References
Aitkenhead-Peterson, J. A., McDowell, W. H., & Neff, J. C. (2003).
Sources, production, and regulation of allochthonous dissolved organic
matter inputs to surface waters. In Aquatic ecosystems (pp.
25-70). Academic Press.
Alstatt, D., & Miles, R. L. (1983). Soil survey of Grand County area,
Colorado.
Anderson‐Teixeira, K. J., Miller, A. D., Mohan, J. E., Hudiburg, T. W.,
Duval, B. D., & DeLucia, E. H. (2013). Altered dynamics of forest
recovery under a changing climate. Global change
biology , 19 (7), 2001-2021.
Argerich, A., Johnson, S. L., Sebestyen, S. D., Rhoades, C. C.,
Greathouse, E., Knoepp, J. D., & Scatena, F. N. (2013). Trends in
stream nitrogen concentrations for forested reference catchments across
the USA. Environmental Research Letters , 8 (1), 014039.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K.,
Richter, A., & Tranvik, L. J. (2009). The boundless carbon
cycle. Nature Geoscience , 2 (9), 598-600.
Beggs, K. M., & Summers, R. S. (2011). Character and chlorine
reactivity of dissolved organic matter from a mountain pine beetle
impacted watershed. Environmental Science &
Technology , 45 (13), 5717-5724.
Benner, R. (2003). Molecular indicators of the bioavailability of
dissolved organic matter. In Aquatic Ecosystems (pp. 121-137).
Academic Press.
Berg, B., & McClaugherty, C. (2014). Decomposition as a process: some
main features. In Plant Litter (pp. 11-34). Springer, Berlin,
Heidelberg.
Berggren, M., Lapierre, J. F., & Del Giorgio, P. A. (2012). Magnitude
and regulation of bacterioplankton respiratory quotient across
freshwater environmental gradients. The ISME
journal , 6 (5), 984-993.
Bos, M. G. (1989). Discharge Measurement Structures . Wageningen,
Netherlands, ILRI Pub. 20.
Burns, R. M., & Honkala, B. H. (1990). Silvics of North America. Volume
1. Conifers. Agriculture Handbook (Washington) , (654).
Cawley, K. M., Yamashita, Y., Maie, N., & Jaffé, R. (2014). Using
optical properties to quantify fringe mangrove inputs to the dissolved
organic matter (DOM) pool in a subtropical estuary. Estuaries and
coasts , 37 (2), 399-410.
Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G.,
Reed, S. C., & Zhu, Z. (2018). Second state of the carbon cycle report.
Chantigny, M. H. (2003). Dissolved and water-extractable organic matter
in soils: a review on the influence of land use and management
practices. Geoderma , 113 (3-4), 357-380.
Chatterjee, A., Vance, G. F., Pendall, E., & Stahl, P. D. (2008).
Timber harvesting alters soil carbon mineralization and microbial
community structure in coniferous forests. Soil Biology and
Biochemistry , 40 (7), 1901-1907.
Chatterjee, A., Vance, G. F., & Tinker, D. B. (2009). Carbon pools of
managed and unmanaged stands of ponderosa and lodgepole pine forests in
Wyoming. Canadian Journal of Forest Research , 39 (10),
1893-1900.
Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003).
Fluorescence excitation− emission matrix regional integration to
quantify spectra for dissolved organic matter. Environmental
science & technology , 37 (24), 5701-5710.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L.
J., Striegl, R. G., & Melack, J. (2007). Plumbing the global carbon
cycle: integrating inland waters into the terrestrial carbon
budget. Ecosystems , 10 (1), 172-185.
Collins, B. J., Rhoades, C. C., Hubbard, R. M., & Battaglia, M. A.
(2011). Tree regeneration and future stand development after bark beetle
infestation and harvesting in Colorado lodgepole pine
stands. Forest Ecology and Management , 261 (11), 2168-2175.
Colvin, S. A., Sullivan, S. M. P., Shirey, P. D., Colvin, R. W.,
Winemiller, K. O., Hughes, R. M., & Danehy, R. J. (2019). Headwater
streams and wetlands are critical for sustaining fish, fisheries, and
ecosystem services. Fisheries , 44 (2), 73-91.
Córdova, S. C., Olk, D. C., Dietzel, R. N., Mueller, K. E.,
Archontouilis, S. V., & Castellano, M. J. (2018). Plant litter quality
affects the accumulation rate, composition, and stability of
mineral-associated soil organic matter. Soil Biology and
Biochemistry , 125 , 115-124.
Cory, R. M., & McKnight, D. M. (2005). Fluorescence spectroscopy
reveals ubiquitous presence of oxidized and reduced quinones in
dissolved organic matter. Environmental science &
technology , 39 (21), 8142-8149.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E.
(2013). The Microbial Efficiency‐Matrix Stabilization (MEMS) framework
integrates plant litter decomposition with soil organic matter
stabilization: do labile plant inputs form stable soil organic matter?.
Global Change Biology, 19(4), 988-995.
D’Andrilli, J., Junker, J. R., Smith, H. J., Scholl, E. A., & Foreman,
C. M. (2019). DOM composition alters ecosystem function during microbial
processing of isolated sources. Biogeochemistry , 142 (2),
281-298.
Evans, L. R., Pierson, D., & Lajtha, K. (2020). Dissolved organic
carbon production and flux under long-term litter manipulations in a
Pacific Northwest old-growth forest. Biogeochemistry, 149(1), 75-86.
FOREST INVENTORY AND ANALYSIS (FIA). 2019. Phase 3 field guide: Soil
measurements and sampling, October 2019. US Forest Service, FIA program,
Washington, DC. Available online at
fia.fs.fed.us/library/field-guides-methods-proc; last accessed October
30, 2019.
Fuss, C. B., Driscoll, C. T., Green, M. B., & Groffman, P. M. (2016).
Hydrologic flowpaths during snowmelt in forested headwater catchments
under differing winter climatic and soil frost
regimes. Hydrological Processes , 30 (24), 4617-4632.
Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J.,
Fischer, G., & Jones, C. D. (2011). Harmonization of land-use scenarios
for the period 1500–2100: 600 years of global gridded annual land-use
transitions, wood harvest, and resulting secondary lands. Climatic
change , 109 (1-2), 117.
Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R.,
Hagedorn, F., … & Byrne, K. A. (2007). How strongly can forest
management influence soil carbon
sequestration?. Geoderma , 137 (3-4), 253-268.
Johnson, C. E., Johnson, A. H., Huntington, T. G., & Siccama, T. G.
(1991). Whole‐tree clear‐cutting effects on soil horizons and
organic‐matter pools. Soil Science Society of America
Journal , 55 (2), 497-502.
Kubista, M., Sjöback, R., Eriksson, S., & Albinsson, B. (1994).
Experimental correction for the inner-filter effect in fluorescence
spectra. Analyst , 119 (3), 417-419.
Kuzyakov, Y. (2010). Priming effects: interactions between living and
dead organic matter. Soil Biology and Biochemistry, 42(9), 1363-1371.
Lajtha, K., & Jones, J. (2018). Forest harvest legacies control
dissolved organic carbon export in small watersheds, western
Oregon. Biogeochemistry , 140 (3), 299-315.
Lawaetz, A. J., & Stedmon, C. A. (2009). Fluorescence intensity
calibration using the Raman scatter peak of water. Applied
spectroscopy , 63 (8), 936-940.
Lee, B. S., & Lajtha, K. (2016). Hydrologic and forest management
controls on dissolved organic matter characteristics in headwater
streams of old-growth forests in the Oregon Cascades. Forest
ecology and management , 380 , 11-22.
Lee, M. H., Park, J. H., & Matzner, E. (2018). Sustained production of
dissolved organic carbon and nitrogen in forest floors during continuous
leaching. Geoderma , 310 , 163-169.
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil
organic matter. Nature , 528 (7580), 60-68.
Lennon, J. T., & Pfaff, L. E. (2005). Source and supply of terrestrial
organic matter affects aquatic microbial metabolism. Aquatic
Microbial Ecology , 39 (2), 107-119.
Lotan, J. E., & Perry, D. A. (1983). Ecology and regeneration of
lodgepole pine (No. 606). US Department of Agriculture, Forest Service.
McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H.,
Bond-Lamberty, B., Chini, L., & Hurtt, G. C. (2020). Pervasive shifts
in forest dynamics in a changing
world. Science , 368 (6494).
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe,
T., & Andersen, D. T. (2001). Spectrofluorometric characterization of
dissolved organic matter for indication of precursor organic material
and aromaticity. Limnology and Oceanography , 46 (1), 38-48.
Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010).
Harvest impacts on soil carbon storage in temperate
forests. Forest Ecology and Management , 259 (5), 857-866.
Pacific, V. J., Jencso, K. G., & McGlynn, B. L. (2010). Variable
flushing mechanisms and landscape structure control stream DOC export
during snowmelt in a set of nested
catchments. Biogeochemistry , 99 (1-3), 193-211.
Popovich, S. J. (1993). Flora of the Fraser Experimental Forest,
Colorado (Vol. 233). US Department of Agriculture, Forest Service,
Rocky Mountain Forest and Range Experiment Station.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., & Kortelainen, P. (2013). Global carbon dioxide emissions
from inland waters. Nature , 503 (7476), 355-359.
Reckhow, D. A., Singer, P. C., & Malcolm, R. L. (1990). Chlorination of
humic materials: byproduct formation and chemical
interpretations. Environmental science &
technology , 24 (11), 1655-1664.
Reuss, J. O., Stottlemyer, R., & Troendle, C. A. (1997). Effect of
clear cutting on nutrient fluxes in a subalpine forest at Fraser,
Colorado.
Rhoades, C. C., Hubbard, R. M., & Elder, K. (2017). A decade of
streamwater nitrogen and forest dynamics after a mountain pine beetle
outbreak at the Fraser Experimental Forest,
Colorado. Ecosystems , 20 (2), 380-392.
RStudio Team (2019). RStudio: Integrated Development for R. RStudio,
Inc., Boston, MA URL
http://www.rstudio.com/
Schmidt, S. K., Costello, E. K., Nemergut, D. R., Cleveland, C. C.,
Reed, S. C., Weintraub, M. N., & Martin, A. M. (2007). Biogeochemical
consequences of rapid microbial turnover and seasonal succession in
soil. Ecology, 88(6), 1379-1385.
Shroba, R. R., Bryant, B., Kellogg, K. S., Theobald, P. K., & Brandt,
T. R. (2010). Geologic map of the Fraser 7.5-minute quadrangle,
Grand County, Colorado . US Department of the Interior, US Geological
Survey.
Smith, H. J., Tigges, M., D’Andrilli, J., Parker, A., Bothner, B., &
Foreman, C. M. (2018). Dynamic processing of DOM: Insight from
exometabolomics, fluorescence spectroscopy, and mass
spectrometry. Limnology and oceanography letters , 3 (3),
225-235.
Sparling, G., Vojvodić-Vuković, M., & Schipper, L. A. (1998).
Hot-water-soluble C as a simple measure of labile soil organic matter:
the relationship with microbial biomass C. Soil Biology and
Biochemistry , 30 (10-11), 1469-1472.
Starr, B. (2004). Long-term effects of clear-cutting on N
availability and soil solution chemistry in the Fraser Experimental
Forest, Colorado (Doctoral dissertation, MS Thesis. Colorado State
University. Fort Collins, Colorado).
Stottlemyer, R., & Troendle, C. A. (1999). Effect of subalpine canopy
removal on snowpack, soil solution, and nutrient export, Fraser
Experimental Forest, CO. Hydrological
Processes , 13 (14‐15), 2287-2299.
Stubbins, A., Lapierre, J. F., Berggren, M., Prairie, Y. T., Dittmar,
T., & del Giorgio, P. A. (2014). What’s in an EEM? Molecular signatures
associated with dissolved organic fluorescence in boreal
Canada. Environmental science & technology , 48 (18),
10598-10606.
Troendle, C. A., & King, R. M. (1985). The effect of timber harvest on
the Fool Creek watershed, 30 years later. Water Resources
Research , 21 (12), 1915-1922.
Troendle, C. A., & Reuss, J. O. (1997). Effect of clear cutting on snow
accumulation and water outflow at Fraser, Colorado.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii,
R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance
as an indicator of the chemical composition and reactivity of dissolved
organic carbon. Environmental science &
technology , 37 (20), 4702-4708.
Williams, C. J., Yamashita, Y., Wilson, H. F., Jaffé, R., & Xenopoulos,
M. A. (2010). Unraveling the role of land use and microbial activity in
shaping dissolved organic matter characteristics in stream
ecosystems. Limnology and Oceanography , 55 (3), 1159-1171.
Wilm, H. G., & Dunford, E. G. (1948). Effect of timber cutting on
water available for stream flow from a lodgepole pine forest (No.
1488-2016-124318).
Yano, Y., Lajtha, K., Sollins, P., & Caldwell, B. A. (2005). Chemistry
and dynamics of dissolved organic matter in a temperate coniferous
forest on andic soils: effects of litter quality. Ecosystems, 8(3),
286-300.
Yamashita, Y., Kloeppel, B. D., Knoepp, J., Zausen, G. L., & Jaffé, R.
(2011). Effects of watershed history on dissolved organic matter
characteristics in headwater streams. Ecosystems, 14(7), 1110-1122.
Yavitt, J. B., & Fahey, T. J. (1984). An experimental analysis of
solution chemistry in a lodgepole pine forest floor. Oikos ,
222-234.
Yavitt, J. B., & Fahey, T. J. (1986). Litter decay and leaching from
the forest floor in Pinus contorta (lodgepole pine)
ecosystems. The Journal of Ecology , 525-545.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., & Saccomandi, F.
(1999). Differentiating with fluorescence spectroscopy the sources of
dissolved organic matter in soils subjected to
drying. Chemosphere , 38 (1), 45-50.
Table 1. Soil horizon mass, carbon (C) and nitrogen (N) pools,
C and N concentrations, and C:N ratios in organic and mineral (0-10cm)
soil horizons on adjacent old-growth and second-growth forest hillslopes
at the Fraser Experimental Forest, CO. Values are means with standard
errors (n=10 per hillslope type). Within each depth, * and ** denote
differences at p<0.01 and <0.001 using a Student’s
parametric t-test.
Table 2: Discharge, dissolved organic carbon (DOC), total
dissolved nitrogen (TDN) concentrations and annual fluxes in subsurface
flow from adjacent old-growth and second-growth hillslopes at the Fraser
Experimental Forest, CO. Values are means with standard errors for the
2016, 2017, and 2018 snowmelt seasons. Sample numbers for DOC and TDN
were n=36 for the old-growth and n=48 for second-growth. Differences
between hillslope treatments are noted by ** at p<0.001 using
a Welch-Satterthwaite non-parametric t-test.
Figure 1. Average daily subsurface flow (A) from adjacent
old-growth and second-growth hillslopes at the Fraser Experimental
Forest for 2016, 2017 and 2018. Dissolved organic carbon (B) and total
dissolved nitrogen (C) in subsurface flow (old-growth n = 36;
second-growth n = 48).
Figure 2. Components of fluorescing DOM (FDOM) in subsurface
flow differentiated by fluorescence regional integration (FRI) modeling.
Values are means from 2016, 2017 and 2018 for adjacent old-growth (n=23)
and second-growth (n=35) hillslopes. Differences between FRI regions
(RI-RV) were identified on logit transformed data at * and ** at
p<0.01 and 0.001 using a Welch-Satterthwaite non-parametric
t-test.
Figure 3. DOM quality and reactivity in subsurface leachate for
adjacent old-growth and second-growth hillslopes. DOM quality examined
through fluorescence index (A), and humification index (B) for samples
collected during 2016, 2017, and 2018 flow periods (n=23 for second
growth and n=35 for old-growth). Biological oxygen demand assays of DOM
reactivity report oxygen consumption during the 2018 flow period (C).
Figure 4. Reactivity measured as oxygen consumption rates for
DOM extracted from O-horizon litter inputs and subsurface flow exports
(n=10 per each hillslope treatment with standard error bars). The dashed
line shows oxygen consumption for a sample of the native microbial
culture without hillslope DOM added (experimental control). Differences
between hillslope treatments are noted by ** at p <0.001 using
a Student’s parametric t-test.