1, for all t ∈ R.

Again, we consider the cases λ ≤ 0 and λ > 0 separately. Although the proofs are similar to the

ones in Section 3, we restrict ourselves to sketch the differences wherever needed. The result in [29]

is not applicable here since h is not bounded. We collect the common hypotheses for convenience.
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(H′
1) Suppose that h : R → R defined by |h(t)| ≤ |t|ǫ, t ∈ R, 0 < ǫ < 1;

(H′
2) g1 ∈ L∞(V ), g2 ∈ L

2

1−ǫ (V ), 0 < ǫ < 1 and f ∈ L2(V ).

Theorem 4.1. Let the hypotheses (H′
1), (H

′
2) hold. Let g1 ≥ 0 and λ ≤ 0 then, (1.1) has a weak

solution u ∈ H1
0 (V ) and there is a constant k0 such that ‖u‖H1

0
(V ) ≤ k0 for every (weak) solution

u.

Proof. We give only a sketch of the proof since it is similar to the proof of Theorem 3.2. For

u ∈ H1
0 (V ), from the hypotheses and by Lemma 2.3, we note that

|B1(u,ϕ)| ≤
(

1 + C|λ|‖g1‖∞
)

‖u‖H1

0
(V )‖ϕ‖H1

0
(V ),

|T (ϕ)| ≤ C‖f‖2‖ϕ‖H1

0
(V ),

(4.26)

where the constant C comes from Lemma 2.3. Again, by Lemma 2.3 and generalized Hölder’s

inequality [23, p.67], we have

|B2(u,ϕ)| ≤

∫

V

|h(u(x))||ϕ(x)||g2| dµ ≤ ‖u‖ǫ2‖ϕ‖2‖g2‖ 2

1−ǫ

.

By a similar argument as in Theorem 3.2 (also refer to [30, Proposition 27.12]) we observe that

the operator B1 satisfies condition (S). We also observe that

|(Nu|ϕ)| = |B2(u,ϕ)| ≤ C‖u‖ǫ
H1

0
(V )

‖ϕ‖H1

0
(V )‖g2‖ 2

1−ǫ

which implies

‖Nu‖H−1(V ) ≤ C‖u‖ǫ
H1

0
(V )

‖g2‖ 2

1−ǫ

= c‖u‖ǫ
H1

0
(V )

,

where the constant c = C‖g2‖ 2

1−ǫ

. So

‖Nu‖H−1(V )

‖u‖H1

0
(V )

≤
c‖u‖ǫ

H1

0
(V )

‖u‖H1

0
(V )

→ 0 as ‖u‖H1

0
(V ) → ∞. (4.27)

This shows that B +N is asymptotically linear. Also, u ∈ L2(V ) implies that h(u) ∈ L
2

ǫ (V ) and

define the Nemytskii operator

F : L2(V ) → L
2

ǫ (V ) (4.28)

by (Fu)(x) = h(u(x)); we have F is continuous (by [22, Theorem 2.1]). Now, the hypotheses (H′
1),

(H′
2) and generalized Hölder’s inequality imply that

|(Nun|ϕ)− (Nu|ϕ)| ≤

∫

V

|h(un)− h(u)||g2||ϕ|dµ

≤ C‖h(un)− h(u)‖ 2

ǫ

‖g2‖ 2

1−ǫ

‖ϕ‖H1

0
(V ).

Let un ⇀ u weakly in H1
0 (V ). Then, by the continuity of F in L

2

ǫ (V ) and by the compact

embedding H1
0 (V ) →֒ L2(V ), we have

‖Nun −Nu‖H−1(V ) → 0 as n → ∞. (4.29)

By a similar argument as in Theorem 3.1, we can show that the operator At(u) = Bu+ t(Nu−T )

satisfies condition (S). If λ ≤ 0 then, Bu = 0 implies u = 0 and λ ≤ 0 is not an eigenvalue of the

linear problem (3.14). By Proposition 2.6 the operator equation Bu+Nu = T and consequently,

(1.1) has a solution u ∈ H1
0 (V ), which completes the proof of existence result.

Now, as in (3.23), we have

B1(u, u) ≥ ‖u‖2
H1

0
(V )

. (4.30)
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Also, we note that

|B1(u, u)| ≤ C
{

‖u‖ǫ
H1

0
(V )

‖g2‖ 2

1−ǫ

+ ‖f‖2
}

‖u‖H1

0
(V ). (4.31)

By (4.30) and (4.31), we have

‖u‖H1

0
(V ) ≤ C{‖u‖ǫ

H1

0
(V )

‖g2‖ 2

1−ǫ

+ ‖f‖2} (4.32)

If ‖u‖H1

0
(V ) ≥ 1, then from (4.32), we have

‖u‖H1

0
(V ) ≤ C

(

‖g2‖ 2

1−ǫ

+ ‖f‖2
)

‖u‖ǫ
H1

0
(V )

which implies

‖u‖1−ǫ

H1

0
(V )

≤ c

or, ‖u‖H1

0
(V ) ≤ c

1

1−ǫ ,

where c = C
(

‖g2‖ 2

1−ǫ

+ ‖f‖2
)

and 0 < ǫ < 1. If ‖u‖H1

0
(V ) ≤ 1, we have nothing to prove. Let

k0 = max{1, c
1

1−ǫ }. Hence, we have

‖u‖H1

0
(V ) ≤ k0.

Remark. Theorem 4.1 hold if g1 ≤ 0 and λ > 0 with the remaining intact. But when λ > 0 and

g1 changes sign, we need additional conditions on λ and g1 (stated below) as in Theorem 3.1. We

state these results below in Theorem 4.2 but we give a sketch of the proof. We note that in (4.27)

the required asymptotic linearity of B +N is a consequence of ǫ lying between 0 and 1.

Theorem 4.2. Let the hypotheses (H′
1), (H

′
2) hold. Also, let λ > 0 not be an eigenvalue of (3.14)

and in addition, let 1 > Cλ‖g1‖∞. Then, the BVP (1.1) has a weak solution u ∈ H1
0 (V ) and

there is a constant k0 such that ‖u‖H1

0
(V ) ≤ k0 for every (weak) solution u.

Proof. The proof for existence of a weak solution u ∈ H1
0 (V ) for (1.1) is similar to the argument

in Theorem 4.1 and Theorem 3.1 and hence, omitted. As in Theorem 3.1, we note that

(1− Cλ‖g1‖∞)‖u‖2
H1

0
(V )

≤ C
{

‖u‖ǫ
H1

0
(V )

‖g2‖ 2

1−ǫ

+ ‖f‖2}‖u‖H1

0
(V ),

where C is a constant. Since 1 > Cλ‖g1‖∞, we obtain

‖u‖H1

0
(V ) ≤

C
(

‖u‖ǫ
H1

0
(V )

‖g2‖ 2

1−ǫ

+ ‖f‖2
)

(1 − Cλ‖g1‖∞)
(4.33)

If ‖u‖H1

0
(V ) ≥ 1, from (4.33), we have

‖u‖H1

0
(V ) ≤

C
(

‖g2‖ 2

1−ǫ

+ ‖f‖2
)

‖u‖ǫ
H1

0
(V )

(1 − Cλ‖g1‖∞)

which implies that

‖u‖1−ǫ

H1

0
(V )

≤ c

or, ‖u‖H1

0
(V ) ≤ c

1

1−ǫ ,

where c =
C
(

‖g2‖ 2

1−ǫ

+ ‖f‖2
)

(1− Cλ‖g1‖∞)
and 0 < ǫ < 1. If ‖u‖H1

0
(V ) ≤ 1, we have nothing to prove. Let

k0 = max{1, c
1

1−ǫ }. Then, we have

‖u‖H1

0
(V ) ≤ k0.
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gasket, J. Optim. Theory Appl. 167 (2015), 842–861.

[12] Hess, P., On the Fredholm alternative for nonlinear functional equations in Banach spaces,

Proc. Amer. Math. Soc. 33 (1972), 55–61.

[13] Falconer, K. J., Semilinear PDEs on self-similar fractals, Comm. Math. Phys. 206 (1999),

235 − 245.

[14] Falconer, K. J., Fractal Geometry: Mathematical Foundations and Applications, 2nd edition,

( John Wiley & Sons, 2003).

[15] Falconer, K. J. and Hu, J., Nonlinear elliptic equations on the Sierpiński gasket, J. Math.
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