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Abstract: To retard the onset of undesired bifurcation, the bifurcation control has developed into

a theme of centralized research activities in delayed fractional-order system. In this paper, the problem

of bifurcation control for a delayed fractional-order predator-prey model is investigated by employing an

enhancing feedback control technique. The bifurcation point is firstly established for controlled model

by using delay as a bifurcation parameter. Then, a series of numerical comparative studies on the effects

of bifurcation control are implemented covering the partial or total removal of the branch for feedback

gains. It reveals that the stability performance of the proposed model can be overwhelmingly elevated

via the devised approaches in comparison with the dislocated feedback ones. A numerical example with

simulations is ultimately designed to confirm the merits of the proposed theoretical results.
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bifurcation

1 Introduction

In ecological systems, the interactions between two or more species and their dynamics are affected

by each other, which can be depicted by prey-predator system. The dynamics of prey-predator systems

is one of the basic topics in ecology owing to the worldwide importance and existence, which constructs

the complex food chains and food networks. The famous predator-prey model was established by [1, 2].

Afterwards, the dynamical behaviors of prey-predator models, such as chaos, stability, bifurcations and

oscillations usually depend on the system parameters. Time delays have been incorporated into biological

systems to describe and take into account the time required for resource regeneration time, maturation

period, reaction time, feeding time, gestation period [3, 4]. Nowadays, a great deal of outstanding results

have been derived on the analysis of predator-prey models [5, 6, 7, 8, 9].

Fractional order dynamical systems have attracted numerous researchers in various branches, espe-

cially science and engineering. Comparing to the orthodox integer order dynamical systems, the funda-

mental distinguished influence of fractional order is that infinite memory and more degrees of freedom

because it has nonlocal and weakly singular kernels [10, 11]. Most biological systems display fractional
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dynamics owing to memory effects. The presence of memory in the model describes the history of the

process involved and carries its impact to present and future developments of the process. Consequently,

the differential equations with fractional order can depict more accurately the real phenomena than those

with conventional integer order. Normally, modeling population dynamical systems with fractional order

can enrich the dynamics, augment the complexity of the models and ameliorate the performance of in-

tricate systems. Recently, some scholars have incorporated fractional calculus into predator-prey models

and developed fractional predator-prey ones. A large number of results related to fractional dynamics of

delayed predator-prey without delays [12, 13, 14, 15] or with delays [16, 17, 18, 19] have been captured.

Hopf bifurcation analysis is an efficient tool to acquire more information around the equilibrium

point of the complex dynamical system. Bifurcations have been extensively researched for procuring the

properties of nonlinear complicated dynamical systems [20, 21, 22, 23, 24]. It is well-known that first-class

good results on bifurcations have been derived in traditional integer-order models with time delays. In

recent years, the bifurcation of fractional-order delayed models has attracted increasing attention [25, 26,

27]. In [27], a delayed generalized fractional-order prey-predator model with interspecific competition was

studied, and the global asymptotic stability conditions and local bifurcation criterions of the equilibrium

were derived by choosing time delay as a bifurcation parameter.

Especially, bifurcation control is an extremely essential and efficient method. By means of it, one

can design a controller to suppress or reduce some existing bifurcation dynamics for a given nonlinear

system, thereby extending the stability domain and achieving some desirable dynamical behaviors. It

should be noted that the stability performance of fractional-order dynamical systems also can be overly

improved because of using the active bifurcation control strategies. The issue of bifurcation control of

delayed fractional models has attracted increasing attention [28, 29, 30, 31, 32, 33, 34]. In [28], the

onset of bifurcation of a delayed fractional-order small-world networks was effectively controlled by using

a fractional-order PD feedback controller. In [31], an neoteric extended delayed feedback strategy was

developed of a delayed fractional predator-prey model to deal with the bifurcation dynamics by adjusting

extended feedback delay or fractional order. In [32], a parametric delay feedback control approach was

further proposed to cope with bifurcation control for a delayed fractional dual congestion model, and it

was found that the stability performance can be extremely heightened by adopting the parametric delay

feedback controller. Generally, there exist many bifurcation control approaches including dislocated

feedback control, speed feedback control and enhancing feedback control [35, 36, 37], et al. In [37], it

revealed that the enhancing feedback control approach is the best choice of among the addressed four

feedback control methods in controlling hyperchaotic Lorenz system involving relatively simple external

inputs and relatively small necessary feedback coefficient. In [36], the author detected that the feedback

coefficients were smaller than the ones of ordinary feedback control during controlling hyperchaotic Lorenz

system, and the control cost were reduced. It should be pointed out that it is hard for a complex system

to be controlled by merely one feedback variable, and in such cases the feedback gain is always very large.

Therefore, it is essential and urgent to employ the enhancing feedback control to control the onset of

bifurcation for capturing high-quality performance of the addressed fractional-order dynamical systems.

Up to present, the bifurcation control of fractional predator-prey systems with delays based on enhancing

feedback control tool has been not properly investigated before.

Motivated by the aforemention discussions, we shall address a theoretical analysis on bifurcation

control for a delayed fractional-order predator-prey model by taking advantage of enhancing feedback
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control technique in this paper. The key features of this paper are listed as follows:

1) Enhancing feedback control strategy is developed to deal with the bifurcation control in a fractional

delayed predator-prey model.

2) The bifurcation point of the controlled model can be completely concluded by theoretical deriva-

tion.

3) The effects of fractional order on the bifurcation points are fully investigated by using enhancing

feedback control strategy and dislocated feedback. It is found that the performance of control gradually

becomes perfect with the decrement of fractional order.

4) We discover that enhancing feedback control strategy overmatches dislocated feedback ones in

delaying the onset of bifurcation control for the considered controlled system for given fractional order.

The rest of the current paper is arranged as follows. Some mathematical preliminaries are presented

in Section 2. In Section 3, the investigated model are addressed. Key bifurcation control results by using

enhancing feedback control method are wholly determined in Section 4. The efficiency of the proposed

control scheme is verified with the help of a simulation example in Section 5. Finally, the paper ends

with a conclusion.

2 Preliminaries

Many fractional derivative definitions are applied to deal with some practical issues including the

Riemann-Liouville definition and the Caputo definition, et al. It should be noted that the Caputo

derivative has many advantages consisting of the consistence of given initial conditions with integer-order

derivative, the description of well-understood features of physical situation. This paper employs the

Caputo derivative to handle the dynamical fractional-order systems.

Definition 2.1 [10] The Caputo fractional-order derivative is defined by

Dϕ
t f(t) =

1

Γ(l − ϕ)

∫ t

0

(t− s)l−ψ−1f (l)(s)ds,

where l − 1 ≤ ϕ < l ∈ Z+, Γ(·) is the Gamma function, Γ(s) =
∫∞
0
ts−1e−tdt.

The Laplace transform of the Caputo fractional-order derivatives is

L{Dϕ
t f(t); s} = sϕF (s)−

l−1∑
k=0

sϕ−k−1f (k)(0), l − 1 ≤ ϕ < l ∈ Z+.

If fk(0) = 0, k = 1, 2, . . . , n, then L{Dϕ
t f(t); s} = sϕF (s).

Lemma 2.1 [38] Consider the following n-dimensional linear fractional-order system

Dϕ1γ1(t) = k11γ1(t) + k12γ2(t) + · · ·+ k1nγn(t),

Dϕ2γ2(t) = k21γ1(t) + k22γ2(t) + · · ·+ k2nγn(t),

...

Dϕnγn(t) = kn1γ1(t) + kn2γ2(t) + · · ·+ knnγn(t),

(2.1)
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where 0 < ϕi < 1(i = 1, 2, . . . , n). It is assumed that ϕ is the lowest common multiple of the denominators

ψi of ϕi, where ϕi =
φi

ψi
, (φi, ψi) = 1, φi, ψi ∈ Z+, for i = 1, 2, . . . , n. Define

△(λ) =


λϕ1 − k11 −k12 · · · −k1n
−k21 λϕ2 − k22 · · · −k2n
...

...
. . .

...
−kn1 −kn2 · · · λϕn − knn

 .
Then the zero solution of system (2.1) is globally asymptotically stable in the Lyapunov sense if all roots

λof the equation det(△(λ)) = 0 satisfy | arg(λ)| > ϕiπ/2.

Lemma 2.2 [38] Consider the following n-dimensional linear fractional-order delayed system

Dϕ1γ1(t) = k11γ1(t− τ11) + k12γ2(t− τ12) + · · ·+ k1nγn(t− τ1n),

Dϕ2γ2(t) = k21γ1(t− τ21) + k22γ2(t− τ22) + · · ·+ k2nγn(t− τ2n),

...

Dϕnγn(t) = kn1γ1(t− τn1) + kn2γ2(t− τn2) + · · ·+ knnγn(t− τnn),

(2.2)

where ϕi ∈ (0, 1)(i = 1, 2, . . . , n), the initial values Vi(t) = Ψi(t) are given for −maxi,j, τi,j = −maxi,j ≤
t ≤ 0 and i = 1, 2, . . . , n. For system (2.2), time-delay matrix τ = (τi,j) ∈ (R+)n×n, coefficient matrix

H = (ki,j)n×n, state variables γi(t), γi(t−τi,j) ∈ R, and initial values Ψi(t) ∈ C0[−τmax, 0]. Its fractional

order is defined as ϕ = (ϕ1, ϕ2, . . . , ϕn). It is defined as

△(s) =


sϕ1 − k11e

−sτ11 −k12e
−sτ12 · · · −k1ne

−sτ1n

−k21e
−sτ21 sϕ2 − k22e

−sτ22 · · · −k2ne
−sτ2n

...
...

. . .
...

−kn1e
−sτn1 −kn2e

−sτn2 · · · sϕn − knne
−sτnn

 .
Then the zero solution of system (2.2) is Lyapunov globally asymptotically stable if all the roots of the

characteristic equation det(△(s)) = 0 have negative real parts.

3 Model formulation

In [39], the bifurcation of a ratio-dependent delayed predator-prey system with two delays was

considered. The mathematical model was formulated by
dN(t)

dt
= r1N(t)− εP (t)N(t),

dP (t)

dt
= P (t)

[
r2 − θ

P (t− τ2)

N(t− τ1)

]
,

(3.1)

where the variables and parameters of system (3.1) are explained in Table.1.

For the sake of succinctness, we assume that τ1 = τ2 = τ in system (3.1), then the following system

can be derived 
dN(t)

dt
= r1N(t)− εP (t)N(t),

dP (t)

dt
= P (t)

[
r2 − θ

P (t− τ)

N(t− τ)

]
.

(3.2)
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Table 1: The instructions relevant variables and parameters of system (3.1)

Variables(Parameters) Description

N(t) Population densities of prey at time t

P (t) Population densities of predator at time t

N(t− τ1) Juveniles of prey who was born at time t− τ1 and survive at time t

P (t− τ2) juveniles of prey and predator who were born at time t− τ2 and survive at time t

r1 Predation rate of the mature predator

r2 Conversion factor from the mature prey to the immature predator

ε Death rates of the immature prey

θ Death rates of the mature prey

In this paper, we add the enhancing feedback controllersK1[N(t)−N(t−τ)],K2[P (t)−P (t−τ) to the
model (3.2), that is the following fractional-order version predator-prey model with feedback controllers

DϕN(t) = r1N(t)− εP (t)N(t) +K1[N(t)−N(t− τ)],

DϕP (t) = P (t)
[
r2 − θ

P (t− τ)

N(t− τ)

]
+K2[P (t)− P (t− τ)],

(3.3)

where ϕ is fractional order, K1, K2 denote feedback gains. It is easy to see that the enhancing feedback

controllers preserves the equilibrium point of the system (3.3).

Noting that system (3.3) degenerates into the uncontrolled integer-order version system (3.2) when

ϕ = 1, K1 = K2 = 0. It is not difficult to see that the positive equilibrium point E∗ = (N∗, P ∗) of system

(3.3) is consistent with system (3.1) and (3.2), which can be acquired by solving the following equations:{
r1 − εP ∗ = 0,

r2N
∗ − θP ∗ = 0.

It implies that N∗ =
θr1
εr2

, P ∗ =
r1
ε
. Obviously, system (3.3) has a unique positive equilibrium point E∗.

To obtain the better control effects, we address the following essential assumption:

(H1) K1 ≤ 0, K2 ≤ 0.

The core objective of this paper is to discuss the problem of bifurcation control for system (3.3)

by taking time delay as a bifurcation parameter and the approach in [38]. Then, some comparative

investigations on bifurcation control are executed. It is found that the stability performance of the

controlled system can be extremely improved by enhancing feedback control than the dislocated feedback

control.

4 Main results

In this section, time delay shall be selected as a bifurcation parameter to investigate the problem of

bifurcation control for the predator-prey model (3.3). The existence bifurcation and bifurcation point for

the proposed model shall be established.
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Carrying out a transformation ρ(t) = N(t)−N∗, ϱ(t) = P (t)− P ∗, then the system (3.3) becomes
Dϕρ(t) = r1(ρ(t) +N∗)− ε(ϱ(t) + P ∗)(ρ(t) +N∗) +K1[ρ(t)− ρ(t− τ)],

Dϕϱ(t) = (ϱ(t) + P ∗)
[
r2 − θ

ϱ(t− τ) + P ∗

ρ(t− τ) +N∗

]
+K2[ϱ(t)− ϱ(t− τ)].

(4.1)

The linearized system of network (4.1) can be gained thatDϕρ(t) = −εN∗ϱ(t) +K1ρ(t)−K1ρ(t− τ),

Dϕϱ(t) = θ
(P ∗

N∗

)2

ρ(t− τ)− θ
P ∗

N∗ ϱ(t− τ) +K2ϱ(t)−K2ϱ(t− τ).
(4.2)

The associated characteristic equation of (4.2) is

det

[
sϕ −K1 +K1e

−sτ εN∗

−θ
(P ∗

N∗

)2

e−sτ sϕ −K2 +
(
K2 + θ

P ∗

N∗

)
e−sτ

]
= 0. (4.3)

Based on Eq.(4.3), we conclude that

P1(s) + P2(s)e
−sτ + P3(s)e

−2sτ = 0, (4.4)

where

P1(s) = s2ϕ − (K1 +K2)s
ϕ +K1K2,

P2(s) = (K1 +K2 + α)sϕ + β − 2K1K2 − αK1,

P3(s) = K1(K2 + α),

α = θ
P ∗

N∗ ,

β = αεP ∗.

Multiply esτ on both sides of Eq.(4.4), then we get that

P1(s)e
sτ + P2(s) + P3(s)e

−sτ = 0. (4.5)

Assume that s = ϖ(cos π2 + i sin π
2 )(ϖ > 0) is a purely imaginary root of Eq.(4.5), then we have{

(A1 +A3) cosϖτ + (B3 −B1) sinϖτ = −A2,

(B1 +B3) cosϖτ + (A1 −A3) sinϖτ = −B2,
(4.6)

where Ai, Bi(i = 1, 2, 3) are the real parts and imaginary parts of Pi(s). Ai, Bi can be described as

follows:

A1 = ϖ2ϕ cosϕπ − (K1 +K2)ϖ
ϕ cos

ϕπ

2
+K1K2,

B1 = ϖ2ϕ sinϕπ − (K1 +K2)ϖ
ϕ sin

ϕπ

2
,

A2 = (K1 +K2 + α)ϖϕ cos
ϕπ

2
+ β − 2K1K2 − αK1,

B2 = (K1 +K2 + α)ϖϕ sin
ϕπ

2
,

A3 = K1(K2 + α),

B3 = 0.
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We further label

F1(ϖ) = −A2(A1 −A3)−B1B2,

F2(ϖ) = −B2(A1 +A3) +B1A2,

G(ϖ) = A2
1 +B2

1 −A2
3.

It follows from Eq.(4.6) that 
cosϖτ =

F1(ϖ)

G(ϖ)
,

sinϖτ =
F2(ϖ)

G(ϖ)
.

(4.7)

In terms of Eq.(4.7), we procure that

G2(ϖ) = F 2
1 (ϖ) + F 2

2 (ϖ). (4.8)

It can be defined from Eq.(4.8) that

H(ϖ) = G2(ϖ)− F 2
1 (ϖ)− F 2

2 (ϖ) = 0. (4.9)

Under Eq.(4.9), we can obtain that

H(ϖ) = ϖ8ϕ + l1ϖ
7ϕ + l2ϖ

6ϕ + l3ϖ
5ϕ + l4ϖ

4ϕ + l5ϖ
3ϕ + l6ϖ

2ϕ + l7ϖ
ϕ + l8 = 0, (4.10)

where li(i = 1, 2, . . . , 8) are computed in Appendix A−B.

In order to guarantee the occurrence of Hopf bifurcation for system (3.3), we further give the addi-

tional assumption:

(H2) Eq.(4.10) has at least positive real roots.

It should be noted that the assumption (H2) is only a necessary condition for the bifurcation of the

system (3.3), not a sufficient condition.

According to cosϖτ =
F1(ϖ)

G(ϖ)
, we can get

τ (k) =
1

ϖ

[
arccos

F1(ϖ)

G(ϖ)
+ 2kπ

]
, k = 0, 1, 2, . . . . (4.11)

Define the bifurcation point

τ0 = min{τ (k)}, k = 0, 1, 2, . . . ,

where τ (k) is defined by Eq.(4.11).

In what follows, we will consider the stability of system (3.3) when τ = 0. If τ is removed, the

characteristic Eq. (4.4) becomes

λ2ϕ + αλϕ + β = 0. (4.12)

It is obvious from α > 0, β > 0 that the two roots of Eq.(4.12) have negative parts which satisfying

Lemma 2.1. Hence, the positive equilibrium of the fractional system (3.3) is asymptotically stable.
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In order to acquire the transversality condition of the occurrence for Hopf bifurcation, the following

necessary assumption is needed for system (3.3):

(H3)
χ1υ1 + χ2υ2
υ21 + υ22

̸= 0,

where χ1, χ2, υ1, υ2 are defined by Eq.(4.15).

Lemma 4.1 Let s(τ) = ξ(τ)+iϖ(τ) be the root of Eq.(4.4) near τ = τj satisfying ξ(τj) = 0, ϖ(τj) = ϖ0,

then the following transversality condition holds

Re
[ ds
dτ

]∣∣∣
(ϖ=ϖ0,τ=τ0)

̸= 0,

where ϖ0, τ0 represent the critical frequency and bifurcation point of system (3.3).

Proof: By using implicit function theorem and differentiating (4.4) with respect to τ , we can get

P ′
1(s)

ds

dτ
+
[
P ′
2(s)

ds

dτ
e−sτ + P2(s)e

−sτ
(
− τ

ds

dτ
− s

)]
+
[
P ′
3(s)

ds

dτ
e−2sτ + 2P3(s)e

−2sτ
(
− τ

ds

dτ
− s

)]
= 0.

(4.13)

It is clear from Eq.(4.12) that P ′
3(s) = 0. By mathematical derivation, it follows from Eq.(4.13) that

dς

dτ
=
χ(s)

υ(s)
, (4.14)

where

χ(s) = s[P2(s)e
−sτ + 2P3(s)e

−2sτ ],

υ(s) = P ′
1(2) + [P ′

2(s)− τP2(s)]e
−sτ − 2τP3(s)e

−2sτ .

Let PRi , P Ii stand for the real parts and the imaginary parts of Pi(s). Let P
′R
i , P

′I
i denote the real

parts and the imaginary parts of P ′
i (s). Then by some computation, it can be deduced from (4.14) that

Re
[ ds
dτ

]∣∣∣
(ϖ=ϖ0,τ=τ0)

=
χ1υ1 + χ2υ2
υ21 + υ22

, (4.15)

where

χ1 = ϖ0(P
R
2 sinϖ0τ0 − P I2 cosϖ0τ0 + 2PR3 sin 2ϖ0τ0 − 2P I3 cos 2ϖ0τ0),

χ2 = ϖ0(P
R
2 cosϖ0τ0 + P I2 sinϖ0τ0 + 2PR3 cos 2ϖ0τ0 + 2P I3 sin 2ϖ0τ0),

υ1 = P
′R
1 + (P

′R
2 − τ0P

R
2 ) cosϖ0τ0 + (P

′I
2 − τ0P

I
2 ) sinϖ0τ0,

− 2τ0(P
R
3 cos 2ϖ0τ0 + P I3 sin 2ϖ0τ0),

υ2 = P
′I
1 + (P

′I
2 − τ0P

I
2 ) cosϖ0τ0 − (P

′R
2 − τ0P

R
2 ) sinϖ0τ0,

− 2τ0(P
I
3 cos 2ϖ0τ0 − PR3 sin 2ϖ0τ0).

(H3) indicates that transversality condition hold. We accomplish the proof of Lemma 4.1.

Based on the assumptions (H1)-(H3) and previous analysis, the following theorem can be derived.

Theorem 4.1 Under (H1)-(H3), the following results hold:

1) E∗ of the fractional system (3.3) is asymptotically stable when τ ∈ [0, τ0);

2) System (3.3) undergoes a Hopf bifurcation at E∗ when τ = τ0, i.e., it has a branch of periodic

solutions bifurcating from E∗ near τ = τ0.
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Remark 4.1 It is difficult to theoretically analyze all the positive real roots. Nevertheless, these positive

real roots of Eq.(4.10) can be easily computed by using Maple numerical software. Hence, the critical

frequency ϖ0 and bifurcation point τ0 can be accurately established.

Remark 4.2 Some analogous models were analyze in [40, 41, 42, 43]. It is worth mentioning that these

results only concentrated on the dynamics of integer-order predator-prey models. It is more realistic to

explore the dynamics of delayed predator-prey models by fully considering the effects of fractional calculus

for ecosystems in this paper.

Remark 4.3 In this paper, the effects of fractional order on the bifurcation point are adequately discussed

by calculation. It implies that the better effects in delaying the onset of bifurcation can be achieved as

fractional order decreases if feedback gain are established.

Remark 4.4 In [28, 29, 30, 31, 32], various bifurcation strategies were adopted to control the onset of

bifurcation for delayed fractional-order systems. Noting that these remarkable results only were obtained

all based on the dislocated feedback approaches. Different from existing methods, the enhancing feedback

control strategy is delay onset of the bifurcation for fractional delayed predator-prey system and satis-

factory bifurcation control effects are realized compared with the dislocated feedback approaches in this

paper. This hints that the proposed enhancing controllers possess a superior performance in controlling

bifurcation in delayed fractional-order systems. The derived results can be extended to deal with others

fractional-order systems with time delay.

5 Numerical simulations

In this section, a simulation example is exploited to exhibit the correctness of the addressed the-

ory. In our simulations, Adama-Bashforth-Moulton predictor-corrector scheme is adopted in [44]. For

convenience of comparison, the uniform parameters are taken from [39]: r1 = 0.45, r2 = 0.1, ε = 0.03,

θ = 0.05. The positive equilibrium point E∗ can be obtained as (N∗, P ∗) = (7.5, 15). Step-length is

chosen as h = 0.01, and the initial values are taken as (N(0), P (0)) = (8, 16). Consider the controlled

system 
DϕN(t) = 0.45N(t)− 0.03P (t)N(t) +K1[(N(t)−N(t− τ)],

DϕP (t) = P (t)
[
0.1− 0.05

P (t− τ)

N(t− τ)

]
+K2[(P (t)− P (t− τ)].

(5.1)

Selecting ϕ = 0.98, K1 = −0.08, K2 = −0.15 in system (5.1), it is derived that ϖ0 = 0.1496,

then τ0 = 4.4222. In terms of Theorem 4.1, E∗ of controlled system (5.1) is asymptotically stable when

τ = 3.8 < τ0, which, depicted in Figs.1-2, while Figs.3-4 display that E∗ of controlled system (5.1) is

unstable, Hopf bifurcation occurs when τ = 4.8 > τ0. Bifurcation diagrams of system (5.1) are simulated

in Figs.5-6.

The same order is chosen as ϕ = 0.98. We first select K1 = K2 = 0, which means that the controllers

are removed, we derive τ0 = 2.3807. We further choose τ = 3.8 > τ0 = 2.3807, it is clear that system (5.1)

becomes unstable, which is depicted in Figs.7-8. Then we choose K2 = 0, K1 = −0.08. This indicates

that dislocated feedback control emerges, then we have τ0 = 3.0079. We choose τ = 3.8 > τ0 = 3.0079, it
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is obvious that system (5.1) becomes unstable, which is simulated in Figs.9-10. If K1 = 0, K2 = −0.15,

it suggests that dislocated feedback control occurs, then we have τ0 = 2.8650. We also choose τ = 3.8 >

τ0 = 2.8650, it is obvious that system (5.1) becomes unstable, which is simulated in Figs.11-12.

In brief, system (5.1) will turn unstable once the controllers all are removed or dislocated feedback

controller engenders.

In what follows, we shall fully consider the effects of the proposed enhancing control scheme.

Case 1. Selecting three sets of parameters K1 = −0.08, K2 = −0.15; K1 = −0.08, K2 = −0.15;

K1 = −0.08, K2 = 0; K1 = 0, K2 = −0.15, respectively. By varying ϕ, we derive the values of τ0,

the comparative results are addressed in Figs.13-15. Fig.13 describes that the bifurcation point is more

larger with K1 = −0.08, K2 = −0.15 than that one with K1 = K2 = 0 for given ϕ. This verifies that

the effectiveness of the devised controllers. Figs.14-15 reveal that the performance of designed enhancing

controllers overmatch the single controller.

Case 2. Fixing ϕ = 0.98 and select two sets of parameters K2 = −0.15 and K2 = 0, then we derive

the values of τ0 with the change of K1, which is demonstrated in Fig.16. Fig.16 indicates that the control

effects are more better with the present of feedback gain K2 than the absence of it.

Case 3. Taking ϕ = 0.98 and select two sets of parameters K1 = −0.08 and K1 = 0, then we derive

the values of τ0 with the change of K2, which is demonstrated in Fig.17. Fig.17 discloses that the control

effects are more better with the present of feedback gain K1 than the absence of it.
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Figure 1: Time series of system (5.1) with ϕ = 0.98, K1 = −0.08, K2 = −0.15, τ = 3.8 < τ0 = 4.4222.
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Figure 2: Portrait diagram of system (5.1) with ϕ = 0.98, K1 = −0.08, K2 = −0.15, τ = 3.8 < τ0 =
4.4222.
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Figure 3: Time series of system (5.1) with ϕ = 0.98, K1 = −0.08, K2 = −0.15, τ = 4.8 > τ0 = 4.4222.
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Figure 4: Portrait diagram of system (5.1) with ϕ = 0.98, K1 = −0.08, K2 = −0.15, τ = 4.8 > τ0 =
4.4222.
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Figure 5: Bifurcation diagram of N(t) for system (5.1).
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Figure 6: Bifurcation diagram of P (t) for system (5.1).
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Figure 7: Time series of system (5.1) with ϕ = 0.98, K1 = K2 = 0, τ = 3.8.
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Figure 8: Portrait diagram of system (5.1) with ϕ = 0.98, K1 = K2 = 0, τ = 3.8.
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Figure 9: Time series of system (5.1) with ϕ = 0.98, K1 = −0.08, K2 = 0, τ = 3.8.
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Figure 10: Portrait diagram of system (5.1) with ϕ = 0.98, K1 = −0.08, K2 = 0, τ = 3.8.
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Figure 11: Time series of system (5.1) with ϕ = 0.98, K1 = 0, K2 = −0.15, τ = 3.8.
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Figure 12: Portrait diagram of system (5.1) with ϕ = 0.98, K1 = 0, K2 = −0.15, τ = 3.8.
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Figure 13: Comparison on the values of τ0 versus ϕ for system (5.1).
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Figure 14: Comparison on the values of τ0 versus ϕ for system (5.1).
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Figure 15: Comparison on the values of τ0 versus ϕ for system (5.1).
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Figure 16: Comparison on the values of τ0 versus K1 for system (5.1) with ϕ = 0.98.
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Figure 17: Comparison on the values of τ0 versus K2 for system (5.1) with ϕ = 0.98.
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6 Conclusion

In this paper, we address a theoretical analysis on bifurcation control for a delayed fractional-order

predator-prey model by taking advantage of enhancing feedback control technique. An enhancing feed-

back control strategy is firstly developed to deal with the bifurcation control in a fractional delayed

predator-prey model. This hints that the proposed enhancing controllers possess a superior performance

in controlling bifurcation in delayed fractional-order systems. Then the bifurcation point of the con-

trolled model can be completely concluded by theoretical derivation. The effects of fractional order on

the bifurcation points are fully investigated by using enhancing feedback control strategy and dislocated

feedback. It is found that the performance of control gradually becomes perfect with the decrement of

fractional order. It implies that the better effects in delaying the onset of bifurcation can be achieved as

fractional order decreases if feedback gain are established. We discover that enhancing feedback control

strategy overmatches dislocated feedback ones in delaying the onset of bifurcation control for the consid-

ered controlled system for given fractional order. Finally, numerical simulations validate the efficiency of

the derived theoretical results.
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Appendix A

l1 = −4(K1 +K2) cos
ϕπ

2
,

l2 = (K2
1 +K2

2 − α2 − 2K1K2 − 2αK1 − 2αK2)(sin
2 ϕπ cos2

ϕπ

2
+ cos2 ϕπ sin2

ϕπ

2
)

+ (5K2
1 + 5K2

2 − α2 + 10K1K2 − 2αK1 − 2αK2)(sin
2 ϕπ sin2

ϕπ

2
+ cos2 ϕπ cos2

ϕπ

2
)

+ 2(K1 +K2)
2 sinϕπ sin 2ϕπ + 4K1K2(cosϕπ sin

2 ϕπ + cos3 ϕπ
)
,

l3 = (−6K2
1K2 − 6K1K

2
2 + 2α2K1 + 2α2K2 + 4αK2

1 + 4αK2
2 + 8αK1K2 − 2K3

1 − 2K3
2 )

· (sinϕπ sin3 ϕπ
2

+ cosϕπ cos3
ϕπ

2
) + (2α2K1 − 2βK1 − 2βK2 − 2αβ − 8K2

2K1 − 8K2
1K2

+ 2αK2
1 + 6αK1K2) cos

2 ϕπ cos
ϕπ

2
+ (−2βK1 − 2βK2 − 2αβ + 2α2K1 + 2αK2

1 + 6αK1

·K2) sin
2 ϕπ cos

ϕπ

2
+ (−2K3

1 − 2K3
2 + 2α2K1 + 2α2K2 + 4αK2

1 − 6K2
1K2 − 6K1K

2
2

+ 4αK2
2 + 8αK1K2)(cosϕπ cos

ϕπ

2
sin2

ϕπ

2
+ sinϕπ sin

ϕπ

2
cos2

ϕπ

2
)− 8K1K2(K1 +K2)

· sinϕπ cosϕπ sin ϕπ
2
,

l4 = −α(2αK1K2 + 6K2
1K2 + 6K2

2K1 + 2K3
1 + 2K3

2 + αK2
2 + αK2

1 )(sin
4 ϕπ

2
+ cos4

ϕπ

2
)

+ (4βK1K2 + 2αβK1 − 8αK2
1K2 − 4K2

1K
2
2 − β2 − 3α2K2

1 ) sin
2 ϕπ + (2αβK1 − 8αK2

1K2

+ 4βK1K2 − β2 − 3α2K2
1 ) cos

2 ϕπ + (4K2
2K1 + 4βK2

2 + 4βK2
1 + 2α3K1 − 10αK2

2K1

+ 8βK1K2 + 4αβK2 + 4αβK2 + 4K3
1K2 + 8K2

1K
2
2 − 2αK3

1 − 12αK3
1K2) cosϕπ cos

2 ϕπ

2

− α(2αK2
2 + 2αK2

1 + 4K3
2 + 4K3

1 + 4αK1K2 + 12K2
2K1 + 12K2

1K2) cos
2 ϕπ

2
sin2

ϕπ

2

− (2α3K1 + 2αK3
1 + 4K2

1 + 8α2K1K2 + 10K1K
2
2 + 12αK2

1K2) cosϕπ sin
2 ϕπ

2
+ 4(βK2

1

+ βK2
2 +K2

2K1 + α2K1 + αβK1 + αβK2 + α2K2
1 + 2βK1K2 + 2α2K1K2 + 2K2

1K
2
2 )

· sinϕπ sin ϕπ
2

cos
ϕπ

2
+ 4K3

1K2 sinϕπ sin
ϕπ

2
.
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Appendix B

l5 = (−4α2K2
1K2 − 4αβK1K2 + 4αK3

1K2 + 8αK2
1K

2
2 + 4αK3

2K1 − 2α2K3
1 − 6βK2

1K2 − 2α3K2
1

− 2αβK2
1 − 2α3K1K2 − 2αβK2

2 − 2α2K2
2K1 − 6βK2

2K1 − 2βK3
2 − 2βK3
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2
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2K1
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2
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2
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2
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