References:
Abriat, C., Enriquez, K., Virgilio, N., Cegelski, L., Fuller, G. G., Daigle, F., & Heuzey, M.-C. (2020). Mechanical and microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface. Colloids and Surfaces B: Biointerfaces ,188 , 110786.
Aggarwal, S., Poppele, E. H., & Hozalski, R. M. (2010). Development and testing of a novel microcantilever technique for measuring the cohesive strength of intact biofilms. Biotechnology and Bioengineering ,105 (5), 924–934.
Ahimou, F., Semmens, M. J., Haugstad, G., & Novak, P. J. (2007). Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Applied and Environmental Microbiology ,73 (9), 2905–2910. https://doi.org/10.1128/AEM.02420-06
Ahimou, F., Semmens, M. J., Novak, P. J., & Haugstad, G. (2007). Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Applied and Environmental Microbiology ,73 (9), 2897–2904.
Applegate, D. H., & Bryers, J. D. (1991). Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal processes.Biotechnology and Bioengineering , 37 (1), 17–25.
Arce, F. T., Carlson, R., Monds, J., Veeh, R., Hu, F. Z., Stewart, P. S., … Avci, R. (2009). Nanoscale structural and mechanical properties of nontypeable Haemophilus influenzae biofilms. Journal of Bacteriology , 191 (8), 2512–2520.
Beech, I. B., & Sunner, J. (2004). Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology , 15 (3), 181–186.
Birjiniuk, A., Billings, N., Nance, E., Hanes, J., Ribbeck, K., & Doyle, P. S. (2014). Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix. New Journal of Physics , 16 . https://doi.org/10.1088/1367-2630/16/8/085014
Böl, M., Ehret, A. E., Bolea Albero, A., Hellriegel, J., & Krull, R. (2012). Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Critical Reviews in Biotechnology , 8551 (August 2015), 1–27. https://doi.org/10.3109/07388551.2012.679250
Boudarel, H., Mathias, J.-D., Blaysat, B., & Grédiac, M. (2018). Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. NPJ Biofilms and Microbiomes ,4 (1), 1–15.
Bridier, A., Sanchez-Vizuete, P., Guilbaud, M., Piard, J. C., Naïtali, M., & Briandet, R. (2015). Biofilm-associated persistence of food-borne pathogens. Food Microbiology , 45 (PB), 167–178. https://doi.org/10.1016/j.fm.2014.04.015
Cao, H., Habimana, O., Safari, A., Heffernan, R., Dai, Y., & Casey, E. (2016). Revealing region-specific biofilm viscoelastic properties by means of a micro-rheological approach. Npj Biofilms and Microbiomes , 2 (1), 5. https://doi.org/10.1038/s41522-016-0005-y
Cense, A. W., Peeters, E. A. G., Gottenbos, B., Baaijens, F. P. T., Nuijs, A. M., & van Dongen, M. E. H. (2006). Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. Journal of Microbiological Methods ,67 (3), 463–472. https://doi.org/10.1016/j.mimet.2006.04.023
Chen, X., & Stewart, P. S. (2000). Biofilm removal caused by chemical treatments. Water Research , 34 (17), 4229–4233. https://doi.org/10.1016/S0043-1354(00)00187-1
Chew, S. C. hue., Kundukad, B., Seviour, T., van der Maarel, J. R. C., Yang, L., Rice, S. A., … Kjelleberg, S. (2014). Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. MBio , 5 (4), e01536–e01514. https://doi.org/10.1128/mBio.01536-14
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Reviews in Microbiology , 49 (1), 711–745.
Derlon, N., Massé, A., Escudié, R., Bernet, N., & Paul, E. (2008). Stratification in the cohesion of biofilms grown under various environmental conditions. Water Research , 42 (8–9), 2102–2110. https://doi.org/10.1016/j.watres.2007.11.016
Dunsmore, B. C., Jacobsen, A., Hall-Stoodley, L., Bass, C. J., Lappin-Scott, H. M., & Stoodley, P. (2002). The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. Journal of Industrial Microbiology and Biotechnology , 29 (6), 347–353.
Even, C., Marlière, C., Ghigo, J. M., Allain, J. M., Marcellan, A., & Raspaud, E. (2017). Recent advances in studying single bacteria and biofilm mechanics. Advances in Colloid and Interface Science ,247 (July), 573–588. https://doi.org/10.1016/j.cis.2017.07.026
Flemming, H-C, & Wingender, J. (2001). Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water Science and Technology , 43 (6), 1–8.
Flemming, Hans-Curt, & Wingender, J. (2010). The biofilm matrix.Nature Reviews. Microbiology , 8 (9), 623–633. https://doi.org/10.1038/nrmicro2415
Friedman, L., & Kolter, R. (2004). Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. Journal of Bacteriology , 186 (14), 4457–4465.
Galy, O, Zrelli, K., Latour-Lambert, P., Kirwan, L., & Henry, N. (2014). Remote Magnetic Actuation of Micrometric Probes for in situ 3D Mapping of Bacterial Biofilm Physical Properties. Journal of Visualized Experiments : JoVE , 87 (May), 1–12. https://doi.org/10.3791/50857
Galy, Olivier, Latour-Lambert, P., Zrelli, K., Ghigo, J. M., Beloin, C., & Henry, N. (2012). Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophysical Journal ,103 (6), 1400–1408. https://doi.org/10.1016/j.bpj.2012.07.001
Gloag, E. S., Fabbri, S., Wozniak, D. J., & Stoodley, P. (2019). Biofilm mechanics: implications in infection and survival.Biofilm , 100017.
Gloag, E. S., German, G. K., Stoodley, P., & Wozniak, D. J. (2018). Viscoelastic properties of Pseudomonas aeruginosa variant biofilms.Scientific Reports , 8 (1), 9691.
Goode, C., & Allen, D. G. (2011). Effect of calcium on moving-bed biofilm reactor biofilms. Water Environment Research ,83 (3), 220–232.
Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases.Nature Reviews Microbiology , 2 , 95–108. https://doi.org/10.1038/nrmicro821
Ho, Y.-R., Li, C.-M., Yu, C.-H., Lin, Y.-J., Wu, C.-M., Harn, I.-C., … Lu, C.-Y. (2013). The enhancement of biofilm formation in Group B streptococcal isolates at vaginal pH. Medical Microbiology and Immunology , 202 (2), 105–115.
Hunt, S. M., Werner, E. M., Huang, B., Hamilton, M. A., & Stewart, P. S. (2004). Hypothesis for the role of nutrient starvation in biofilm detachment. Applied and Environmental Microbiology ,70 (12), 7418–7425.
Hwang, G., Klein, M. I., & Koo, H. (2014). Analysis of the mechanical stability and surface detachment of mature Streptococcus mutans biofilms by applying a range of external shear forces. Biofouling ,30 (9), 1079–1091.
Jang, H., Rusconi, R., & Stocker, R. (2017). Biofilm disruption by an air bubble reveals heterogeneous age-dependent detachment patterns dictated by initial extracellular matrix distribution. Npj Biofilms and Microbiomes , 3 (1), 1–7.
Jones, W. L., Sutton, M. P., McKittrick, L., & Stewart, P. S. (2011). Chemical and antimicrobial treatments change the viscoelastic properties of bacterial biofilms. Biofouling , 27 (2), 207–215. https://doi.org/10.1080/08927014.2011.554977
Karampatzakis, A., Song, C. Z., Allsopp, L. P., Filloux, A., Rice, S. A., Cohen, Y., … Török, P. (2017). Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging. Npj Biofilms and Microbiomes , 3 (1), 20. https://doi.org/10.1038/s41522-017-0028-z
Kim, B., Perez-Calleja, P., Li, M., & Nerenberg, R. (2020). Effect of predation on the mechanical properties and detachment of MABR biofilms.Water Research , 116289.
Klapper, I., Rupp, C. J., Cargo, R., Purvedorj, B., & Stoodley, P. (2002). Viscoelastic fluid description of bacterial biofilm material properties. Biotechnology and Bioengineering , 80 (3), 289–296. https://doi.org/10.1002/bit.10376
Körstgens, V., Flemming, H. C., Wingender, J., & Borchard, W. (2001). Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Science and Technology : A Journal of the International Association on Water Pollution Research , 43 (6), 49–57. https://doi.org/10.1371/journal.pone.0091935
Kundukad, B., Seviour, T., Liang, Y., Rice, S. A., Kjelleberg, S., & Doyle, P. S. (2016). Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. Soft Matter ,12 , 5718–5726. https://doi.org/10.1039/C6SM00687F
Laspidou, C. S., Spyrou, L. A., Aravas, N., & Rittmann, B. E. (2014). Material modeling of biofilm mechanical properties. Mathematical Biosciences , 251 (1), 11–15. https://doi.org/10.1016/j.mbs.2014.02.007
Laspidou, Chrysi S, & Rittmann, B. E. (2004a). Evaluating trends in biofilm density using the UMCCA model. Water Research ,38 (14–15), 3362–3372.
Laspidou, Chrysi S, & Rittmann, B. E. (2004b). Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances. Water Research ,38 (14), 3349–3361.
Lau, P. C. Y., Dutcher, J. R., Beveridge, T. J., & Lam, J. S. (2009). Absolute Quantitation of Bacterial Biofilm Adhesion and Viscoelasticity by Microbead Force Spectroscopy. Biophysical Journal ,96 (7), 2935–2948. https://doi.org/10.1016/j.bpj.2008.12.3943
Li, M., Matouš, K., & Nerenberg, R. (2020). Predicting biofilm deformation with a viscoelastic phase‐field model: Modeling and experimental studies. Biotechnology and Bioengineering , 1–13. https://doi.org/10.1002/bit.27491
Lieleg, O., Caldara, M., Baumgärtel, R., & Ribbeck, K. (2011). Mechanical robustness of Pseudomonas aeruginosa biofilms. Soft Matter , 7 (7), 3307–3314. https://doi.org/10.1039/c0sm01467b
Paul, E., Ochoa, J. C., Pechaud, Y., Liu, Y., & Liné, A. (2012). Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Research , 46 (17), 5499–5508.
Pavlovsky, L., Sturtevant, R. A., Younger, J. G., & Solomon, M. J. (2015). Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms.Langmuir , 31 (6), 2036–2042.
Pavlovsky, L., Younger, J. G., & Solomon, M. J. (2013). In situ rheology of Staphylococcus epidermidis bacterial biofilms. Soft Matter , 9 (1), 122–131. https://doi.org/10.1039/C2SM27005F
Pellicer-Nàcher, C., & Smets, B. F. (2014). Structure, composition, and strength of nitrifying membrane-aerated biofilms. Water Research ,57 , 151–161.
Picioreanu, C., Blauert, F., Horn, H., & Wagner, M. (2018). Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography. Water Research , 145 , 588–598.
Picioreanu, C., Van Loosdrecht, M. C. M., & Heijnen, J. J. (2001). Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnology & Bioengineering , 72 (2), 205–218.
Poppele, E. H., & Hozalski, R. M. (2003). Micro-cantilever method for measuring the tensile strength of biofilms and microbial flocs.Journal of Microbiological Methods , 55 (3), 607–615.
Powell, L. C., Sowedan, A., Khan, S., Wright, C. J., Hawkins, K., Onsøyen, E., … Thomas, D. W. (2013). The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms.Biofouling , 29 (4), 413–421.
Rochex, A., Massé, A., Escudié, R., Godon, J. J., & Bernet, N. (2009). Influence of abrasion on biofilm detachment: Evidence for stratification of the biofilm. Journal of Industrial Microbiology and Biotechnology , 36 (3), 467–470. https://doi.org/10.1007/s10295-009-0543-x
Safari, A., Tukovic, Z., Walter, M., Casey, E., & Ivankovic, A. (2015). Mechanical properties of a mature biofilm from a wastewater system: from microscale to macroscale level. Biofouling , 31 (8), 651–664. https://doi.org/10.1080/08927014.2015.1075981
Schnurr, B., Gittes, F., MacKintosh, F. C., & Schmidt, C. F. (1997). Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules ,30 (25), 7781–7792.
Sehar, S., Naz, I., Das, T., & Ahmed, S. (2016). Evidence of microscopic correlation between biofilm kinetics and divalent cations for enhanced wastewater treatment efficiency. RSC Adv. ,6 (18), 15112–15120. https://doi.org/10.1039/C5RA21076C
Shen, Y., Huang, C., Monroy, G. L., Janjaroen, D., Derlon, N., Lin, J., … Nguyen, T. H. (2016). Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure. Environmental Science and Technology , 50 (4), 1779–1787. https://doi.org/10.1021/acs.est.5b04653
Shen, Y., Huang, P. C., Huang, C., Sun, P., Monroy, G. L., Wu, W., … Liu, W.-T. (2018). Effect of divalent ions and a polyphosphate on composition, structure, and stiffness of simulated drinking water biofilms. NPJ Biofilms and Microbiomes , 4 (1), 1–9.
Shrout, J. D., Chopp, D. L., Just, C. L., Hentzer, M., Givskov, M., & Parsek, M. R. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology , 62 (5), 1264–1277.
Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology , 6 (3), 199–210. https://doi.org/10.1038/nrmicro1838
Stoodley, P., Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. (2002). Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology and Biotechnology , 29 (6), 361–367.
Stoodley, P., Lewandowski, Z., Boyle, J. D., & Lappin-Scott, H. M. (1999). The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environmental Microbiology ,1 (5), 447–455. https://doi.org/emi55 [pii]
Stoodley, P., Lewandowski, Z., Boyle, J. D., & Lappin‐Scott, H. M. (1999). Structural deformation of bacterial biofilms caused by short‐term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnology and Bioengineering , 65 (1), 83–92.
Sutherland, I. W. (2001). Biofilm exopolysaccharides: A strong and sticky framework. Microbiology , 147 (1), 3–9. https://doi.org/10.1051/lait:2001108
Thomen, P., Robert, J., Monmeyran, A., Bitbol, A. F., Douarche, C., & Henry, N. (2017). Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing. PLoS ONE ,12 (4), 1–24. https://doi.org/10.1371/journal.pone.0175197
Timp, W., Mirsaidov, U., Matsudaira, P., & Timp, G. (2009). Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab Chip , 9 (7), 925–934. https://doi.org/10.1039/B810157D
Towler, B. W., Cunningham, A., Stoodley, P., & McKittrick, L. (2007). A model of fluid–biofilm interaction using a Burger material law.Biotechnology and Bioengineering , 96 (2), 259–271.
Trejo, M., Douarche, C., Bailleux, V., Poulard, C., Mariot, S., Regeard, C., & Raspaud, E. (2013). Elasticity and wrinkled morphology of Bacillus subtilis pellicles. Proceedings of the National Academy of Sciences , 110 (6), 2011–2016. https://doi.org/10.1073/pnas.1217178110
Van Loosdrecht, M. C. M., Heijnen, J. J., Eberl, H., Kreft, J., & Picioreanu, C. (2002). Mathematical modelling of biofilm structures.Antonie van Leeuwenhoek , 81 (1–4), 245–256.
Volle, C. B., Ferguson, M. A., Aidala, K. E., Spain, E. M., & Núñez, M. E. (2008). Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy. Colloids and Surfaces B: Biointerfaces , 67 (1), 32–40.
Wilking, J. N., Angelini, T. E., Seminara, A., Brenner, M. P., & Weitz, D. A. (2011). Biofilms as complex fluids. MRS Bulletin ,36 (5), 385–391.
Xu, K. D., Stewart, P. S., Xia, F., Mcfeters, G. a, & Huang, C. (1998). Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Applied and environmental microbiology , 64 (10), 4035–4039.
Yang, L., Hu, Y., Liu, Y., Zhang, J., Ulstrup, J., & Molin, S. (2011). Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environmental Microbiology ,13 (7), 1705–1717.
Yannarell, S. M., Grandchamp, G. M., Chen, S.-Y., Daniels, K. E., & Shank, E. A. (2019). A dual-species biofilm with emergent mechanical and protective properties. Journal of Bacteriology , 201 (18), e00670-18.
Zrelli, K., Galy, O., Latour-Lambert, P., Kirwan, L., Ghigo, J. M., Beloin, C., & Henry, N. (2013). Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death. New Journal of Physics , 15 . https://doi.org/10.1088/1367-2630/15/12/125026