References
Abegg R. (1899). Untersuchungen über die Chemischen Affinitäten.Abhandlungen aus den Jahren 1864, 1867, 1879. Leipzig: Wilhelm Engelmann.
Ainsworth E.A. & Bush D.R. (2011) Carbohydrate export from the leaf: A highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol. 155, 64–69.
Athanasiou K., Dyson B.C., Webster R.E & Johnson G.N. (2010). Dynamic acclimation of photosynthesis increases plant fitness in changing environments. Plant Physiol. 152, 366–373.
Arnold A. & Nikoloski Z. (2014). Bottom-up reconstruction of Arabidopsis and its application to determining the metabolic costs of enzyme production. Plant Physiol. 165, 1380–1391.
Arrhenius S.A. (1889). Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte. Physikal. Chemie 4, 96–116.
Bakera J.W., Schubert M. & Faberb M.H. (2008). On the assessment of robustness. Structural Safety 30, 253–267.
Beck J.B., Schmuths H. & Schaal B.A. (2008). Native range genetic variation in Arabidopsis thaliana is strongly geographically structured and reflects Pleistocene glacial dynamics. Mol. Ecol. 17, 902–915.
Changnon S.A., Pielke R.A.Jr., Changnon D., Sylves R.T. & Pulwarty R. (2000). Human factors explain the increased losses from weather and climate extremes. Americ. Meterol. Soc. 81, 437–442.
Chia D.W., Yoder T.J., Reiter W.-D. & Gibson S.I. (2000). Fumaric acid: an overlooked form of fixed carbon in Arabidopsis. Planta 211, 743–751.
Christensen B. & Nielsen J. (2000). Metabolic network analysis. A powerful tool in metabolic engineering. Adv. Biochem. Eng. Biotechnol. 66, 209–231.
Ding Y., Shi Y. & Yang S. (2020). Molecular regulation of plant responses to environmental temperatures. Mol. Plant. 13, 544-564.
Dyson B.C., Allwood J.W., Feil R., Xu Y., Miller M., Bowsher C.G., Goodacre R., Lunn J.E. & Johnson G.N. (2015). Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. Plant, Cell & Environ. 38, 1404–1417.
Dyson B.C., Miller M.A.E., Feil R., Rattray N., Bowsher C.G., Goodacre R., Lunn J.E. & Johnson G.N. (2016). FUM2, a cytosolic fumarase, is essential for acclimation to low temperature in Arabidopsis thaliana. Plant Physiol. 172, 118–127.
Elias M., Wieczorek G., Rosenne S. & Tawfik D.S. (2014). The universality of enzymatic rate-temperature dependency. Trends Biochem. Sci. 39, 1–7.
Faust K., Dupont P., Callut J., van Helden J. (2010). Pathway discovery in metabolic networks by subgraph extraction. Bioinformatics 26, 1211–1218.
Fernie A.R. & Martinoia, E. (2009). Malate Jack of all trades or master of a few? Phytochem . 70, 828–832.
Frainay C. & Jourdan F. (2017). Computational methods to identify metabolic sub-networks based on metabolomic profiles. Brief. Bioinform. 18, 43–56.
Freeman L.C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry 40, 35–41.
Gerstl M.P., Klamt S., Jungreuthmayer C. & Zanghellini J. (2016). Exact quantification of cellular robustness in genome-scale metabolic networks. Bioinformatics . 32, 730–737.
Gnan S., Priest A., Kover P.X. (2014). The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana MAGIC lines. Genetics 198, 1751–1758.
Herrmann H.A., Schwartz J.-M. & Johnson G.N. (2019a). Metabolic acclimation—a key to enhancing photosynthesis in changing environments? J. of Exp. Bot. 12: 3043–3056.
Herrmann H.A., Schwartz J.-M. & Johnson, G.N. (2019b). From empirical to theoretical models of light response curves-linking photosynthetic and metabolic acclimation. Photosynth. Res.doi:10.1007/s11120-019-00681-2.
Herrmann H.A., Dyson B.C., Vass L., Johnson G.N. & Schwartz J.-M. (2019c). Flux sampling is a powerful tool to study metabolism under changing environmental conditions. npj Sys. Biol. & App. 3, 32.
Hikosaka K., Ishikawa K., Borhigidai A., Muller O. & Onoda Y. (2006). Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J. of Exp. Bot. 57, 291–302.
Holme P. (2011). Metabolic Robustness and Network Modularity: A Model Study. PLoS One 6, e16605.
Hooke R. & Jeeves T. (1961) Direct search solutions of numerical and statistical problems. J. of the Assoc. for Computing Machinery.8, 212-229.
Hurry V., Strand Å., Furbank R. & Stitt M. (2000). The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidopsis thaliana. The Plant J. 24, 383–396.
Jeong H., Tombor B., Albert R., Oltvai Z.N. & Barabasi A.L. (2000). The large-scale organization of metabolic networks. Nature 407, 651–654.
Jeong H., Mason S.P., Barabasi A.L. & Oltvai Z.N. (2001). Lethality and centrality in protein networks. Nature 411, 41–42.
Johnson, G.N. & Murchie E. (2011). Gas exchange measurements for determination of photosynthetic efficiency in Arabidopsis leaves. Method. in Molec. Biol. 775, 311–326.
Kaplan F., Kopka J., Haskell D.W., Zhao W., Schiller K.C., Gatzke N., Sung D.Y. & Guy C.L. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 136, 4159–4168.
King J.P. & Jewett W.S. (2010). Robustness Development and Reliability Growth: Value Adding Strategies for New Products and Processes. Pearson Education, Technology & Engineering .
Kitano H. (2002). Systems biology: A brief overview. Science 295, 1662–1664.
Kitano H. (2004). Biological Robustness. Nat. Rev. Genetics 5, 826–837.
Kovermann P., Meyer S., Hortensteiner S., Picco C., Scholz-Starke J., Ravera S., Lee Y., Martinoia E. (2007) The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J. 52, 1169-1180.
Lalonde S., Tegeder M., Throne-Holst M., Frommer W.B. & Patrick J.W. (2003) Phloem loading and unloading of sugars and amino acids.Plant, Cell & Environm. 26, 37–56.
Lazebnik Y. (2003). Can a biologist fix a radio? – Or, what I learned while studying apoptosis. Cancer Cell 2, 179–182.
Lesk C., Rowhani P. & Ramankutty N. (2016). Framing the way to relate climate extremes to climate change. Nature 529, 84–87.
Lewis N.E., Nagarajan H. & Palsson B.O. (2012). Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. , 10, 291-305.
O’Leary B., Park J. & Plaxton W.C. (2011). The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J. 436, 15–34.
Powell J.P. & Reinhard S. (1993). Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosyn. Res. 37, 19–39.
Powell J.P. & Reinhard S. (2016). Measuring the effects of extreme weather events on yields. Weather Clim. Extr. 12, 69–79.
Pracharoenwattana I., Zhou W., Keech O., Francisco P.B., Udomchalothorn T., Tschoep H., Stitt M., Gibon Y. & Smith S.M. (2010). Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. Plant J. 1, 785–795.
Rausanda M. & Øienb K. (1996). The basic concepts of failure analysis.Reliab. Eng. & Sys. Safety 53, 73–83.
Riewe D., Jeon H.-J., Lisec J., Heuermann M.C., Schmeichel J., Seyfarth M., Meyer R.C., Willmitzer L. & Altmann T. (2016). A naturally occurring promoter polymorphism of the Arabidopsis FUM2 gene causes expression variation and is associated with metabolic and growth traits.The Plant J. 88, 826–838.
Saa P.A. & Nielsen L.K. (2017) Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks.Biotechnol. Adv. 35, 981–1003.
Sadras V.O. (2007). Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Research 100, 125–138.
Scott I.M., Ward J.L., Miller S.J. & Beale M.H. (2014). Opposite variations in fumarate and malate dominate metabolic phenotypes of Arabidopsis salicylate mutants with abnormal biomass under chilling.Physiol. Plant. 88, 660–674.
Smith A. & Stitt M. (2007). Coordination of carbon supply and plant growth. Plant, Cell, & Environ. 30, 1126–1149.
Stamatis D.H. (1995). Failure Mode and Effect Analysis: FMEA from Theory to Execution. ASQC Quality Press 53, Milwaukee, Wisc.
Stitt M. & Hurry V.A. (2002). plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis.Curr. Opinion Plant Biol. 5, 199–206.
Strand Å., Foyer C.H., Gustafsson P., Gardeström P. & Hurry V. (2003). Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant, Cell, & Env. 26, 523–535.
Streb S. & Zeemana SC. (2012). Starch Metabolism in Arabidopsis.Arabidop. Book 10, e0160.
Timm S., Mielewczick M., Florian A., Frankenback S., Dreissen A., Hocken N., Fernie A.R., Walter A. & Bauwe H. (2012). High-to-Low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS One 7, e42809.
Trenberth K.E. (2012). Framing the way to relate climate extremes to climate change. Climatic Change 115, 283–290.
Webber A.N., Nie G.-Y. & Long S.P. (1994). Acclimation of photosynthetic proteins to rising atmospheric CO2.Photosynth. Res. 39, 413–425.
Weise S.E., Liu T., Childs K.L., Preiser L.P., Katulski H.M., Perrin-Prozondek C. & Sharkey T.D. (2019). Transcriptional regulation of the glucose-6-phosphate/phosphate translocator 2 is related to carbon exchange across the chloroplast envelope. Front. Plant Sci. 10, 827.
Wilkinson T.L. & Douglas AE. (2003). Phloem amino acids and the host plant range of the polyphagous aphid, Aphis fabae. Entomol. Exp. Appl. 106, 103–113.
Yamori W., Hikosaka K. & Way D.A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosyn. Res. 119, 101–117.
Yassine A.A. (2007). Investigating product development process reliability and robustness using simulation. J. of Eng. Design18, 545–561.
Zell M.B., Fahnenstick H., Maier A., Saigo M., Voznesenskaya E.V., Edwards G.E., Andreo C., Schleifenbaum F., Zell C., Drincovich M.F. & Maurino V.G. (2010). Analysis of Arabidopsis with highly reduced levels of malate and fumarate sheds light on the role of these organic acids as storage molecules. Plant Physiol. 152, 1251–1562.
Zhang Q., Kong X., Yu Q., Ding Y., Li X. & Yang Y. (2019). Responses of PYR/PYL/RCAR ABA receptors to contrasting stresses, warm and cold in Arabidopsis. Plant Signal Behav. 14, 1670596.
Zubimendi J.P., Martinatto A., Valacco M.P., Moreno S., Andreo C.S., Drincovich M.F. & Tronconi M.A. (2018). The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate. FEBS J. 285, 2205–2224.