Reference
Addor, N., Newman, A. J., Mizukami, N., & Clark, M. P. (2017). The
CAMELS data set: catchment attributes and meteorology for large-sample
studies. Hydrol. Earth Syst. Sci. , 21.
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., &
Mendoza, P. A. (2020). Large-sample hydrology: recent progress,
guidelines for new datasets and grand challenges. Hydrological
Sciences Journal , 65 (5), 712–725.
https://doi.org/10.1080/02626667.2019.1683182
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N.,
Galleguillos, M., Zambrano-Bigiarini, M., et al. (2018). The CAMELS-CL
dataset: catchment attributes and meteorology for large sample studies
– Chile dataset. Hydrology and Earth System Sciences ,22 (11), 5817–5846. https://doi.org/10.5194/hess-22-5817-2018
Andersen, J., Refsgaard, J. C., & Jensen, K. H. (2001). Distributed
hydrological modelling of the Senegal River Basin — model construction
and validation. Journal of Hydrology , 247 (3), 200–214.
https://doi.org/10.1016/S0022-1694(01)00384-5
Asong, Z. E., Elshamy, M. E., Princz, D., Wheater, H. S., Pomeroy, J.
W., Pietroniro, A., & Cannon, A. (2020). High-resolution meteorological
forcing data for hydrological modelling and climate change impact
analysis in the Mackenzie River Basin. Earth System Science Data ,12 (1), 629–645. https://doi.org/10.5194/essd-12-629-2020
Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J.-D. (2011).
Flash flood forecasting, warning and risk management: the HYDRATE
project. Environmental Science & Policy , 14 (7), 834–844.
https://doi.org/10.1016/j.envsci.2011.05.017
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W.,
Reaney, S. M., & Roy, A. G. (2013). Concepts of hydrological
connectivity: Research approaches, pathways and future agendas.Earth-Science Reviews , 119 , 17–34.
https://doi.org/10.1016/j.earscirev.2013.02.001
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P.,
Slater, A. G., et al. (2008). Hydrological data assimilation with the
ensemble Kalman filter: Use of streamflow observations to update states
in a distributed hydrological model. Advances in Water Resources ,31 (10), 1309–1324.
https://doi.org/10.1016/j.advwatres.2008.06.005
Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford,
J., et al. (2020). CAMELS-GB: Hydrometeorological time series and
landscape attributes for 671 catchments in Great Britain. Earth
System Science Data Discussions , 1–34.
https://doi.org/10.5194/essd-2020-49
Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G., Gupta,
H. V., et al. (2006). Model Parameter Estimation Experiment (MOPEX): An
overview of science strategy and major results from the second and third
workshops. Journal of Hydrology , 320 (1), 3–17.
https://doi.org/10.1016/j.jhydrol.2005.07.031
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley,
S. L., et al. (2019). Hillslope Hydrology in Global Change Research and
Earth System Modeling. Water Resources Research , 55 (2),
1737–1772. https://doi.org/10.1029/2018WR023903
Foy, C., Arabi, M., Yen, H., Gironás, J., & Bailey, R. T. (2015).
Multisite Assessment of Hydrologic Processes in Snow-Dominated
Mountainous River Basins in Colorado Using a Watershed Model.Journal of Hydrologic Engineering , 20 (10), 04015017.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001130
Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark,
M., & Andréassian, V. (2014). Large-sample hydrology: a need to balance
depth with breadth. Hydrology and Earth System Sciences ,18 (2), 463–477. https://doi.org/10.5194/hess-18-463-2014
Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., & Soulsby,
C. (2013). What can flux tracking teach us about water age distribution
patterns and their temporal dynamics? Hydrology and Earth System
Sciences , 17 (2), 533–564.
https://doi.org/10.5194/hess-17-533-2013
James, A. L., & Roulet, N. T. (2007). Investigating hydrologic
connectivity and its association with threshold change in runoff
response in a temperate forested watershed. Hydrological
Processes , 21 (25), 3391–3408. https://doi.org/10.1002/hyp.6554
Jha, M., Pan, Z., Takle, E. S., & Gu, R. (2004). Impacts of climate
change on streamflow in the Upper Mississippi River Basin: A regional
climate model perspective. Journal of Geophysical Research:
Atmospheres , 109 (D9). https://doi.org/10.1029/2003JD003686
Khan, S. I., Hong, Y., Wang, J., Yilmaz, K. K., Gourley, J. J., Adler,
R. F., et al. (2011). Satellite Remote Sensing and Hydrologic Modeling
for Flood Inundation Mapping in Lake Victoria Basin: Implications for
Hydrologic Prediction in Ungauged Basins. IEEE Transactions on
Geoscience and Remote Sensing , 49 (1), 85–95.
https://doi.org/10.1109/TGRS.2010.2057513
Kirchner, J. W., Feng, X., & Neal, C. (2000). Fractal stream chemistry
and its implications for contaminant transport in catchments.Nature , 403 (6769), 524–527.
https://doi.org/10.1038/35000537
Kuentz, A., Arheimer, B., Hundecha, Y., & Wagener, T. (2017).
Understanding hydrologic variability across Europe through catchment
classification. Hydrology and Earth System Sciences ,21 (6), 2863–2879. https://doi.org/10.5194/hess-21-2863-2017
Kumar, S. V., Peters-Lidard, C. D., Eastman, J. L., & Tao, W.-K.
(2008). An integrated high-resolution hydrometeorological modeling
testbed using LIS and WRF. Environmental Modelling & Software ,23 (2), 169–181. https://doi.org/10.1016/j.envsoft.2007.05.012
Liu, H., van Oosterom, P., Hu, C., & Wang, W. (2016). Managing Large
Multidimensional Array Hydrologic Datasets: A Case Study Comparing
NetCDF and SciDB. Procedia Engineering , 154 , 207–214.
https://doi.org/10.1016/j.proeng.2016.07.449
Marchi, L., Borga, M., Preciso, E., & Gaume, E. (2010).
Characterisation of selected extreme flash floods in Europe and
implications for flood risk management. Journal of Hydrology ,394 (1), 118–133. https://doi.org/10.1016/j.jhydrol.2010.07.017
McDonnell, J. J., McGuire, K., Aggarwal, P., Beven, K. J., Biondi, D.,
Destouni, G., et al. (2010). How old is streamwater? Open questions in
catchment transit time conceptualization, modelling and analysis.Hydrological Processes , 24 (12), 1745–1754.
https://doi.org/10.1002/hyp.7796
Nearing, G. S., Ruddell, B. L., Clark, M. P., Nijssen, B., &
Peters-Lidard, C. (2018). Benchmarking and Process Diagnostics of Land
Models. Journal of Hydrometeorology , 19 (11), 1835–1852.
https://doi.org/10.1175/JHM-D-17-0209.1
Nord, G., Boudevillain, B., Berne, A., Branger, F., Braud, I., Dramais,
G., et al. (2017). A high space-time resolution dataset linking
meteorological forcing and hydro-sedimentary response in a mesoscale
Mediterranean catchment (Auzon) of the Ardeche region, France.
https://doi.org/10.5194/essd-9-221-2017
Pappas, C., Papalexiou, S. M., & Koutsoyiannis, D. (2014). A quick gap
filling of missing hydrometeorological data. Journal of
Geophysical Research: Atmospheres , 119 (15), 9290–9300.
https://doi.org/10.1002/2014JD021633
Perrin, J., Jeannin, P.-Y., & Zwahlen, F. (2003). Epikarst storage in a
karst aquifer: a conceptual model based on isotopic data, Milandre test
site, Switzerland. Journal of Hydrology , 279 (1), 106–124.
https://doi.org/10.1016/S0022-1694(03)00171-9
Qi, M., Feng, M., Sun, T., & Yang, W. (2016). Resilience changes in
watershed systems: A new perspective to quantify long-term hydrological
shifts under perturbations. Journal of Hydrology , 539 ,
281–289. https://doi.org/10.1016/j.jhydrol.2016.05.039
Razavi, T., & Coulibaly, P. (2013). Streamflow Prediction in Ungauged
Basins: Review of Regionalization Methods. Journal of Hydrologic
Engineering , 18 (8), 958–975.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., & Prabhat. (2019). Deep learning and process
understanding for data-driven Earth system science. Nature ,566 (7743), 195–204. https://doi.org/10.1038/s41586-019-0912-1
Romañach, S. S., McKelvy, M., Suir, K., & Conzelmann, C. (2015).
EverVIEW: A visualization platform for hydrologic and Earth science
gridded data. Computers & Geosciences , 76 , 88–95.
https://doi.org/10.1016/j.cageo.2014.12.004
Rozalis, S., Morin, E., Yair, Y., & Price, C. (2010). Flash flood
prediction using an uncalibrated hydrological model and radar rainfall
data in a Mediterranean watershed under changing hydrological
conditions. Journal of Hydrology , 394 (1), 245–255.
https://doi.org/10.1016/j.jhydrol.2010.03.021
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., & Carrillo, G.
(2011). Catchment classification: empirical analysis of hydrologic
similarity based on catchment function in the eastern USA.Hydrology and Earth System Sciences Discussions , 8 (3),
4495–4534. https://doi.org/10.5194/hessd-8-4495-2011
Schmocker-Fackel, P., Naef, F., & Scherrer, S. (2007). Identifying
runoff processes on the plot and catchment scale. Hydrology and
Earth System Sciences Discussions , 11 (2), 891–906.
Signell, R. P., Carniel, S., Chiggiato, J., Janekovic, I., Pullen, J.,
& Sherwood, C. R. (2008). Collaboration tools and techniques for large
model datasets. Journal of Marine Systems , 69 (1),
154–161. https://doi.org/10.1016/j.jmarsys.2007.02.013
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H.,
Lakshmi, V., et al. (2003). IAHS Decade on Predictions in Ungauged
Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological
sciences. Hydrological Sciences Journal , 48 (6), 857–880.
https://doi.org/10.1623/hysj.48.6.857.51421
Soulsby, C., Tetzlaff, D., Rodgers, P., Dunn, S., & Waldron, S. (2006).
Runoff processes, stream water residence times and controlling landscape
characteristics in a mesoscale catchment: An initial evaluation.Journal of Hydrology , 325 (1), 197–221.
https://doi.org/10.1016/j.jhydrol.2005.10.024
Sprenger, M., Tetzlaff, D., Buttle, J., Carey, S. K., McNamara, J. P.,
Laudon, H., et al. (2018). Storage, mixing, and fluxes of water in the
critical zone across northern environments inferred by stable isotopes
of soil water. Hydrological Processes , 32 (12), 1720–1737.
https://doi.org/10.1002/hyp.13135
Tetzlaff, D., Birkel, C., Dick, J., Geris, J., & Soulsby, C. (2014).
Storage dynamics in hydropedological units control hillslope
connectivity, runoff generation, and the evolution of catchment transit
time distributions. Water Resources Research , 50 (2),
969–985. https://doi.org/10.1002/2013WR014147
Tetzlaff, Doerthe, McNamara, J. P., & Carey, S. K. (2011). Measurements
and modelling of storage dynamics across scales. Hydrological
Processes , 25 (25), 3831–3835. https://doi.org/10.1002/hyp.8396
Werkhoven, K. van, Wagener, T., Reed, P., & Tang, Y. (2008).
Characterization of watershed model behavior across a hydroclimatic
gradient. Water Resources Research , 44 (1).
https://doi.org/10.1029/2007WR006271
Western, A. W., Zhou, S.-L., Grayson, R. B., McMahon, T. A., Blöschl,
G., & Wilson, D. J. (2004). Spatial correlation of soil moisture in
small catchments and its relationship to dominant spatial hydrological
processes. Journal of Hydrology , 286 (1), 113–134.
https://doi.org/10.1016/j.jhydrol.2003.09.014
Wymore, A. S., Brereton, R. L., Ibarra, D. E., Maher, K., & McDowell,
W. H. (2017). Critical zone structure controls concentration-discharge
relationships and solute generation in forested tropical montane
watersheds. Water Resources Research , 53 (7), 6279–6295.
https://doi.org/10.1002/2016WR020016
Zelelew, M. B., & Alfredsen, K. (2014). Transferability of hydrological
model parameter spaces in the estimation of runoff in ungauged
catchments. Hydrological Sciences Journal , 59 (8),
1470–1490. https://doi.org/10.1080/02626667.2013.838003