References
- Murphy, K., P. Travers, and M. Walport, Janeway’s immunobiology.
Garland science. New York, 2008.
- Jensen, K.K., et al., Improved methods for predicting peptide
binding affinity to MHC class II molecules. Immunology, 2018. 154(3):
p. 394-406.
- Bjorkman, P.J. and P. Parham, Structure, function, and diversity
of class I major histocompatibility complex molecules. Annual review
of biochemistry, 1990. 59(1): p. 253-288.
- Zhang, X.-H., et al., Molecular characterization, balancing
selection, and genomic organization of the tree shrew (Tupaia
belangeri) MHC class I gene. Gene, 2013. 522(2): p. 147-155.
- Yeager, M. and A.L. Hughes, Evolution of the mammalian MHC:
natural selection, recombination, and convergent evolution.Immunological reviews, 1999. 167(1): p. 45-58.
- Piertney, S. and M. Oliver, The evolutionary ecology of the
major histocompatibility complex. Heredity, 2006. 96(1): p. 7.
- Kulski, J.K., et al., Comparative genomic analysis of the MHC:
the evolution of class I duplication blocks, diversity and complexity
from shark to man. Immunological reviews, 2002. 190(1): p. 95-122.
- Kelley, J., L. Walter, and J. Trowsdale, Comparative genomics of
major histocompatibility complexes. Immunogenetics, 2005. 56(10): p.
683-695.
- Langefors, Å., et al., Association between major
histocompatibility complex class IIB alleles and resistance to
Aeromonas salmonicida in Atlantic salmon. Proceedings of the Royal
Society of London. Series B: Biological Sciences, 2001. 268(1466): p.
479-485.
- Hedrick, P.W., Pathogen resistance and genetic variation at MHC
loci. Evolution, 2002. 56(10): p. 1902-1908.
- Westerdahl, H., Passerine MHC: genetic variation and disease
resistance in the wild. Journal of Ornithology, 2007. 148(2): p.
469-477.
- Paterson, S. and J.M. Pemberton, No evidence for major
histocompatibility complex–dependent mating patterns in a
free–living ruminant population. Proceedings of the Royal Society of
London. Series B: Biological Sciences, 1997. 264(1389): p. 1813-1819.
- Landry, C., et al., ‘Good genes as heterozygosity’: the major
histocompatibility complex and mate choice in Atlantic salmon (Salmo
salar). Proceedings of the Royal Society of London. Series B:
Biological Sciences, 2001. 268(1473): p. 1279-1285.
- Knafler, G.J., et al., MHC diversity and mate choice in the
magellanic penguin, Spheniscus magellanicus. Journal of Heredity,
2012. 103(6): p. 759-768.
- Borghans, J.A., J.B. Beltman, and R.J. De Boer, MHC polymorphism
under host-pathogen coevolution. Immunogenetics, 2004. 55(11): p.
732-739.
- Jepson, A., et al., Quantification of the relative contribution
of major histocompatibility complex (MHC) and non-MHC genes to human
immune responses to foreign antigens. Infection and Immunity, 1997.
65(3): p. 872-876.
- Edwards, S.V., et al., A 39-kb sequence around a blackbird Mhc
class II gene: Ghost of selection past and songbird genome
architecture. Molecular Biology and Evolution, 2000. 17(9): p.
1384-1395.
- Canal, D., et al., Towards the simplification of MHC typing
protocols: targeting classical MHC class II genes in a passerine, the
pied flycatcher Ficedula hypoleuca. BMC research notes, 2010. 3(1):
p. 236.
- Kroemer, G., et al., Molecular genetics of the chicken MHC:
current status and evolutionary aspects. Immunological reviews,
1990(113): p. 119-145.
- Zoorob, R., et al., Chicken major histocompatibility complex
class II B genes: analysis of interallelic and inter‐locus sequence
variance. European journal of immunology, 1993. 23(5): p. 1139-1145.
- Peacock, M.M. and A.T. Smith, The effect of habitat
fragmentation on dispersal patterns, mating behavior, and genetic
variation in a pika (Ochotona princeps) metapopulation. Oecologia,
1997. 112(4): p. 524-533.
- Bonneaud, C., et al., Diversity of Mhc class I and IIB genes in
house sparrows (Passer domesticus). Immunogenetics, 2004. 55(12): p.
855-865.
- Westerdahl, H., No evidence of an MHC‐based female mating
preference in great reed warblers. Molecular Ecology, 2004. 13(8): p.
2465-2470.
- Promerová, M., T. Albrecht, and J. Bryja, Extremely high MHC
class I variation in a population of a long-distance migrant, the
Scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics, 2009.
61(6): p. 451-461.
- Babik, W., et al., New generation sequencers as a tool for
genotyping of highly polymorphic multilocus MHC system. Molecular
ecology resources, 2009. 9(3): p. 713-719.
- Kanagawa, T., Bias and artifacts in multitemplate polymerase
chain reactions (PCR). Journal of bioscience and bioengineering,
2003. 96(4): p. 317-323.
- Abduriyim, S., et al., Evolution of MHC class I genes in
Eurasian badgers, genus Meles (Carnivora, Mustelidae). Heredity,
2019. 122(2): p. 205.
- Hall, T.A. BioEdit: a user-friendly biological sequence
alignment editor and analysis program for Windows 95/98/NT . inNucleic acids symposium series . 1999. [London]: Information
Retrieval Ltd., c1979-c2000.
- Larkin, M.A., et al., Clustal W and Clustal X version 2.0.bioinformatics, 2007. 23(21): p. 2947-2948.
- Klein, J., et al., Nomenclature for the major histocompatibility
complexes of different species: a proposal , in The HLA system
in clinical transplantation . 1993, Springer. p. 407-411.
- Altschul, S.F., et al., Basic local alignment search tool.Journal of molecular biology, 1990. 215(3): p. 403-410.
- Librado, P. and J. Rozas, DnaSP v5: a software for comprehensive
analysis of DNA polymorphism data. Bioinformatics, 2009. 25(11): p.
1451-1452.
- Martin, D., et al., A modified bootscan algorithm for automated
identification of recombinant sequences and recombination
breakpoints. AIDS Research & Human Retroviruses, 2005. 21(1): p.
98-102.
- Padidam, M., S. Sawyer, and C.M. Fauquet, Possible emergence of
new geminiviruses by frequent recombination. Virology, 1999. 265(2):
p. 218-225.
- Posada, D., jModelTest: phylogenetic model averaging. Molecular
biology and evolution, 2008. 25(7): p. 1253-1256.
- Smith, J.M., Analyzing the mosaic structure of genes. Journal
of molecular evolution, 1992. 34(2): p. 126-129.
- Gibbs, M.J., J.S. Armstrong, and A.J. Gibbs, Sister-scanning: a
Monte Carlo procedure for assessing signals in recombinant sequences.Bioinformatics, 2000. 16(7): p. 573-582.
- Boni, M.F., D. Posada, and M.W. Feldman, An exact nonparametric
method for inferring mosaic structure in sequence triplets. Genetics,
2007. 176(2): p. 1035-1047.
- Kosakovsky Pond, S.L., et al., GARD: a genetic algorithm for
recombination detection. Bioinformatics, 2006. 22(24): p. 3096-3098.
- Balakrishnan, C.N., et al., Gene duplication and fragmentation
in the zebra finch major histocompatibility complex. BMC biology,
2010. 8(1): p. 29.
- Alcaide, M., et al., Extraordinary MHC class II B diversity in a
non‐passerine, wild bird: the Eurasian Coot Fulica atra (Aves:
Rallidae). Ecology and evolution, 2014. 4(6): p. 688-698.
- Kaufman, J., J. Salomonsen, and M. Flajnik. Evolutionary
conservation of MHC class I and class II molecules—different yet the
same . in Seminars in immunology . 1994. Elsevier.
- Hee, C.S., et al., Structure of a classical MHC class I molecule
that binds “non-classical” ligands. PLoS biology, 2010. 8(12): p.
e1000557.
- Bjorkman, P., et al., The foreign antigen binding site and T
cell recognition regions of class I histocompatibility antigens.Nature, 1987. 329(6139): p. 512.
- Nei, M. and T. Gojobori, Simple methods for estimating the
numbers of synonymous and nonsynonymous nucleotide substitutions. Mol
Biol Evol, 1986. 3(5): p. 418-26.
- Tamura, K., et al., MEGA5: molecular evolutionary genetics
analysis using maximum likelihood, evolutionary distance, and maximum
parsimony methods. Molecular biology and evolution, 2011. 28(10): p.
2731-2739.
- Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood.Molecular biology and evolution, 2007. 24(8): p. 1586-1591.
- Pond, S.L.K. and S.D. Frost, Datamonkey: rapid detection of
selective pressure on individual sites of codon alignments.Bioinformatics, 2005. 21(10): p. 2531-2533.
- Murrell, B., et al., Detecting individual sites subject to
episodic diversifying selection. PLoS genetics, 2012. 8(7): p.
e1002764.
- Kosakovsky Pond, S.L. and S.D. Frost, Not so different after
all: a comparison of methods for detecting amino acid sites under
selection. Molecular biology and evolution, 2005. 22(5): p.
1208-1222.
- Murrell, B., et al., FUBAR: a fast, unconstrained bayesian
approximation for inferring selection. Molecular biology and
evolution, 2013. 30(5): p. 1196-1205.
- Lecocq, T., et al., Scent of a break-up: phylogeography and
reproductive trait divergences in the red-tailed bumblebee (Bombus
lapidarius). BMC evolutionary biology, 2013. 13(1): p. 263.
- Bozdogan, H., Model selection and Akaike’s information criterion
(AIC): The general theory and its analytical extensions.Psychometrika, 1987. 52(3): p. 345-370.
- Ronquist, F. and J.P. Huelsenbeck, MrBayes 3: Bayesian
phylogenetic inference under mixed models. Bioinformatics, 2003.
19(12): p. 1572-1574.
- Kumar, S., G. Stecher, and K. Tamura, MEGA7: molecular
evolutionary genetics analysis version 7.0 for bigger datasets.Molecular biology and evolution, 2016. 33(7): p. 1870-1874.
- Minias, P., et al., A global analysis of selection at the avian
MHC. Evolution, 2018. 72(6): p. 1278-1293.
- Bos, D.H. and B. Waldman, Evolution by recombination and
transspecies polymorphism in the MHC class I gene of Xenopus laevis.Molecular Biology and Evolution, 2005. 23(1): p. 137-143.
- Loiseau, C., et al., Diversifying selection on MHC class I in
the house sparrow (Passer domesticus). Molecular Ecology, 2009.
18(7): p. 1331-1340.
- Freeman‐Gallant, C.R., et al., Variation at the major
histocompatibility complex in Savannah sparrows. Molecular Ecology,
2002. 11(6): p. 1125-1130.
- Alcaide, M., M. Liu, and S.V. Edwards, Major histocompatibility
complex class I evolution in songbirds: universal primers, rapid
evolution and base compositional shifts in exon 3. PeerJ, 2013. 1: p.
e86.
- Nei, M. and A.P. Rooney, Concerted and birth-and-death evolution
of multigene families. Annu. Rev. Genet., 2005. 39: p. 121-152.
- Miller, H.C. and D.M. Lambert, Gene duplication and gene
conversion in class II MHC genes of New Zealand robins (Petroicidae).Immunogenetics, 2004. 56(3): p. 178-191.
- Burri, R., et al., Evolutionary patterns of MHC class II B in
owls and their implications for the understanding of avian MHC
evolution. Molecular Biology and Evolution, 2008. 25(6): p.
1180-1191.
- Kikkawa, E.F., et al., Trans-species polymorphism of the Mhc
class II DRB-like gene in banded penguins (genus Spheniscus).Immunogenetics, 2009. 61(5): p. 341-352.
- Eimes, J.A., et al., Early duplication of a single MHC IIB locus
prior to the passerine radiations. PloS one, 2016. 11(9): p.
e0163456.
- Hughes, A.L., T. Ota, and M. Nei, Positive Darwinian selection
promotes charge profile diversity in the antigen-binding cleft of
class I major-histocompatibility-complex molecules. Molecular biology
and evolution, 1990. 7(6): p. 515-524.
- Penn, D.J., K. Damjanovich, and W.K. Potts, MHC heterozygosity
confers a selective advantage against multiple-strain infections.Proceedings of the National Academy of Sciences, 2002. 99(17): p.
11260-11264.
- Bollmer, J.L., F.H. Vargas, and P.G. Parker, Low MHC variation
in the endangered Galapagos penguin (Spheniscus mendiculus).Immunogenetics, 2007. 59(7): p. 593-602.
- Sepil, I., S. Lachish, and B.C. Sheldon, Mhc‐linked survival and
lifetime reproductive success in a wild population of great tits.Molecular ecology, 2013. 22(2): p. 384-396.
- Schaschl, H., et al., Recombination and the origin of sequence
diversity in the DRB MHC class II locus in chamois (Rupicapra spp.).Immunogenetics, 2005. 57(1-2): p. 108-115.
- Minias, P., et al., Contrasting evolutionary histories of MHC
class I and class II loci in grouse—effects of selection and gene
conversion. Heredity, 2016. 116(5): p. 466.
- Anmarkrud, J., et al., Ancestral polymorphism in exon 2 of
bluethroat (Luscinia svecica) MHC class II B genes. Journal of
Evolutionary Biology, 2010. 23(6): p. 1206-1217.
- Zeng, Q.-Q., et al., Balancing selection and recombination as
evolutionary forces caused population genetic variations in golden
pheasant MHC class I genes. BMC evolutionary biology, 2016. 16(1): p.
42.
- Wynne, J.W., et al., Major histocompatibility polymorphism
associated with resistance towards amoebic gill disease in Atlantic
salmon (Salmo salar L.). Fish & shellfish immunology, 2007. 22(6):
p. 707-717.
- Borg, Å.A., et al., Variation in MHC genotypes in two
populations of house sparrow (Passer domesticus) with different
population histories. Ecology and evolution, 2011. 1(2): p. 145-159.
- Ye, Q., et al., Isolation of a 97-kb minimal essential MHC B
locus from a new reverse-4D BAC library of the golden pheasant. PloS
one, 2012. 7(3): p. e32154.
- Gillingham, M.A., et al., Evidence of gene orthology and
trans‐species polymorphism, but not of parallel evolution, despite
high levels of concerted evolution in the major histocompatibility
complex of flamingo species. Journal of evolutionary biology, 2016.
29(2): p. 438-454.
- Marmesat, E., et al., Retention of functional variation despite
extreme genomic erosion: MHC allelic repertoires in the Lynx genus.BMC evolutionary biology, 2017. 17(1): p. 158.
- Jaratlerdsiri, W., et al., Selection and trans-species
polymorphism of major histocompatibility complex class II genes in the
order Crocodylia. PLoS One, 2014. 9(2): p. e87534.
- Ballingall, K.T., et al., Trans-species polymorphism and
selection in the MHC class II DRA genes of domestic sheep. PLoS One,
2010. 5(6): p. e11402.