ORCID
Arielle Locke https://orcid.org/0000-0002-9169-011X
Lisa Hung https://orcid.org/0000-0002-4590-1895
Julia Upton https://orcid.org/0000-0001-5320-4232
Liam O’Mahony https://orcid.org/0000-0003-4705-3583
Jennifer Hoang https://orcid.org/0000-0001-9264-1881
Thomas Eiwegger https://orcid.org/0000-0002-2914-7829
References
1. Eiwegger T, Hung L, San Diego KE, O’Mahony L, Upton J. Recent
developments and highlights in food allergy. Allergy .
2019;74(12):2355-2367. doi:10.1111/ALL.14082
2. Moran TP. The external exposome and food allergy. Curr Allergy
Asthma Rep . 2020;20(8):1-9. doi:10.1007/s11882-020-00936-2
3. Ashley SE, Tan HTT, Vuillermin P, et al. The skin barrier function
gene SPINK5 is associated with challenge-proven IgE-mediated food
allergy in infants. Allergy . 2017;72(9):1356-1364.
doi:10.1111/all.13143
4. Tham EH, Leung DYM. Mechanisms by which atopic dermatitis predisposes
to food allergy and the atopic March. Allergy, Asthma Immunol
Res . 2019;11(1):4-15. doi:10.4168/aair.2019.11.1.4
5. Bergmann S, von Buenau B, Vidal-y-Sy S, et al. Claudin-1 decrease
impacts epidermal barrier function in atopic dermatitis lesions
dose-dependently. Sci Rep . 2020;10(1):1-12.
doi:10.1038/s41598-020-58718-9
6. Tan HTT, Hagner S, Ruchti F, et al. Tight junction, mucin, and
inflammasome-related molecules are differentially expressed in
eosinophilic, mixed, and neutrophilic experimental asthma in mice.Allergy . 2019;74(2):294-307. doi:10.1111/all.13619
7. Leung DYM, Calatroni A, Zaramela LS, et al. The nonlesional skin
surface distinguishes atopic dermatitis with food allergy as a unique
endotype. Sci Transl Med . 2019;11(480):2685.
doi:10.1126/scitranslmed.aav2685
8. Goleva E, Berdyshev E, Leung DYM. Epithelial barrier repair and
prevention of allergy. J Clin Invest . 2019;129(4):1463-1474.
doi:10.1172/JCI124608
9. Hoyer A, Rehbinder EM, Färdig M, et al. Filaggrin mutations in
relation to skin barrier and atopic dermatitis in early infancy.Br J Dermatol . 2022;186(3):544-552.
doi:https://doi.org/10.1111/bjd.20831
10. Suaini NHA, Wang Y, Soriano VX, et al. Genetic determinants of
paediatric food allergy: A systematic review. Allergy .
2019;74(9):1631-1648. doi:10.1111/all.13767
11. Sicherer SH, Wood RA, Vickery BP, et al. The natural history of egg
allergy in an observational cohort. J Allergy Clin Immunol .
2014;133(2):492-499.e8. doi:10.1016/j.jaci.2013.12.1041
12. Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Skin barrier
abnormalities and immune dysfunction in atopic dermatitis. Int J
Mol Sci . 2020;21(8). doi:10.3390/ijms21082867
13. Celebi Sozener Z, Ozdel Ozturk B, Cerci P, et al. Epithelial barrier
hypothesis: Effect of the external exposome on the microbiome and
epithelial barriers in allergic disease. Allergy .
2022;77(5):1418-1449. doi:https://doi.org/10.1111/all.15240
14. Suprun M, Bahnson HT, du Toit G, Lack G, Suarez-Farinas M, Sampson
HA. In children with eczema, expansion of epitope-specific IgE is
associated with peanut allergy at 5 years of age. Allergy .
2023;78(2):586-589. doi:10.1111/all.15572
15. Brough HA, Nadeau KC, Sindher SB, et al. Epicutaneous sensitization
in the development of food allergy: What is the evidence and how can
this be prevented? Allergy . 2020;75(9):2185-2205.
doi:10.1111/all.14304
16. Tran MM, Lefebvre DL, Dharma C, et al. Predicting the atopic march:
Results from the Canadian Healthy Infant Longitudinal Development Study.J Allergy Clin Immunol . 2018;141(2):601-607.e8.
doi:10.1016/j.jaci.2017.08.024
17. Alexander H, Paller AS, Traidl-Hoffmann C, et al. The role of
bacterial skin infections in atopic dermatitis: expert statement and
review from the International Eczema Council Skin Infection Group.Br J Dermatol . 2020;182(6):1331-1342. doi:10.1111/bjd.18643
18. Reiger M, Schwierzeck V, Traidl-Hoffmann C. Atopic eczema and
microbiome. Hautarzt . 2019;70(6):407-415.
doi:10.1007/s00105-019-4424-6
19. Neumann A, Reiger M, Bhattacharyya M, Rao N, Denis L, Zammit D.
Microbiome correlates of success of treatment of atopic dermatitis with
the JAK/SYK inhibitor ASN002. Allergy . 2019;74(106):12.
20. Sindher S, Alkotob SS, Shojinaga MN, et al. Increases in plasma
IgG4/IgE with trilipid vs paraffin/petrolatum‐based emollients for dry
skin/eczema. Ebisawa M, ed. Pediatr Allergy Immunol .
2020;31(6):699-703. doi:10.1111/pai.13253
21. Sindher S, Alkotob SS, Shojinaga MN, et al. Pilot study measuring
transepidermal water loss (TEWL) in children suggests trilipid cream is
more effective than a paraffin‐based emollient. Allergy . March
2020:all.14275. doi:10.1111/all.14275
22. Imran S, Neeland MR, Shepherd R, et al. A potential role for
epigenetically mediated trained immunity in food allergy.iScience . 2020;23(6):101171. doi:10.1016/j.isci.2020.101171
23. Kelleher MM, Tran L, Boyle RJ. Prevention of food allergy – skin
barrier interventions. Allergol Int . 2020;69(1):3-10.
doi:10.1016/j.alit.2019.10.005
24. Elias PM, Wakefield JS, Man MQ. Moisturizers versus current and
next-generation barrier repair therapy for the management of atopic
dermatitis. Skin Pharmacol Physiol . 2018;32(1):1-7.
doi:10.1159/000493641
25. Lowe A, Su J, Tang M, et al. PEBBLES study protocol: A randomised
controlled trial to prevent atopic dermatitis, food allergy and
sensitisation in infants with a family history of allergic disease using
a skin barrier improvement strategy. BMJ Open . 2019;9(3):1-9.
doi:10.1136/bmjopen-2018-024594
26. Chalmers JR, Haines RH, Bradshaw LE, et al. Daily emollient during
infancy for prevention of eczema: the BEEP randomised controlled trial.Lancet . 2020;395(10228):962-972.
doi:10.1016/S0140-6736(19)32984-8
27. Skjerven HO, Rehbinder EM, Vettukattil R, et al. Skin emollient and
early complementary feeding to prevent infant atopic dermatitis
(PreventADALL): a factorial, multicentre, cluster-randomised trial.Lancet . 2020;395(10228):951-961.
doi:10.1016/S0140-6736(19)32983-6
28. Wärnberg Gerdin S, Lie A, Asarnoj A, et al. Impaired skin barrier
and allergic sensitization in early infancy. Allergy .
2022;77(5):1464-1476. doi:10.1111/all.15170
29. Eichner B, Michaels LAC, Branca K, et al. A Community-based
Assessment of Skin Care, Allergies, and Eczema (CASCADE): An atopic
dermatitis primary prevention study using emollients - Protocol for a
randomized controlled trial. Trials . 2020;21(1).
doi:10.1186/s13063-020-4150-5
30. Kelleher MM, Cro S, Cornelius V, et al. Skincare interventions in
infants for preventing eczema and food allergy. Cochrane Database
Syst Rev . 2020;2020(2). doi:10.1002/14651858.CD013534
31. Chaoimh CN, Lad D, Nico C, et al. Early initiation of short-term
emollient use for the prevention of atopic dermatitis in high-risk
infants—The STOP-AD randomised controlled trial. Allergy .
August 2022. doi:10.1111/all.15491
32. Shade KTC, Platzer B, Washburn N, et al. A single glycan on IgE is
indispensable for initiation of anaphylaxis. J Exp Med .
2015;212(4):457-467. doi:10.1084/jem.20142182
33. Shade KTC, Conroy ME, Washburn N, et al. Sialylation of
immunoglobulin E is a determinant of allergic pathogenicity.Nature . 2020;582(7811):265-270. doi:10.1038/s41586-020-2311-z
34. Xie MM, Bertozzi CR, Wang TT. Immunoglobulin E sialylation regulates
allergic responses. Immunol Cell Biol . 2020;98(8):617-619.
doi:10.1111/imcb.12368
35. Jennewein MF, Goldfarb I, Dolatshahi S, et al. Fc Glycan-Mediated
Regulation of Placental Antibody Transfer. Cell .
2019;178(1):202-215.e14. doi:10.1016/j.cell.2019.05.044
36. Sodemann EB, Dähling S, Klopfleisch R, et al. Maternal asthma is
associated with persistent changes in allergic offspring antibody
glycosylation. Clin Exp Allergy . 2020;50(4):520-531.
doi:10.1111/cea.13559
37. Cheng HD, Tirosh I, de Haan N, et al. IgG Fc glycosylation as an
axis of humoral immunity in childhood. J Allergy Clin Immunol .
2020;145(2):710-713.e9. doi:10.1016/j.jaci.2019.10.012
38. Satitsuksanoa P, Daanje M, Akdis M, Boyd SD, van de Veen W. Biology
and dynamics of B cells in the context of IgE-mediated food allergy.Allergy Eur J Allergy Clin Immunol . 2021;76(6):1707-1717.
doi:10.1111/all.14684
39. Gowthaman U, Chen JS, Zhang B, et al. Identification of a T
follicular helper cell subset that drives anaphylactic IgE.Science (80- ) . 2019;365(6456):eaaw6433.
doi:10.1126/science.aaw6433
40. Dang TD, Peters RL, Koplin JJ, et al. Egg allergen specific IgE
diversity predicts resolution of egg allergy in the population cohort
HealthNuts. Allergy . 2019;74(2):318-326. doi:10.1111/all.13572
41. Breiteneder H. Mapping of conformational IgE epitopes of food
allergens. Allergy . 2018;73(11):2107-2109. doi:10.1111/all.13592
42. Hofer G, Wieser S, Bogdos MK, et al. Three‐dimensional structure of
the wheat β‐amylase Tri a 17, a clinically relevant food allergen.Allergy . 2019;74(5):1009-1013. doi:10.1111/all.13696
43. Santos AF, Barbosa‐Morais NL, Hurlburt BK, et al. IgE to epitopes of
Ara h 2 enhance the diagnostic accuracy of Ara h 2‐specific IgE.Allergy . 2020;75(9):2309-2318. doi:10.1111/all.14301
44. Duan L, Celik A, Hoang JA, et al. Basophil activation test shows
high accuracy in the diagnosis of peanut and tree nut allergy: The
Markers of Nut Allergy Study. Allergy . 2021;76(6):1800-1812.
doi:10.1111/all.14695
45. Keet C, Plesa M, Szelag D, et al. Ara h 2–specific IgE is superior
to whole peanut extract–based serology or skin prick test for diagnosis
of peanut allergy in infancy. J Allergy Clin Immunol . 2021:1-9.
doi:10.1016/j.jaci.2020.11.034
46. Hemmings O, Du Toit G, Radulovic S, Lack G, Santos AF. Ara h 2 is
the dominant peanut allergen despite similarities with Ara h 6. J
Allergy Clin Immunol . April 2020. doi:10.1016/j.jaci.2020.03.026
47. Suárez-Fariñas M, Suprun M, Kearney P, et al. Accurate and
reproducible diagnosis of peanut allergy using epitope mapping.Allergy . 2021;76(12):3789-3797. doi:10.1111/all.14905
48. Suprun M, Sicherer SH, Wood RA, et al. Early epitope-specific IgE
antibodies are predictive of childhood peanut allergy. J Allergy
Clin Immunol . 2020;146(5):1080-1088. doi:10.1016/j.jaci.2020.08.005
49. Suprun M, Getts R, Grishina G, Tsuang A, Suárez-Fariñas M, Sampson
HA. Ovomucoid epitope-specific repertoire of IgE, IgG4, IgG1, IgA1, and
IgD antibodies in egg-allergic children. Allergy Eur J Allergy
Clin Immunol . 2020;75(10):2633-2643. doi:10.1111/all.14357
50. Suprun M, Getts R, Raghunathan R, et al. Novel Bead-Based Epitope
Assay is a sensitive and reliable tool for profiling epitope-specific
antibody repertoire in food allergy. Sci Rep . 2019;9(1):1-14.
doi:10.1038/s41598-019-54868-7
51. Hoh RA, Joshi SA, Lee JY, et al. Origins and clonal convergence of
gastrointestinal IgE+ B cells in human peanut allergy. Sci
Immunol . 2020;5(45):eaay4209. doi:10.1126/sciimmunol.aay4209
52. Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their
effector molecules in allergic disorders. Allergy .
2020;76(6):1693-1706. doi:10.1111/all.14662
53. Kashiwakura J-I, Ando T, Karasuyama H, et al. The basophil-IL-4-mast
cell axis is required for food allergy. Allergy .
2019;74(10):1992-1996. doi:10.1111/all.13834
54. Iype J, Odermatt A, Bachmann S, Coeudevez M, Fux M. IL‐1β promotes
immunoregulatory responses in human blood basophils. Allergy .
2021;76(7):2017-2029. doi:10.1111/all.14760
55. Marwaha AK, Laxer R, Liang M, et al. A chromosomal duplication
encompassing interleukin-33 causes a novel hyper IgE phenotype
characterized by eosinophilic esophagitis and generalized autoimmunity.Gastroenterology . 2022;163(2):510-513.
doi:10.1053/j.gastro.2022.04.026
56. Benede S, Tordesillas L, Berin C. Demonstration of distinct pathways
of mast cell-dependent inhibition of Treg generation using murine bone
marrow-derived mast cells. Allergy . 2020;75(8):2088-2091.
doi:10.1111/all.14267
57. Uchida S, Izawa K, Ando T, et al. CD300f is a potential therapeutic
target for the treatment of food allergy. Allergy .
2020;75(2):471-474. doi:https://doi.org/10.1111/all.14034
58. Chinthrajah S, Cao S, Liu C, et al. Phase 2a randomized,
placebo-controlled study of anti–IL-33 in peanut allergy. JCI
Insight . 2019;4(22). doi:10.1172/jci.insight.131347
59. Msallam R, Balla J, Rathore APS, et al. Fetal mast cells mediate
postnatal allergic responses dependent on maternal IgE. Science
(80- ) . 2020;370(6519):941. doi:10.1126/science.aba0864
60. Kothari A, Hirschmugl B, Lee J-S, et al. The impact of
maternal-fetal omalizumab transfer on peanut-specific responses in an ex
vivo placental perfusion model. Allergy . 2022;77(12):3684-3686.
doi:10.1111/all.15468
61. Krempski JW, Kobayashi T, Iijima K, McKenzie AN, Kita H. Group 2
innate lymphoid cells promote development of T follicular helper cells
and initiate allergic sensitization to peanuts. J Immunol .
2020;204(12):3086-3096. doi:10.4049/jimmunol.2000029
62. Leyva-Castillo JM, Galand C, Kam C, et al. Mechanical skin injury
promotes food anaphylaxis by driving intestinal mast cell expansion.Immunity . 2019;50(5):1262-1275.e4.
doi:10.1016/j.immuni.2019.03.023
63. Liu X, Song W, Wong BY, et al. A comparison framework and guideline
of clustering methods for mass cytometry data. Genome Biol .
2019;20(1):297. doi:10.1186/s13059-019-1917-7
64. Morita H, Kubo T, Rückert B, et al. Induction of human regulatory
innate lymphoid cells from group 2 innate lymphoid cells by retinoic
acid. J Allergy Clin Immunol . 2019;143(6):2190-2201.e9.
doi:10.1016/j.jaci.2018.12.1018
65. Palomares F, Gómez F, Bogas G, et al. Innate lymphoid cells type 2
in LTP-allergic patients and their modulation during sublingual
immunotherapy. Allergy . 2021;76(7):2253-2256.
doi:10.1111/all.14745
66. Looman KIM, van Meel ER, Grosserichter-Wagener C, et al.
Associations of Th2, Th17, Treg cells, and IgA+ memory B cells with
atopic disease in children: The Generation R Study. Allergy .
2020;75(1):178-187. doi:10.1111/all.14010
67. Ruiter B, Smith NP, Monian B, et al. Expansion of the CD4+ effector
T-cell repertoire characterizes peanut-allergic patients with heightened
clinical sensitivity. J Allergy Clin Immunol .
2020;145(1):270-282. doi:10.1016/j.jaci.2019.09.033
68. Wambre E, Bajzik V, DeLong JH, et al. A phenotypically and
functionally distinct human TH2 cell subpopulation is associated with
allergic disorders. Sci Transl Med . 2017;9(401):eaam9171.
doi:10.1126/scitranslmed.aam9171
69. Monian B, Tu AA, Ruiter B, et al. Peanut oral immunotherapy
differentially suppresses clonally distinct subsets of T helper cells.J Clin Invest . 2022;132(2):e150634. doi:10.1172/JCI150634
70. Luce S, Chinthrajah S, Lyu SC, Nadeau KC, Mascarell L. Th2A and Th17
cell frequencies and regulatory markers as follow-up biomarker
candidates for successful multifood oral immunotherapy. Allergy .
2020;75(6):1513-1516. doi:10.1111/all.14180
71. Yao Y, Chen C-L, Yu D, Liu Z. Roles of follicular helper and
regulatory T cells in allergic diseases and allergen immunotherapy.Allergy . 2021;76(2):456-470. doi:10.1111/all.14639
72. Bertolini TB, Biswas M, Terhorst C, Daniell H, Herzog RW, Piñeros
AR. Role of orally induced regulatory T cells in immunotherapy and
tolerance. Cell Immunol . 2021;359:104251.
doi:10.1016/j.cellimm.2020.104251
73. Collier F, Ponsonby A, O’Hely M, et al. Naïve regulatory T cells in
infancy: Associations with perinatal factors and development of food
allergy. Allergy . 2019;74(9):1760-1768. doi:10.1111/all.13822
74. Černý V, Petrásková P, Novotná O, et al. Value of cord blood Treg
population properties and function-associated characteristics for
predicting allergy development in childhood. Cent J Immunol .
2020;45(4):393-402. doi:10.5114/ceji.2020.103413
75. Bergerson JR, Erickson K, Singh AM. Tr1 cell identification and
phenotype in children with and without food allergy. J Allergy
Clin Immunol . 2017;139(2):AB70. doi:10.1016/j.jaci.2016.12.276
76. Feehley T, Plunkett CH, Bao R, et al. Healthy infants harbor
intestinal bacteria that protect against food allergy. Nat Med .
2019;25(3):448-453. doi:10.1038/s41591-018-0324-z
77. Mauras A, Wopereis H, Yeop I, et al. Gut microbiota from infant with
cow’s milk allergy promotes clinical and immune features of atopy in a
murine model. Allergy . 2019;74(9):1790-1793.
doi:10.1111/all.13787
78. Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and
propionate in early life are associated with protection against atopy.Allergy . 2019;74(4):799-809. doi:10.1111/all.13660
79. Sepahi A, Liu Q, Friesen L, Kim CH. Dietary fiber metabolites
regulate innate lymphoid cell responses. Mucosal Immunol .
2021;14(2):317-330. doi:10.1038/s41385-020-0312-8
80. Folkerts J, Redegeld F, Folkerts G, et al. Butyrate inhibits human
mast cell activation via epigenetic regulation of FcεRI-mediated
signaling. Allergy . 2020;75(8):1966-1978. doi:10.1111/all.14254
81. O’Mahony L. Short-chain fatty acids modulate mast cell activation.Allergy . 2020;75(8):1848-1849. doi:10.1111/all.14313
82. Paparo L, Nocerino R, Ciaglia E, et al. Butyrate as a bioactive
human milk protective component against food allergy. Allergy .
2021;76(5):1398-1415. doi:10.1111/all.14625
83. Pan L-L, Ren Z, Tu X, et al. GPR109A deficiency promotes IL-33
overproduction and type 2 immune response in food allergy in mice.Allergy . 2021;76(8):2613-2616. doi:10.1111/all.14849
84. Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O’Mahony L.
Immunomodulation by foods and microbes: Unravelling the molecular tango.Allergy . 2022;77(12):3513-3526. doi:10.1111/ALL.15455
85. Zhou L, Chu C, Teng F, et al. Innate lymphoid cells support
regulatory T cells in the intestine through interleukin-2.Nature . 2019;568(7752):405-409. doi:10.1038/s41586-019-1082-x
86. Zhang B, Liu E, Gertie JA, et al. Divergent T follicular helper cell
requirement for IgA and IgE production to peanut during allergic
sensitization. Sci Immunol . 2020;5(47):eaay2754.
doi:10.1126/sciimmunol.aay2754
87. Smeekens JM, Johnson-Weaver BT, Hinton AL, et al. Fecal IgA, antigen
absorption, and gut microbiome composition are associated with food
antigen sensitization in genetically susceptible mice. Front
Immunol . 2021;11:599637. doi:10.3389/fimmu.2020.599637
88. Gertie JA, Zhang B, Liu EG, et al. Oral anaphylaxis to peanut in a
mouse model is associated with gut permeability but not with Tlr4 or
Dock8 mutations. J Allergy Clin Immunol . 2021;149(1):262-274.
doi:10.1016/j.jaci.2021.05.015
89. Wang Y, Matsushita K, Jackson J, et al. Transcriptome programming of
IL-3-dependent bone marrow-derived cultured mast cells by stem cell
factor (SCF). Allergy . 2021;76(7):2288-2291.
doi:10.1111/all.14808
90. Paranjape A, Tsai M, Mukai K, et al. Oral immunotherapy and basophil
and mast cell reactivity in food allergy. Front Immunol .
2020;11:602660. doi:10.3389/fimmu.2020.602660
91. Andorf S, Bunning B, Tupa D, et al. Trends in egg specific
immunoglobulin levels during natural tolerance and oral immunotherapy.Allergy . 2020;75(6):1454-1456. doi:10.1111/all.14107
92. Wang W, Lyu S-C, Ji X, et al. Transcriptional changes in
peanut-specific CD4+ T cells over the course of oral immunotherapy.Clin Immunol . 2020;219:108568.
doi:https://doi.org/10.1016/j.clim.2020.108568
93. Tsai M, Mukai K, Chinthrajah RS, Nadeau KC, Galli SJ. Sustained
successful peanut oral immunotherapy associated with low basophil
activation and peanut-specific IgE. J Allergy Clin Immunol .
2020;145(3):885-896.e6. doi:10.1016/j.jaci.2019.10.038
94. Wright BL, Fernandez-Becker NQ, Kambham N, et al. Gastrointestinal
eosinophil responses in a longitudinal, randomized trial of peanut oral
immunotherapy. Clin Gastroenterol Hepatol .
2021;19(6):1151-1159.e14. doi:10.1016/j.cgh.2020.05.019
95. Barshow SM, Kulis MD, Burks AW, Kim EH. Mechanisms of oral
immunotherapy. Clin Exp Allergy . 2021;51(4):527-535.
doi:10.1111/cea.13824
96. Palosuo K, Karisola P, Savinko T, Fyhrquist N, Alenius H, Mäkelä MJ.
A randomized, open-label trial of hen’s egg oral immunotherapy: Efficacy
and humoral immune responses in 50 children. J Allergy Clin
Immunol Pract . 2021;9(6):1892-1901.e1. doi:10.1016/j.jaip.2021.01.020
97. Liu EG, Zhang B, Martin V, et al. Food-specific immunoglobulin A
does not correlate with natural tolerance to peanut or egg allergens.Sci Transl Med . 2022;14(671):eabq0599.
doi:10.1126/scitranslmed.abq0599
98. Jones SM, Kim EH, Nadeau KC, et al. Efficacy and safety of oral
immunotherapy in children aged 1-3 years with peanut allergy (the Immune
Tolerance Network IMPACT trial): a randomised placebo-controlled study.Lancet . 2022;399(10322):359-371.
doi:10.1016/S0140-6736(21)02390-4
99. Zhang W, Dhondalay G, Hoh R, et al. RNA-seq of gastrointestinal
biopsies during oral immunotherapy reveals changes in IgA pathway.J Allergy Clin Immunol . 2020;145(2):AB132.
doi:10.1016/J.JACI.2019.12.524
100. Hung L, Celik A, Yin X, et al. Precision cut intestinal slices, a
novel model of acute food allergic reactions. Allergy .
2023;78(2):500-511. doi:10.1111/all.15579
101. Nowak-Wegrzyn A, Sato S, Fiocchi A, Ebisawa M. Oral and sublingual
immunotherapy for food allergy. Curr Opin Allergy Clin Immunol .
2019;19(6):606-613. doi:10.1097/ACI.0000000000000587
102. Smeekens JM, Kulis MD. Evolution of immune responses in food
immunotherapy. Immunol Allergy Clin North Am . 2020;40(1):87-95.
doi:10.1016/j.iac.2019.09.006
103. Tanaka Y, Nagashima H, Bando K, et al. Oral CD103 - CD11b +
classical dendritic cells present sublingual antigen and induce Foxp3 +
regulatory T cells in draining lymph nodes. Mucosal Immunol .
2017;10(1):79-90. doi:10.1038/mi.2016.46
104. Głobińska A, Boonpiyathad T, Satitsuksanoa P, et al. Mechanisms of
allergen-specific immunotherapy: Diverse mechanisms of immune tolerance
to allergens. Ann Allergy, Asthma Immunol . 2018;121(3):306-312.
doi:10.1016/j.anai.2018.06.026
105. Hoof I, Schulten V, Layhadi JA, et al. Allergen-specific IgG+
memory B cells are temporally linked to IgE memory responses. J
Allergy Clin Immunol . 2020;146(1):180-191.
doi:10.1016/j.jaci.2019.11.046
106. Kitzmüller C, Jahn-Schmid B, Kinaciyan T, Bohle B. Sublingual
immunotherapy with recombinant Mal d 1 downregulates the
allergen-specific Th2 response. Allergy Eur J Allergy Clin
Immunol . 2019;74(8):1579-1581. doi:10.1111/all.13779
107. Sánchez Acosta G, Kinaciyan T, Kitzmüller C, Möbs C, Pfützner W,
Bohle B. IgE-blocking antibodies following SLIT with recombinant Mal d 1
accord with improved apple allergy. J Allergy Clin Immunol .
2020;146(4):894-900.e2. doi:10.1016/j.jaci.2020.03.015
108. Kulis M, Saba K, Kim EH, et al. Increased peanut-specific IgA
levels in saliva correlate with food challenge outcomes after peanut
sublingual immunotherapy. J Allergy Clin Immunol .
2012;129(4):1159-1162. doi:10.1016/j.jaci.2011.11.045
109. Kim EH, Yang L, Ye P, et al. Long-term sublingual immunotherapy for
peanut allergy in children: Clinical and immunologic evidence of
desensitization. J Allergy Clin Immunol .
2019;144(5):1320-1326.e1. doi:10.1016/j.jaci.2019.07.030
110. Kim EH, Burks AW. Food allergy immunotherapy: Oral immunotherapy
and epicutaneous immunotherapy. Allergy . 2020;75(6):1337-1346.
doi:10.1111/all.14220
111. Langlois A, Graham F, Bégin P. Epicutaneous peanut patch device for
the treatment of peanut allergy. Expert Rev Clin Immunol .
2019;15(5):449-460. doi:10.1080/1744666X.2019.1593138
112. Tordesillas L, Mondoulet L, Blazquez AB, Benhamou PH, Sampson HA,
Berin MC. Epicutaneous immunotherapy induces gastrointestinal LAP+
regulatory T cells and prevents food-induced anaphylaxis. J
Allergy Clin Immunol . 2017;139(1):189-201.e4.
doi:10.1016/j.jaci.2016.03.057
113. Fleischer DM, Greenhawt M, Sussman G, et al. Effect of epicutaneous
immunotherapy vs placebo on reaction to peanut protein Ingestion among
children with peanut allergy: the PEPITES randomized clinical trial.J Am Med Assoc . 2019;321(10):946-955. doi:10.1001/jama.2019.1113
114. Fleischer DM, Shreffler WG, Campbell DE, et al. Long-term,
open-label extension study of the efficacy and safety of epicutaneous
immunotherapy for peanut allergy in children: PEOPLE 3-year results.J Allergy Clin Immunol . 2020;146(4):863-874.
doi:10.1016/j.jaci.2020.06.028
115. Pelletier B, Perrin A, Assoun N, et al. Epicutaneous immunotherapy
protects cashew-sensitized mice from anaphylaxis. Allergy .
2021;76(4):1213-1222. doi:10.1111/all.14605
116. Barni S, Giovannini M, Sarti L, et al. Managing food allergy
immunotherapy in children during the COVID-19 pandemic. Allergol
Immunopathol (Madr) . 2021;49(1):150-152. doi:10.15586/aei.v49i1.37
117. Pfaar O, Klimek L, Jutel M, et al. COVID-19 pandemic: Practical
considerations on the organization of an allergy clinic—An EAACI/ARIA
Position Paper. Allergy . 2021;76(3):648-676.
doi:10.1111/all.14453
118. Riggioni C, Comberiati P, Giovannini M, et al. A compendium
answering 150 questions on COVID-19 and SARS-CoV-2. Allergy .
2020;75(10):2503-2541. doi:10.1111/all.14449
119. Mack DP, Chan ES, Shaker M, et al. Novel approaches to food allergy
management during COVID-19 inspire long-term change. J allergy
Clin Immunol Pract . 2020;8(9):2851-2857. doi:10.1016/j.jaip.2020.07.020
120. Pajno GB, Passanisi S, Valenzise M, Messina MF, Lombardo F. The
evolution of allergen-specific immunotherapy: The near and far future.Pediatr Allergy Immunol . 2020;31(S26):11-13.
doi:10.1111/pai.13351
121. Pepper AN, Assa’ad A, Blaiss M, et al. Consensus report from the
Food Allergy Research Education (FARE) 2019 oral immunotherapy for food
allergy summit. J Allergy Clin Immunol . 2020;146(2):244-249.
doi:10.1016/j.jaci.2020.05.027
122. Sampath V, Abrams EM, Adlou B, et al. Food allergy across the
globe. J Allergy Clin Immunol . 2021;148(6):1347-1364.
doi:10.1016/j.jaci.2021.10.018
123. Rodríguez del Río P, Alvarez-Perea A, Blumchen K, et al. Food
immunotherapy practice: Nation differences across Europe, The FIND
project. Allergy . 2022;77(3):920-932. doi:10.1111/all.15016
124. Remington BC, Baumert JL. Risk reduction in peanut immunotherapy.Immunol Allergy Clin North Am . 2020;40(1):187-200.
doi:10.1016/j.iac.2019.09.012
125. Remington BC, Krone T, Kim EH, et al. Estimated risk reduction to
packaged food reactions by epicutaneous immunotherapy (EPIT) for peanut
allergy. Ann Allergy, Asthma Immunol . 2019;123(5):488-493.e2.
doi:10.1016/j.anai.2019.08.007
126. de Silva D, Rodríguez del Río P, de Jong NW, et al. Allergen
immunotherapy and/or biologicals for IgE-mediated food allergy: A
systematic review and meta-analysis. Allergy .
2022;77(6):1852-1862. doi:10.1111/all.15211
127. Chinthrajah RS, Purington N, Andorf S, et al. Sustained outcomes in
oral immunotherapy for peanut allergy (POISED study): a large,
randomised, double-blind, placebo-controlled, phase 2 study.Lancet . 2019;394(10207):1437-1449.
doi:10.1016/S0140-6736(19)31793-3
128. Davis CM, Anagnostou A, Devaraj S, et al. Maximum dose food
challenges reveal transient sustained unresponsiveness in peanut oral
immunotherapy (POIMD study). J Allergy Clin Immunol Pract .
2022;10(2):566-576. doi:10.1016/j.jaip.2021.10.074
129. Patrawala M, Shih J, Lee G, Vickery B. Peanut oral immunotherapy: a
current perspective. Curr Allergy Asthma Rep . 2020;20(5):14.
doi:10.1007/s11882-020-00908-6
130. Elizur A, Appel MY, Nachshon L, et al. Cashew oral immunotherapy
for desensitizing cashew-pistachio allergy (NUT CRACKER study).Allergy . 2022;77(6):1863-1872. doi:10.1111/all.15212
131. Miura Y, Nagakura K, Nishino M, et al. Long-term follow-up of fixed
low-dose oral immunotherapy for children with severe cow’s milk allergy.Pediatr Allergy Immunol . 2021;32(4):734-741.
doi:10.1111/pai.13442
132. Smith HG, Kim EH. Increasing diversity in peanut oral immunotherapy
research and accessibility. J Allergy Clin Immunol Pract .
2021;9(5):2132-2133. doi:10.1016/j.jaip.2021.02.010
133. Shamji MH, Palmer E, Layhadi JA, Moraes TJ, Eiwegger T. Biological
treatment in allergic disease. Allergy . 2021;76(9):2934-2937.
doi:10.1111/all.14954
134. Tanno LK, Demoly P. Biologicals for the prevention of anaphylaxis.Curr Opin Allergy Clin Immunol . 2021;21(3):303-308.
doi:10.1097/ACI.0000000000000737
135. Nicolaides RE, Parrish CP, Bird JA. Food allergy immunotherapy with
adjuvants. Immunol Allergy Clin North Am . 2020;40(1):149-173.
doi:10.1016/j.iac.2019.09.004
136. Loke P, Orsini F, Lozinsky AC, et al. Probiotic peanut oral
immunotherapy versus oral immunotherapy and placebo in children with
peanut allergy in Australia (PPOIT-003): a multicentre, randomised,
phase 2b trial. Lancet Child Adolesc Heal . 2022;6(3):171-184.
doi:10.1016/S2352-4642(22)00006-2
137. Schworer SA, Kim EH. Sublingual immunotherapy for food allergy and
its future directions. Immunotherapy . 2020;12(12):921-931.
doi:10.2217/imt-2020-0123
138. Sampson HA, Berin MC, Plaut M, et al. The Consortium for Food
Allergy Research (CoFAR): The first generation. J Allergy Clin
Immunol . 2019;143(2):486-493. doi:10.1016/j.jaci.2018.12.989
139. Pongracic JA, Gagnon R, Sussman G, et al. Safety of epicutaneous
immunotherapy in peanut-allergic children: REALISE randomized clinical
trial results. J Allergy Clin Immunol Pract .
2021;7(10):1864-1873.e10. doi:10.1016/j.jaip.2021.11.017
140. Scurlock AM, Burks AW, Sicherer SH, et al. Epicutaneous
immunotherapy for treatment of peanut allergy: Follow-up from the
Consortium for Food Allergy Research. J Allergy Clin Immunol .
2021;147(3):992-1003.e5. doi:10.1016/j.jaci.2020.11.027
141. Ebisawa M, Ito K, Fujisawa T, et al. Japanese guidelines for food
allergy 2020. Allergol Int . 2020;69(3):370-386.
doi:10.1016/j.alit.2020.03.004
142. Sicherer SH, Abrams EM, Nowak-Wegrzyn A, Hourihane JO. Managing
Food Allergy When the Patient Is Not Highly Allergic. J Allergy
Clin Immunol Pract . 2022;10(1):46-55. doi:10.1016/j.jaip.2021.05.021
143. Turner PJ, d’Art YM, Duca B, et al. Single-dose oral challenges to
validate eliciting doses in children with cow’s milk allergy.Pediatr Allergy Immunol . 2021;32(5):1056-1065.
doi:https://doi.org/10.1111/pai.13482
144. Zuberbier T, Dörr T, Aberer W, et al. Proposal of 0.5 mg of
protein/100 g of processed food as threshold for voluntary declaration
of food allergen traces in processed food—A first step in an
initiative to better inform patients and avoid fatal allergic reactions:
A GA2LEN position paper. Allergy .
2021;77(6):1736-1750. doi:https://doi.org/10.1111/all.15167
145. Graham F, Caubet J-C, Eigenmann PA. Can my child with IgE-mediated
peanut allergy introduce foods labeled with “may contain traces”?Pediatr Allergy Immunol . 2020;31(6):601-607.
doi:https://doi.org/10.1111/pai.13244
146. Houben GF, Baumert JL, Blom WM, et al. Full range of population
Eliciting Dose values for 14 priority allergenic foods and
recommendations for use in risk characterization. Food Chem
Toxicol . 2020;146:111831. doi:10.1016/j.fct.2020.111831
147. Gruzelle V, Juchet A, Martin-Blondel A, Michelet M, Chabbert-Broue
A, Didier A. Benefits of baked milk oral immunotherapy in French
children with cow’s milk allergy. Pediatr Allergy Immunol .
2020;31(4):364-370. doi:https://doi.org/10.1111/pai.13216
148. Kim EH, Perry TT, Wood RA, et al. Induction of sustained
unresponsiveness after egg oral immunotherapy compared to baked egg
therapy in children with egg allergy. J Allergy Clin Immunol .
2020;146(4):851-862.e10. doi:10.1016/j.jaci.2020.05.040
149. Arasi S, Nurmatov U, Turner PJ, et al. Consensus on DEfinition of
Food Allergy SEverity (DEFASE): Protocol for a systematic review.World Allergy Organ J . 2020;13(12):100493.
doi:10.1016/j.waojou.2020.100493
150. Graham F, Mack DP, Bégin P. Practical challenges in oral
immunotherapy resolved through patient-centered care. Allergy,
Asthma Clin Immunol . 2021;17(1):31. doi:10.1186/s13223-021-00533-6
151. Greenhawt M. Shared decision-making in the care of a patient with
food allergy. Ann Allergy, Asthma Immunol . 2020;125(3):262-267.
doi:10.1016/j.anai.2020.05.031
152. Herbert L, Marchisotto MJ, Vickery B. Patients’ Perspectives and
Needs on Novel Food Allergy Treatments in the United States. Curr
Treat options allergy . January 2021:1-12.
doi:10.1007/s40521-020-00274-8
153. Le Blanc V, Samaan K, Paradis L, et al. Treatment expectations in
food-allergic patients referred for oral immunotherapy. J Allergy
Clin Immunol Pract . 2021;9(5):2087-2089. doi:10.1016/j.jaip.2020.11.027
154. Abrams EM, Chan ES, Sicherer S. Peanut allergy: New advances and
ongoing controversies. Pediatrics . 2020;145(5):e20192102.
doi:10.1542/peds.2019-2102
155. Mori F, Giovannini M, Barni S, et al. Oral immunotherapy for
food-allergic children: A pro-con debate. Front Immunol .
2021;12:636612. doi:10.3389/fimmu.2021.636612
156. Suprun M, Kearney P, Hayward C, et al. Predicting probability of
tolerating discrete amounts of peanut protein in allergic children using
epitope-specific IgE antibody profiling. Allergy .
2022;77(10):3061-3069. doi:10.1111/all.15477
157. Upton JEM, Hoang JA, Leon-Ponte M, et al. Platelet-activating
factor acetylhydrolase is a biomarker of severe anaphylaxis in children.Allergy . 2022;77(9):2665-2676. doi:10.1111/ALL.15308
158. Sindher SB, Long A, Chin AR, et al. Food allergy, mechanisms,
diagnosis and treatment: Innovation through a multi-targeted approach.Allergy . 2022;77(10):2937-2948. doi:10.1111/ALL.15418
159. Hardy LKC, Smeekens JM, Kulis MD. Biomarkers in food allergy
immunotherapy. Curr Allergy Asthma Rep . 2019;19(12):61.
doi:10.1007/s11882-019-0894-y
160. Nothegger B, Reider N, Covaciu CE, et al. Oral birch pollen
immunotherapy with apples: Results of a phase II clinical pilot study.Immunity, Inflamm Dis . 2021;9(2):503-511. doi:10.1002/iid3.410
161. Fleischer DM, Spergel JM, Kim EH, et al. Evaluation of daily patch
application duration for epicutaneous immunotherapy for peanut allergy.Allergy asthma Proc . 2020;41(4):278-284.
doi:10.2500/AAP.2020.41.200045
162. Kim EH, Yang L, Ye P, et al. Long-term sublingual immunotherapy for
peanut allergy in children: Clinical and immunologic evidence of
desensitization. J Allergy Clin Immunol .
2019;144(5):1320-1326.e1. doi:10.1016/j.jaci.2019.07.030
163. Jones SM, Sicherer SH, Burks AW, et al. Epicutaneous immunotherapy
for the treatment of peanut allergy in children and young adults.J Allergy Clin Immunol . 2017;139(4):1242-1252.e9.
doi:10.1016/j.jaci.2016.08.017
164. Green TD, Anvari S, Assa A, et al. Long-term, open-label extension
study of the efficacy and safety of epicutaneous immunotherapy for
peanut allergy in children: PEOPLE 3-year results. J Allergy Clin
Immunol . 2020. doi:10.1016/j.jaci.2020.06.028
165. Sampson HA, Shreffler WG, Yang WH, et al. Effect of varying doses
of epicutaneous immunotherapy vs placebo on reaction to peanut protein
exposure among patients with peanut sensitivity: A randomized clinical
trial. J Am Med Assoc . 2017;318(18):1798-1809.
doi:10.1001/jama.2017.16591
166. Bird JA, Spergel JM, Jones SM, et al. Efficacy and safety of AR101
in oral immunotherapy for peanut allergy: results of ARC001, a
randomized, double-blind, placebo-controlled phase 2 clinical trial.J Allergy Clin Immunol Pract . 2018;6(2):476-485.e3.
doi:10.1016/j.jaip.2017.09.016
167. Vickery BP, Vereda A, Nilsson C, et al. Continuous and daily oral
immunotherapy for peanut allergy: results from a 2-year open-Label
follow-on study. J Allergy Clin Immunol Pract .
2021;9(5):1879-1889.e14. doi:10.1016/J.JAIP.2020.12.029
168. Soller L, Abrams EM, Carr S, et al. First real-world safety
analysis of preschool peanut oral immunotherapy. J Allergy Clin
Immunol Pract . 2019;7(8):2759-2767.e5. doi:10.1016/J.JAIP.2019.04.010
169. Shamji MH, Layhadi JA, Scadding GW, et al. Basophil expression of
diamine oxidase: A novel biomarker of allergen immunotherapy response.J Allergy Clin Immunol . 2015;135(4):913-921.e9.
doi:10.1016/j.jaci.2014.09.049
170. Orgel K, Burk C, Smeekens J, et al. Blocking antibodies induced by
peanut oral and sublingual immunotherapy suppress basophil activation
and are associated with sustained unresponsiveness. Clin Exp
Allergy . 2019;49(4):461-470. doi:10.1111/CEA.13305
171. Elizur A, Appel MY, Nachshon L, et al. NUT Co Reactivity -
ACquiring Knowledge for Elimination Recommendations (NUT CRACKER) study.Allergy . 2018;73(3):593-601. doi:10.1111/all.13353
172. Frischmeyer-Guerrerio PA, Masilamani M, Gu W, et al. Mechanistic
correlates of clinical responses to omalizumab in the setting of oral
immunotherapy for milk allergy. J Allergy Clin Immunol .
2017;140(4):1043-1053.e8. doi:10.1016/j.jaci.2017.03.028
173. Bahri R, Custovic A, Korosec P, et al. Mast cell activation test in
the diagnosis of allergic disease and anaphylaxis. J Allergy Clin
Immunol . 2018;142(2):485-496.e16. doi:10.1016/j.jaci.2018.01.043
174. Santos AF, Couto-Francisco N, Bécares N, Kwok M, Bahnson HT, Lack
G. A novel human mast cell activation test for peanut allergy. J
Allergy Clin Immunol . 2018;142(2):689-691.e9.
doi:10.1016/j.jaci.2018.03.011
175. Larsen LF, Juel-Berg N, Hansen KS, et al. A comparative study on
basophil activation test, histamine release assay, and passive
sensitization histamine release assay in the diagnosis of peanut
allergy. Allergy . 2018;73(1):137-144. doi:10.1111/ALL.13243
176. Varshney P, Jones SM, Scurlock AM, et al. A randomized controlled
study of peanut oral immunotherapy: Clinical desensitization and
modulation of the allergic response. J Allergy Clin Immunol .
2011;127(3):654-660. doi:10.1016/j.jaci.2010.12.1111
177. Zhang Y, Li L, Genest G, et al. Successful milk oral immunotherapy
promotes generation of casein-specific CD137 + FOXP3 + regulatory T
cells detectable in peripheral blood. Front Immunol . 2021;12.
doi:10.3389/FIMMU.2021.705615
178. Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for
inhaled allergens and predictive biomarkers. J Allergy Clin
Immunol . 2017;140(6):1485-1498. doi:10.1016/j.jaci.2017.10.010
179. Wambre E, Delong JH, James EA, et al. Specific immunotherapy
modifies allergen-specific CD4+ T-cell responses in an epitope-dependent
manner. J Allergy Clin Immunol . 2014;133(3):872-9.e7.
doi:10.1016/j.jaci.2013.10.054
180. Wambre E. Effect of allergen-specific immunotherapy on CD4+ T
cells. Curr Opin Allergy Clin Immunol . 2015;15(6):581-587.
doi:10.1097/ACI.0000000000000216
181. Calise J, Garabatos N, Bajzik V, et al. Optimal human pathogenic T
H 2 cell effector function requires local epithelial cytokine signaling.J Allergy Clin Immunol . 2021;148(3):867-875.e4.
doi:10.1016/J.JACI.2021.02.019
182. O’Mahony L, Akdis CA, Eiwegger T. Innate mechanisms can predict
successful allergy immunotherapy. J Allergy Clin Immunol .
2016;137(2):559-561. doi:10.1016/j.jaci.2015.10.047
183. Gueguen C, Bouley J, Moussu H, et al. Changes in markers associated
with dendritic cells driving the differentiation of either TH2 cells or
regulatory T cells correlate with clinical benefit during allergen
immunotherapy. J Allergy Clin Immunol . 2016;137(2):545-558.
doi:10.1016/j.jaci.2015.09.015
184. Palomares F, Gomez F, Bogas G, et al. Immunological Changes Induced
in Peach Allergy Patients with Systemic Reactions by Pru p 3 Sublingual
Immunotherapy. Mol Nutr Food Res . 2018;62(3):1700669.
doi:10.1002/mnfr.201700669
185. Van De Veen W, Stanic B, Yaman G, et al. IgG4 production is
confined to human IL-10-producing regulatory B cells that suppress
antigen-specific immune responses. J Allergy Clin Immunol .
2013;131(4):1204-1212. doi:10.1016/j.jaci.2013.01.014
186. van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M.
Role of regulatory B cells in immune tolerance to allergens and beyond.J Allergy Clin Immunol . 2016;138(3):654-665.
doi:10.1016/j.jaci.2016.07.006
187. Hoh RA, Joshi SA, Liu Y, et al. Single B-cell deconvolution of
peanut-specific antibody responses in allergic patients. J Allergy
Clin Immunol . 2016;137(1):157-167. doi:10.1016/j.jaci.2015.05.029
188. Golebski K, Layhadi JA, Sahiner U, et al. Induction of
IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy
is associated with clinical response. Immunity .
2021;54(2):291-307. doi:10.1016/j.immuni.2020.12.013
189. Neeland MR, Andorf S, Manohar M, et al. Mass cytometry reveals
cellular fingerprint associated with IgE+ peanut tolerance and allergy
in early life. Nat Commun . 2020;11(1):1091.
doi:10.1038/s41467-020-14919-4
190. Schulten V, Tripple V, Seumois G, et al. Allergen-specific
immunotherapy modulates the balance of circulating Tfh and Tfr cells.J Allergy Clin Immunol . 2018;141(2):775-777.e6.
doi:10.1016/J.JACI.2017.04.032
191. Jones SM, Sicherer SH, Burks AW, et al. Epicutaneous immunotherapy
for the treatment of peanut allergy in children and young adults.J Allergy Clin Immunol . 2017;139(4):1242-1252.e9.
doi:10.1016/j.jaci.2016.08.017
192. Dreskin SC, Germinaro M, Reinhold D, et al. IgE binding to linear
epitopes of Ara h 2 in peanut allergic preschool children undergoing
oral Immunotherapy. Pediatr Allergy Immunol . 2019;30(8):817-823.
doi:10.1111/pai.13117
193. Suárez-Fariñas M, Suprun M, Chang HL, et al. Predicting development
of sustained unresponsiveness to milk oral immunotherapy using
epitope-specific antibody binding profiles. J Allergy Clin
Immunol . 2019;143(3):1038-1046. doi:10.1016/j.jaci.2018.10.028
194. Sugimoto M, Kamemura N, Nagao M, et al. Differential response in
allergen-specific IgE, IgGs, and IgA levels for predicting outcome of
oral immunotherapy. Pediatr Allergy Immunol . 2016;27(3):276-282.
doi:10.1111/pai.12535
195. Vickery BP, Vereda A, Casale TB, et al. AR101 oral immunotherapy
for peanut allergy. N Engl J Med . 2018;379(21):1991-2001.
doi:10.1056/NEJMoa1812856
196. Vickery BP, Berglund JP, Burk CM, et al. Early oral immunotherapy
in peanut-allergic preschool children is safe and highly effective.J Allergy Clin Immunol . 2017;139(1):173-181.e8.
doi:10.1016/j.jaci.2016.05.027
197. Koppelman SJ, Peillon A, Agbotounou W, Sampson HA, Martin L.
Epicutaneous immunotherapy for peanut allergy modifies IgG 4 responses
to major peanut allergens. J Allergy Clin Immunol .
2019;143(3):1218-1221.e4. doi:10.1016/j.jaci.2018.10.025
198. Gomez F, Bogas G, Gonzalez M, et al. The clinical and immunological
effects of Pru p 3 sublingual immunotherapy on peach and peanut allergy
in patients with systemic reactions. Clin Exp Allergy .
2017;47(3):339-350. doi:10.1111/cea.12901
199. Wright BL, Kulis M, Orgel KA, et al. Component-resolved analysis of
IgA, IgE, and IgG4 during egg OIT identifies markers associated with
sustained unresponsiveness. Allergy . 2016;71(11):1552-1560.
doi:10.1111/all.12895
200. Maeta A, Matsushima M, Muraki N, et al. Low-dose oral immunotherapy
using low-egg-allergen cookies for severe egg-allergic children reduces
allergy severity and affects allergen-specific antibodies in serum.Int Arch Allergy Immunol . 2018;175(1-2):70-76.
doi:10.1159/000485891
Table 1: Main food allergy immunotherapy biomarkers reported in
humans 159