References
Ajayi O. O., Johnson S. A., Faison T., Azer N., Cullinan J. L., Dement-Brown J., Lute S. C. (2022). An updated analysis of viral clearance unit operations for biotechnology manufacturing. Current Research in Biotechnology, 4, 190-202. https://doi.org/10.1016/j.crbiot.2022.03.002.
Arnold L., Lee K., Rucker-Pezzini J., Lee J. H. (2019). Implementation of fully integrated continuous antibody processing: Effects on productivity and COGm. Biotechnology Journal, 14(2), 1800061, https://doi.org/10.1002/biot.201800061.
Bohonak D. M., Mehta U., Weiss E. R., Voyta G. (2021). Adapting virus filtration to enable intensified and continuous monoclonal antibody processing. Biotechnology Progress, 37, e3088. https://doi.org/10.1002/btpr.3088.
Bourcier D., Féraud J. P., Colson D., Mandrick K., Ode D., Brackx E., Puel F. (2016). Influence of particle size and shape properties on cake resistance and compressibility during pressure filtration. Chemical Engineering Science, 144, 176–187. http://dx.doi.org/10.1016/j.ces.2016.01.023
Cataldo A.L., Burgstaller D., Hribar G., Jungbauer A., Satzer P. (2020). Economics and ecology: Modelling of continuous primary recovery and capture scenarios for recombinant antibody production. Journal of Biotechnology, 308, 87–95. https://doi.org/10.1016/j.jbiotec.2019.12.001.
Coffman J., Brower M., Connell‐Crowley L., Deldari S., Farid S. S., Horowski B., Patil U., Pollard D., Qadan M., Rose S., Schaefer E., Shultz J. (2021). A common framework for integrated and continuous biomanufacturing. Biotechnology and Bioengineering, 118, 1735–1749. https://doi.org/10.1002/bit.27690.
Coffman J., Bibbo K., Brower M., Forbes R., Guros N., Horowski B., Lu R., Mahajan R., Patil U., Rose S., Shultz J. (2021). The design basis for the integrated and continuous biomanufacturing framework. Biotechnology and Bioengineering, 118, 3323–3333. https://doi.org/10.1002/bit.27697
Coolbaugh M.J., Varner C.T., Vetter T.A., Davenport E.K., Bouchard B., Fiadeiro M., Tugcu N., Walther J., Patil R., Brower K. (2021). Pilot‐scale demonstration of an end‐to‐end integrated and continuous biomanufacturing process. Biotechnology and Bioengineering, 118, 3287-3301. https://doi.org/10.1002/bit.27670.
David L., Niklas J., Budde B., Lobedann M., Schembecker G. (2019). Continuous viral filtration for the production of monoclonal antibodies. Chemical Engineering Research and Design, 152, 336–347, https://doi.org/10.1016/j.cherd.2019.09.040.
David L., Schwan P., Lobedann M., et al. (2020). Side‐by‐side comparability of batch and continuous downstream for the production of monoclonal antibodies. Biotechnology and Bioengineering, 117, 1024–1036. https://doi.org/10.1002/bit.27267.
Fan R., Namila F., Sansongko D., Wickramasinghe S.R., Jin M., Kanani D., Qian X. (2021). The effects of flux on the clearance of minute virus of mice during constant flux virus filtration. Biotechnology and Bioengineering, 118, 3511–3521. https://doi.org/10.1002/bit.27778.
Ferreira K.B., Benlegrimet A., Diane G., Pasquier V., Guillot R., Poli M.D., Chappuis L., Vishwanathan N., Souquet J., Broly H., Bielser J-M. (2022). Transfer of continuous manufacturing process principles for mAb production in a GMP environment: A step in the transition from batch to continuous. Biotechnology Progress, e3259. https://doi.org/10.1002/btpr.3259.
Gefroh E., Dehghani H., McClure M., Connell‐Crowley L., Vedantham G. (2014). Use of MVM as a single worst‐case model virus in viral filter validation studies. PDA Journal of Pharmaceutical Science and Technology, 68(3), 297–311. https://doi.org/10.5731/pdajpst.2014.00978.
Gerstweiler L., Bi J., Middelberg A.P.J. (2021). Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chemical Engineering Science, 231, 116272. https://doi.org/10.1016/j.ces.2020.116272.
Hummel J., Pagkaliwangan M., Gjoka X., Davidovits T., Stock R., Ransohoff T., Gantier R., Schofield M. (2019). Modeling the downstream processing of monoclonal antibodies reveals cost advantages for continuous methods for a broad range of manufacturing scales. Biotechnology Journal, 14(2), 1700665. https://doi.org/10.1002/biot.201700665.
International Council for Harmonization of Technical Requirement for Pharmaceuticals for Human Use: Continuous Manufacturing of Drug Substances and Drug Products Q13 (Draft version, currently under public consultation), (2021). ICH.
Ichihara T., Ito T., Gillespie C. (2019). Polishing approach with fully connected flow-through purification for therapeutic monoclonal antibody. Engineering in Life Science, 19, 31–36. https://doi.org/10.1002/elsc.201800123.
Isu S., Qian X., Zydney A.L., Wickramasinghe S.R. (2022). Process- and product-related foulants in virus filtration. Bioengineering, 9, 155. https://doi.org/10.3390/bioengineering9040155.
Johnson S.A., Chen S., Bolton G., Chen Q., Lute S., Fisher J., Brorson K. (2022). Virus filtration: A review of current and future practices in bioprocessing. Biotechnology and Bioengineering, 119, 743–761. https://doi.org/10.1002/bit.28017
Kikuchi S., Ishihara T., Yamamoto K., Hosono M. (2022). Virus clearance by activated carbon for therapeutic monoclonal antibody purification. Journal of Chromatography B, 1195, 123163. https://doi.org/10.1016/j.jchromb.2022.123163.
Konstantinov, K. B., & Cooney, C. L. (2015). White paper on continuous bioprocessing May 20-21 2014 Continuous Manufacturing Symposium. Journal of Pharmaceutical Sciences, 104(3), 813–820. https://doi.org/10.1002/jps.24268
Kumar A., Udugama I.A., Gargalo C.L., Gernaey K.V. (2020). Why is batch processing still dominating the biologics landscape? Towards an integrated continuous bioprocessing alternative. Processes, 8(12), 1641. https://doi.org/10.3390/pr8121641.
Lali N., Jungbauer A., Satzer P. (2021). Traceability of products and guide for batch definition in integrated continuous biomanufacturing. Journal of Chemical Technology and Biotechnology, 97, 2386-2392. https://doi.org/10.1002/jctb.6953.
Lutz H., Chang W., Blandl T., Ramsey G., Parella J., Fisher J., Gefroh, E. (2011). Qualification of a novel inline spiking method for virus filter validation. Biotechnology Progress, 27(1), 121–128. https://doi.org/10.1002/btpr.500.
Lute S., Kozaili J., Johnson S., Kobayashi K., Strauss D. (2020). Development of small-scale models to understand the impact of continuous downstream bioprocessing on integrated virus filtration. Biotechnology Progress, 36, e2962. https://doi.org/10.1002/btpr.2962.
Malakian A., Jung S.Y., Afzal M.A., Carbrello, C., Giglia S., Johnson M., Miller C., Rayfield W., Boenitz D., Cetlin D., Zydney A.L. (2022). Development of a transient inline spiking system for evaluating virus clearance in continuous bioprocessing - Proof of concept for virus filtration. Biotechnology and Bioengineering, 119, 2134-2141. https://doi.org/10.1002/bit.28119.
Pabst T.M., Thai J., Hunter A.H. (2018). Evaluation of recent Protein A stationary phase innovations for capture of biotherapeutics. Journal of Chromatography A, 1554(15), 45-60. https://doi.org/10.1016/j.chroma.2018.03.060
Peles J., Fallahianbijan F., Cacace B., Carbrello C., Giglia S., Zydney A.L. (2022). Effect of operating pressure on protein fouling during constant-pressure virus removal filtration. Journal of Membrane Science, 648, 120351. https://doi.org/10.1016/j.memsci.2022.120351.
Pollard P., Brower M., Abe Y., Lopes A.G., Sinclair A. (2016). Standardized economic cost modeling for next-generation MAb production. BioProcess International, 14(8), 14–23.
Rathore A.S., Nikita S., Thakur G., Deore N. (2021). Challenges in process control for continuous processing for production of monoclonal antibody products. Current Opinion in Chemical Engineering, 31, 100671. https://doi.org/10.1016/j.coche.2021.100671.
Shirataki H., Yokoyama Y., Taniguchi H., Azeyanagi M. (2021a). Analysis of filtration behavior using integrated column chromatography followed by virus filtration. Biotechnology and Bioengineering, 118, 3569–3580. https://doi.org/10.1002/bit.27840.
Shirataki H., Yokoyama Y., Oguri R. (2021b). Effect of mixed-mode and surface-modified column chromatography on virus filtration performance. Biochemical Engineering Journal, 172 108034. https://doi.org/10.1016/j.bej.2021.108034.
Shirataki H. (2022). Analysis of filtration with virus removal filters using the characteristic form of blocking model. Biochemical Engineering Journal, 183, 108460. https://doi.org/10.1016/j.bej.2022.108460.
Sommer R., Tscheliessnig A., Satzer P., Schulz H., Helk B., Jungbauer A. (2015). Capture and intermediate purification of recombinant antibodies with combined precipitation methods. Biochemical Engineering Journal, 93, 200–211. http://dx.doi.org/10.1016/j.bej.2014.10.008
Zydney A.L. (2021). New developments in membranes for bioprocessing – A review. Journal of Membrane Science, 620, 118804. https://doi.org/10.1016/j.memsci.2020.118804