References
  1. Murphy, K., P. Travers, and M. Walport, Janeway’s immunobiology. Garland science. New York, 2008.
  2. Jensen, K.K., et al., Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 2018. 154(3): p. 394-406.
  3. Bjorkman, P.J. and P. Parham, Structure, function, and diversity of class I major histocompatibility complex molecules. Annual review of biochemistry, 1990. 59(1): p. 253-288.
  4. Zhang, X.-H., et al., Molecular characterization, balancing selection, and genomic organization of the tree shrew (Tupaia belangeri) MHC class I gene. Gene, 2013. 522(2): p. 147-155.
  5. Yeager, M. and A.L. Hughes, Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution.Immunological reviews, 1999. 167(1): p. 45-58.
  6. Piertney, S. and M. Oliver, The evolutionary ecology of the major histocompatibility complex. Heredity, 2006. 96(1): p. 7.
  7. Kulski, J.K., et al., Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunological reviews, 2002. 190(1): p. 95-122.
  8. Kelley, J., L. Walter, and J. Trowsdale, Comparative genomics of major histocompatibility complexes. Immunogenetics, 2005. 56(10): p. 683-695.
  9. Langefors, Å., et al., Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2001. 268(1466): p. 479-485.
  10. Hedrick, P.W., Pathogen resistance and genetic variation at MHC loci. Evolution, 2002. 56(10): p. 1902-1908.
  11. Westerdahl, H., Passerine MHC: genetic variation and disease resistance in the wild. Journal of Ornithology, 2007. 148(2): p. 469-477.
  12. Paterson, S. and J.M. Pemberton, No evidence for major histocompatibility complex–dependent mating patterns in a free–living ruminant population. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1997. 264(1389): p. 1813-1819.
  13. Landry, C., et al., ‘Good genes as heterozygosity’: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proceedings of the Royal Society of London. Series B: Biological Sciences, 2001. 268(1473): p. 1279-1285.
  14. Knafler, G.J., et al., MHC diversity and mate choice in the magellanic penguin, Spheniscus magellanicus. Journal of Heredity, 2012. 103(6): p. 759-768.
  15. Borghans, J.A., J.B. Beltman, and R.J. De Boer, MHC polymorphism under host-pathogen coevolution. Immunogenetics, 2004. 55(11): p. 732-739.
  16. Jepson, A., et al., Quantification of the relative contribution of major histocompatibility complex (MHC) and non-MHC genes to human immune responses to foreign antigens. Infection and Immunity, 1997. 65(3): p. 872-876.
  17. Edwards, S.V., et al., A 39-kb sequence around a blackbird Mhc class II gene: Ghost of selection past and songbird genome architecture. Molecular Biology and Evolution, 2000. 17(9): p. 1384-1395.
  18. Canal, D., et al., Towards the simplification of MHC typing protocols: targeting classical MHC class II genes in a passerine, the pied flycatcher Ficedula hypoleuca. BMC research notes, 2010. 3(1): p. 236.
  19. Kroemer, G., et al., Molecular genetics of the chicken MHC: current status and evolutionary aspects. Immunological reviews, 1990(113): p. 119-145.
  20. Zoorob, R., et al., Chicken major histocompatibility complex class II B genes: analysis of interallelic and inter‐locus sequence variance. European journal of immunology, 1993. 23(5): p. 1139-1145.
  21. Peacock, M.M. and A.T. Smith, The effect of habitat fragmentation on dispersal patterns, mating behavior, and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia, 1997. 112(4): p. 524-533.
  22. Bonneaud, C., et al., Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics, 2004. 55(12): p. 855-865.
  23. Westerdahl, H., No evidence of an MHC‐based female mating preference in great reed warblers. Molecular Ecology, 2004. 13(8): p. 2465-2470.
  24. Promerová, M., T. Albrecht, and J. Bryja, Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics, 2009. 61(6): p. 451-461.
  25. Babik, W., et al., New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Molecular ecology resources, 2009. 9(3): p. 713-719.
  26. Kanagawa, T., Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of bioscience and bioengineering, 2003. 96(4): p. 317-323.
  27. Abduriyim, S., et al., Evolution of MHC class I genes in Eurasian badgers, genus Meles (Carnivora, Mustelidae). Heredity, 2019. 122(2): p. 205.
  28. Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT . inNucleic acids symposium series . 1999. [London]: Information Retrieval Ltd., c1979-c2000.
  29. Larkin, M.A., et al., Clustal W and Clustal X version 2.0.bioinformatics, 2007. 23(21): p. 2947-2948.
  30. Klein, J., et al., Nomenclature for the major histocompatibility complexes of different species: a proposal , in The HLA system in clinical transplantation . 1993, Springer. p. 407-411.
  31. Altschul, S.F., et al., Basic local alignment search tool.Journal of molecular biology, 1990. 215(3): p. 403-410.
  32. Librado, P. and J. Rozas, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009. 25(11): p. 1451-1452.
  33. Martin, D., et al., A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Research & Human Retroviruses, 2005. 21(1): p. 98-102.
  34. Padidam, M., S. Sawyer, and C.M. Fauquet, Possible emergence of new geminiviruses by frequent recombination. Virology, 1999. 265(2): p. 218-225.
  35. Posada, D., jModelTest: phylogenetic model averaging. Molecular biology and evolution, 2008. 25(7): p. 1253-1256.
  36. Smith, J.M., Analyzing the mosaic structure of genes. Journal of molecular evolution, 1992. 34(2): p. 126-129.
  37. Gibbs, M.J., J.S. Armstrong, and A.J. Gibbs, Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences.Bioinformatics, 2000. 16(7): p. 573-582.
  38. Boni, M.F., D. Posada, and M.W. Feldman, An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics, 2007. 176(2): p. 1035-1047.
  39. Kosakovsky Pond, S.L., et al., GARD: a genetic algorithm for recombination detection. Bioinformatics, 2006. 22(24): p. 3096-3098.
  40. Balakrishnan, C.N., et al., Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC biology, 2010. 8(1): p. 29.
  41. Alcaide, M., et al., Extraordinary MHC class II B diversity in a non‐passerine, wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae). Ecology and evolution, 2014. 4(6): p. 688-698.
  42. Kaufman, J., J. Salomonsen, and M. Flajnik. Evolutionary conservation of MHC class I and class II molecules—different yet the same . in Seminars in immunology . 1994. Elsevier.
  43. Hee, C.S., et al., Structure of a classical MHC class I molecule that binds “non-classical” ligands. PLoS biology, 2010. 8(12): p. e1000557.
  44. Bjorkman, P., et al., The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens.Nature, 1987. 329(6139): p. 512.
  45. Nei, M. and T. Gojobori, Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol, 1986. 3(5): p. 418-26.
  46. Tamura, K., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 2011. 28(10): p. 2731-2739.
  47. Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood.Molecular biology and evolution, 2007. 24(8): p. 1586-1591.
  48. Pond, S.L.K. and S.D. Frost, Datamonkey: rapid detection of selective pressure on individual sites of codon alignments.Bioinformatics, 2005. 21(10): p. 2531-2533.
  49. Murrell, B., et al., Detecting individual sites subject to episodic diversifying selection. PLoS genetics, 2012. 8(7): p. e1002764.
  50. Kosakovsky Pond, S.L. and S.D. Frost, Not so different after all: a comparison of methods for detecting amino acid sites under selection. Molecular biology and evolution, 2005. 22(5): p. 1208-1222.
  51. Murrell, B., et al., FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Molecular biology and evolution, 2013. 30(5): p. 1196-1205.
  52. Lecocq, T., et al., Scent of a break-up: phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC evolutionary biology, 2013. 13(1): p. 263.
  53. Bozdogan, H., Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions.Psychometrika, 1987. 52(3): p. 345-370.
  54. Ronquist, F. and J.P. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003. 19(12): p. 1572-1574.
  55. Kumar, S., G. Stecher, and K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Molecular biology and evolution, 2016. 33(7): p. 1870-1874.
  56. Minias, P., et al., A global analysis of selection at the avian MHC. Evolution, 2018. 72(6): p. 1278-1293.
  57. Bos, D.H. and B. Waldman, Evolution by recombination and transspecies polymorphism in the MHC class I gene of Xenopus laevis.Molecular Biology and Evolution, 2005. 23(1): p. 137-143.
  58. Loiseau, C., et al., Diversifying selection on MHC class I in the house sparrow (Passer domesticus). Molecular Ecology, 2009. 18(7): p. 1331-1340.
  59. Freeman‐Gallant, C.R., et al., Variation at the major histocompatibility complex in Savannah sparrows. Molecular Ecology, 2002. 11(6): p. 1125-1130.
  60. Alcaide, M., M. Liu, and S.V. Edwards, Major histocompatibility complex class I evolution in songbirds: universal primers, rapid evolution and base compositional shifts in exon 3. PeerJ, 2013. 1: p. e86.
  61. Nei, M. and A.P. Rooney, Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet., 2005. 39: p. 121-152.
  62. Miller, H.C. and D.M. Lambert, Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae).Immunogenetics, 2004. 56(3): p. 178-191.
  63. Burri, R., et al., Evolutionary patterns of MHC class II B in owls and their implications for the understanding of avian MHC evolution. Molecular Biology and Evolution, 2008. 25(6): p. 1180-1191.
  64. Kikkawa, E.F., et al., Trans-species polymorphism of the Mhc class II DRB-like gene in banded penguins (genus Spheniscus).Immunogenetics, 2009. 61(5): p. 341-352.
  65. Eimes, J.A., et al., Early duplication of a single MHC IIB locus prior to the passerine radiations. PloS one, 2016. 11(9): p. e0163456.
  66. Hughes, A.L., T. Ota, and M. Nei, Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Molecular biology and evolution, 1990. 7(6): p. 515-524.
  67. Penn, D.J., K. Damjanovich, and W.K. Potts, MHC heterozygosity confers a selective advantage against multiple-strain infections.Proceedings of the National Academy of Sciences, 2002. 99(17): p. 11260-11264.
  68. Bollmer, J.L., F.H. Vargas, and P.G. Parker, Low MHC variation in the endangered Galapagos penguin (Spheniscus mendiculus).Immunogenetics, 2007. 59(7): p. 593-602.
  69. Sepil, I., S. Lachish, and B.C. Sheldon, Mhc‐linked survival and lifetime reproductive success in a wild population of great tits.Molecular ecology, 2013. 22(2): p. 384-396.
  70. Schaschl, H., et al., Recombination and the origin of sequence diversity in the DRB MHC class II locus in chamois (Rupicapra spp.).Immunogenetics, 2005. 57(1-2): p. 108-115.
  71. Minias, P., et al., Contrasting evolutionary histories of MHC class I and class II loci in grouse—effects of selection and gene conversion. Heredity, 2016. 116(5): p. 466.
  72. Anmarkrud, J., et al., Ancestral polymorphism in exon 2 of bluethroat (Luscinia svecica) MHC class II B genes. Journal of Evolutionary Biology, 2010. 23(6): p. 1206-1217.
  73. Zeng, Q.-Q., et al., Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes. BMC evolutionary biology, 2016. 16(1): p. 42.
  74. Wynne, J.W., et al., Major histocompatibility polymorphism associated with resistance towards amoebic gill disease in Atlantic salmon (Salmo salar L.). Fish & shellfish immunology, 2007. 22(6): p. 707-717.
  75. Borg, Å.A., et al., Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories. Ecology and evolution, 2011. 1(2): p. 145-159.
  76. Ye, Q., et al., Isolation of a 97-kb minimal essential MHC B locus from a new reverse-4D BAC library of the golden pheasant. PloS one, 2012. 7(3): p. e32154.
  77. Gillingham, M.A., et al., Evidence of gene orthology and trans‐species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. Journal of evolutionary biology, 2016. 29(2): p. 438-454.
  78. Marmesat, E., et al., Retention of functional variation despite extreme genomic erosion: MHC allelic repertoires in the Lynx genus.BMC evolutionary biology, 2017. 17(1): p. 158.
  79. Jaratlerdsiri, W., et al., Selection and trans-species polymorphism of major histocompatibility complex class II genes in the order Crocodylia. PLoS One, 2014. 9(2): p. e87534.
  80. Ballingall, K.T., et al., Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep. PLoS One, 2010. 5(6): p. e11402.