References
Antipov, D., Korobeynikov, A., McLean, J. S., & Pevzner, P. A. (2016). hybridSPAdes: an algorithm for hybrid assembly of short and long reads.Bioinformatics, 32 (7), 1009-1015. doi:10.1093/bioinformatics/btv688
Blome, S., Franzke, K., & Beer, M. (2020). African swine fever - A review of current knowledge. Virus Res, 287 , 198099. doi:doi:10.1016/j.virusres.2020.198099
Carlson, J., Zani, L., Schwaiger, T., Nurmoja, I., Viltrop, A., Vilem, A., . . . Blome, S. (2018). Simplifying sampling for African swine fever surveillance: Assessment of antibody and pathogen detection from blood swabs. Transbound Emerg Dis, 65 (1), e165-e172. doi:10.1111/tbed.12706
Carrascosa, A. L., Bustos, M. J., & de Leon, P. (2011). Methods for growing and titrating African swine fever virus: field and laboratory samples. Curr Protoc Cell Biol, Chapter 26 , Unit 26 14. doi:10.1002/0471143030.cb2614s53
Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., & Stahl, K. (2019). Epidemiological considerations on African swine fever in Europe 2014-2018. Porcine Health Manag, 5 , 6. doi:10.1186/s40813-018-0109-2
Fischer, M., Hühr, J., Blome, S., Conraths, F. J., & Probst, C. (2020). Stability of African swine fever virus in carcasses of domestic pigs and wild boar experimentally infected with the ASFV ’Estonia 2014’ isolate.Viruses, 2020 .
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation.Mol Biol Evol, 35 (2), 518-522. doi:10.1093/molbev/msx281
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods, 14 (6), 587-589. doi:10.1038/nmeth.4285
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 30 (4), 772-780. doi:10.1093/molbev/mst010
King, D. P., Reid, S. M., Hutchings, G. H., Grierson, S. S., Wilkinson, P. J., Dixon, L. K., . . . Drew, T. W. (2003). Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. J Virol Methods, 107 (1), 53-61. doi:10.1016/s0166-0934(02)00189-1
Kolbasov, D., Tsybanov, S., Malogolovkin, A., Gazaev, I., & Mikolaxchuk, S. (2011). Identification of ASF virus in pork products.Veterinaria, 10 , 54-56.
Kroschewski, K., Kramer, M., Micklich, A., Staubach, C., Carmanns, R., & Conraths, F. J. (2006). Animal disease outbreak control: the use of crisis management tools. Rev Sci Tech, 2006 Apr 25 (1), 211-221. doi:doi: 10.20506/rst.25.1.1657.PMID: 16796050
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods, 9 (4), 357-359. doi:10.1038/nmeth.1923
Linden, A., Licoppe, A., Volpe, R., Paternostre, J., Lesenfants, C., Cassart, D., . . . Cay, A. B. (2019). Summer 2018: African swine fever virus hits north-western Europe. Transbound Emerg Dis, 66 (1), 54-55. doi:10.1111/tbed.13047
Mazur-Panasiuk, N., Walczak, M., Juszkiewicz, M., & Wozniakowski, G. (2020). The Spillover of African Swine Fever in Western Poland Revealed Its Estimated Origin on the Basis of O174L, K145R, MGF 505-5R and IGR I73R/I329L Genomic Sequences. Viruses, 12 (10). doi:10.3390/v12101094
Mazur-Panasiuk, N., Wozniakowski, G., & Niemczuk, K. (2019). The first complete genomic sequences of African swine fever virus isolated in Poland. Sci Rep, 9 (1), 4556. doi:10.1038/s41598-018-36823-0
Mebus, C. A., Arias, M., Pineda, J. M., Tapiador, J., House, C., & Sanchez-Vizcaino, F. (1997). Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chem, 59 (4), 555-559.
Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 32 (1), 268-274. doi:10.1093/molbev/msu300
Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5 (2), 9-13.
Petrov, A., Schotte, U., Pietschmann, J., Drager, C., Beer, M., Anheyer-Behmenburg, H., . . . Blome, S. (2014). Alternative sampling strategies for passive classical and African swine fever surveillance in wild boar. Vet Microbiol, 173 (3-4), 360-365. doi:10.1016/j.vetmic.2014.07.030
Probst, C., Gethmann, J., Amendt, J., Lutz, L., Teifke, J. P., & Conraths, F. J. (2020). Estimating the Postmortem Interval of Wild Boar Carcasses. Vet Sci, 7 (1). doi:10.3390/vetsci7010006
Probst, C., Gethmann, J., Hohmann, U., Knoll, B., Amendt, J., Teifke, J. P., & Conraths, F. J. (2020). Zersetzungsstadien bei Wildschweinkadavern - und wie die Liegezeit geschätzt werden kann.Amtstierärztlicher Dienst und Lebensmittelkontrolle, 2 .
Tignon, M., Gallardo, C., Iscaro, C., Hutet, E., Van der Stede, Y., Kolbasov, D., . . . Koenen, F. (2011). Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. Journal of virological methods, 178 (1-2), 161-170. doi:10.1016/j.jviromet.2011.09.007
Wylezich, C., Papa, A., Beer, M., & Hoper, D. (2018). A Versatile Sample Processing Workflow for Metagenomic Pathogen Detection. Sci Rep, 8 (1), 13108. doi:10.1038/s41598-018-31496-1
Table 1: Wild boar samples examined for ASF in Brandenburg, Germany (from 10th September to 24th September 2020)