References
1.
Ameur, A., Enroth, S., Johansson, Å., Zaboli, G., Igl, W., Johansson, Anna C.V. et al. (2012). Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids. The American Journal of Human Genetics , 90, 809-820.
2.
Amini Khoeyi, Z., Seyfabadi, J. & Ramezanpour, Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac. Int. , 20, 41-49.
3.
Amorim, C.E.G., Nunes, K., Meyer, D., Comas, D., Bortolini, M.C., Salzano, F.M. et al. (2017). Genetic signature of natural selection in first Americans. Proceedings of the National Academy of Sciences , 114, 2195-2199.
4.
Andersson, M.N., Wang, H.-L., Nord, A., Salmon, P. & Isaksson, C. (2015). Composition of physiologically important fatty acids in great tits differs between urban and rural populations on a seasonal basis.Frontiers in Ecology and Evolution , 3.
5.
Arts, M.T. & Kohler, C.C. (2009). Health and condition in fish: the influence of lipids on membrane competency and immune response. In:Lipids in Aquatic Ecosystems (eds. Kainz, M, Brett, MT & Arts, MT). Springer New York New York, NY, pp. 237-256.
6.
Badyaev, A.V. (2019). Evolutionary transitions in controls reconcile adaptation with continuity of evolution. Semin. Cell Dev. Biol. , 88, 36-45.
7.
Badyaev, A.V., Posner, A.B., Morrison, E.S. & Higginson, D.M. (2019). Cycles of external dependency drive evolution of avian carotenoid networks. Nat. Commun. , 10, 1596.
8.
Barrett, R.D. & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in ecology & evolution , 23, 38-44.
9.
Barton, N.H. & Keightley, P.D. (2002). Understanding quantitative genetic variation. Nature Reviews Genetics , 3, 11-21.
10.
Bell, J.G., McEvoy, J., Tocher, D.R., McGhee, F., Campbell, P.J. & Sargent, J.R. (2001). Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. The Journal of nutrition , 131, 1535-1543.
11.
Betancor, M.B., Oboh, A., Ortega, A., Mourente, G., Navarro, J.C., de la Gándara, F. et al. (2020). Molecular and functional characterisation of a putative elovl4 gene and its expression in response to dietary fatty acid profile in Atlantic bluefin tuna (Thunnus thynnus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. , 240, 110372.
12.
Bickel, R.D., Kopp, A. & Nuzhdin, S.V. (2011). Composite effects of polymorphisms near multiple regulatory elements create a major-effect QTL. PLoS Genet , 7, e1001275.
13.
Blomquist, G.J., Borgeson, C.E. & Vundla, M. (1991). Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem. , 21, 99-106.
14.
Borenstein, E., Kupiec, M., Feldman, M.W. & Ruppin, E. (2008). Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl. Acad. Sci. U. S. A. , 105, 14482-14487.
15.
Boschetti, E., Bordoni, A., Meluzzi, A., Castellini, C., Dal Bosco, A. & Sirri, F. (2016). Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS1 and FADS2 gene expression and desaturating activity. Animal , 10, 700-708.
16.
Buzzi, M., Henderson, R.J. & Sargent, J.R. (1996). The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Biochim Biophys Acta , 1299, 235-244.
17.
Calder, P.C. (2002). Dietary modification of inflammation with lipids.Proceedings of the Nutrition Society , 61, 345-358.
18.
Carroll, S.B. (2005). Evolution at two levels: on genes and form.PLoS Biol. , 3, e245.
19.
Cashman, M.J., Wehr, J.D. & Truhn, K. (2013). Elevated light and nutrients alter the nutritional quality of stream periphyton.Freshwater Biology , 58, 1447-1457.
20.
Castro, L.F.C., Monroig, Ó., Leaver, M.J., Wilson, J., Cunha, I. & Tocher, D.R. (2012). Functional desaturase Fads1 (Δ5) and Fads2 (Δ6) orthologues evolved before the origin of jawed vertebrates. PLoS One , 7, e31950.
21.
Cesar, A.S., Regitano, L.C., Mourão, G.B., Tullio, R.R., Lanna, D.P., Nassu, R.T. et al. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle.BMC genetics , 15, 39.
22.
Chaguaceda, F., Eklöv, P. & Scharnweber, K. (2020). Regulation of fatty acid composition related to ontogenetic changes and niche differentiation of a common aquatic consumer. Oecologia , 193, 325-336.
23.
Charette, C. & Derry, A.M. (2016). Climate alters intraspecific variation in copepod effect traits through pond food webs.Ecology , 97, 1239-1250.
24.
Chen, M., Liu, H. & Chen, B. (2012). Effects of dietary essential fatty acids on reproduction rates of a subtropical calanoid copepod, Acartia erythraea. Mar. Ecol. Prog. Ser. , 455, 95-110.
25.
Colombo, S.M., Wacker, A., Parrish, C.C., Kainz, M.J. & Arts, M.T. (2017). A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems.Environ. Rev. , 25, 163-174.
26.
Cunnane, S.C., Plourde, M., Pifferi, F., Bégin, M., Féart, C. & Barberger-Gateau, P. (2009). Fish, docosahexaenoic acid and Alzheimer’s disease. Prog. Lipid Res. , 48, 239-256.
27.
Feller, S.E., Gawrisch, K. & MacKerell, A.D. (2002). Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. Journal of the American Chemical Society , 124, 318-326.
28.
Fuiman, L.A. & Perez, K.O. (2015). Metabolic programming mediated by an essential fatty acid alters body composition and survival skills of a marine fish. Proceedings of the Royal Society B: Biological Sciences , 282, 20151414.
29.
Fumagalli, M., Moltke, I., Grarup, N., Racimo, F., Bjerregaard, P., Jørgensen, M.E. et al. (2015). Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science , 349, 1343-1347.
30.
Galloway, A.W.E., Britton-Simmons, K.H., Duggins, D.O., Gabrielson, P.W. & Brett, M.T. (2012). Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. J. Phycol. , 48, 956-965.
31.
Galloway, A.W.E. & Winder, M. (2015). Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids. PLoS ONE , 10, e0130053.
32.
Garrido, D., Kabeya, N., Hontoria, F., Navarro, J.C., Reis, D.B., Martín, M.V. et al. (2019). Methyl-end desaturases with ∆12 and ω3 regioselectivities enable the de novo PUFA biosynthesis in the cephalopod Octopus vulgaris. Biochim. Biophys. Acta Mol. Cell Biol. Lipids , 1864, 1134-1144.
33.
Gregory, M.K. & James, M.J. (2014). Functional characterization of the duck and turkey fatty acyl elongase enzymes ELOVL5 and ELOVL2. J. Nutr. , 144, 1234-1239.
34.
Guo, F., Bunn, S.E., Brett, M.T. & Kainz, M.J. (2017). Polyunsaturated fatty acids in stream food webs – high dissimilarity among producers and consumers. Freshwater Biology , 62, 1325-1334.
35.
Guo, F., Kainz, M.J., Sheldon, F. & Bunn, S.E. (2016). The importance of high-quality algal food sources in stream food webs – current status and future perspectives. Freshwater Biology , 61, 815-831.
36.
Guo, F., Kainz, M.J., Sheldon, F. & Bunn, S.E. (2016). Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams. Oecologia , 181, 449-462.
37.
Guschina, I.A. & Harwood, J.L. (2009). Algal lipids and effect of the environment on their biochemistry. In: Lipids in aquatic ecosystems . Springer, pp. 1-24.
38.
Halliwell, B. & Gutteridge, J.M.C. (1985). Free radicals in biology and medicine.
39.
Hastings, N., Agaba, M., Tocher, D.R., Leaver, M.J., Dick, J.R., Sargent, J.R. et al. (2001). A vertebrate fatty acid desaturase with Delta 5 and Delta 6 activities. Proc. Natl. Acad. Sci. U. S. A. , 98, 14304-14309.
40.
Heintz, R.A., Nelson, B.D., Hudson, J., Larsen, M., Holland, L. & Wipfli, M. (2004). Marine subsidies in freshwater: Effects of salmon carcasses on lipid class and fatty acid composition of juvenile coho salmon. Transactions of the American Fisheries Society , 133, 559-567.
41.
Heissenberger, M., Watzke, J. & Kainz, M.J. (2010). Effect of nutrition on fatty acid profiles of riverine, lacustrine, and aquaculture-raised salmonids of pre-alpine habitats. Hydrobiologia , 650, 243-254.
42.
Henshaw, J.M., Morrissey, M.B. & Jones, A.G. 2020. Quantifying the causal pathways contributing to natural selection. Evolution .
43.
Hessen, D.O. & Leu, E. (2006). Trophic transfer and trophic modification of fatty acids in high Arctic lakes. Freshwater Biology , 51, 1987-1998.
44.
Hill, W.R., Rinchard, J. & Czesny, S. (2011). Light, nutrients and the fatty acid composition of stream periphyton. Freshw. Biol. , 56, 1825-1836.
45.
Hixson, S.M. & Arts, M.T. (2016). Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Chang. Biol. , 22, 2744-2755.
46.
Hixson, S.M., Sharma, B., Kainz, M.J., Wacker, A. & Arts, M.T. (2015). Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems. Environmental Reviews , 23, 414-424.
47.
Hoffman, D.R., Boettcher, J.A. & Diersen-Schade, D.A. (2009). Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: a review of randomized controlled trials. Prostaglandins Leukot. Essent. Fatty Acids , 81, 151-158.
48.
Horn, S.S., Ruyter, B., Meuwissen, T.H., Moghadam, H., Hillestad, B. & Sonesson, A.K. (2020). GWAS identifies genetic variants associated with omega-3 fatty acid composition of Atlantic salmon fillets.Aquaculture , 514, 734494.
49.
Hu, S., Wang, J., Han, T., Li, X., Jiang, Y. & Wang, C. (2017). Effects of dietary DHA/EPA ratios on growth performance, survival and fatty acid composition of juvenile swimming crab (Portunus trituberculatus).Aquac. Res. , 48, 1291-1301.
50.
Isaksson, C., Andersson, M.N., Nord, A., von Post, M. & Wang, H.-L. (2017). Species-dependent effects of the urban environment on fatty acid composition and oxidative stress in birds. Frontiers in Ecology and Evolution , 5.
51.
Ishikawa, A., Kabeya, N., Ikeya, K., Kakioka, R., Cech, J.N., Osada, N.et al. (2019). A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science , 364, 886-889.
52.
Jiang, Y. & Chen, F. (1999). Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii. J. Ind. Microbiol. Biotechnol. , 23, 508-513.
53.
Kabeya, N., Fonseca, M.M., Ferrier, D.E.K., Navarro, J.C., Bay, L.K., Francis, D.S. et al. (2018). Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci Adv , 4, eaar6849.
54.
Kabeya, N., Gür, İ., Oboh, A., Evjemo, J.O., Malzahn, A.M., Hontoria, F.et al. (2020). Unique fatty acid desaturase capacities uncovered in Hediste diversicolor illustrate the roles of aquatic invertebrates in trophic upgrading. Philos. Trans. R. Soc. Lond. B Biol. Sci. , 375, 20190654.
55.
Kacser, H. & Burns, J.A. (1981). The molecular basis of dominance.Genetics , 97, 639-666.
56.
Kalacheva, G.S., Sushchik, N.N., Gladyshev, M.I. & Makhutova, O.N. (2009). Seasonal dynamics of fatty acids in the lipids of water moss Fontinalis antipyretica from the Yenisei River. Russ. J. Plant Physiol. , 56, 795-807.
57.
Katan, T., Caballero-Solares, A., Taylor, R.G., Rise, M.L. & Parrish, C.C. (2019). Effect of plant-based diets with varying ratios of omega 6 to omega 3 fatty acids on growth performance, tissue composition, fatty acid biosynthesis and lipid-related gene expression in Atlantic salmon (Salmo solar). Comp. Biochem. Physiol. D-Genomics Proteomics , 30, 290-304.
58.
Kelly, M., Tume, R., Fortes, M. & Thompson, J. (2014). Whole-genome association study of fatty acid composition in a diverse range of beef cattle breeds. Journal of Animal Science , 92, 1895-1901.
59.
Kim, J., Yin, T., Shinozaki, K., Lampe, J.W. & Becker, L.B. (2016). DHA-supplemented diet increases the survival of rats following asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation. Sci. Rep. , 6, 36545.
60.
Koussoroplis, A.-M., Lemarchand, C., Bec, A., Desvilettes, C., Amblard, C., Fournier, C. et al. (2008). From Aquatic to Terrestrial Food Webs: Decrease of the Docosahexaenoic Acid/Linoleic Acid Ratio.Lipids , 43, 461-466.
61.
Lande, R. & Arnold, S.J. (1983). The measurement of selection on correlated characters. Evolution , 1210-1226.
62.
Lang, I., Hodac, L., Friedl, T. & Feussner, I. (2011). Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection.BMC Plant Biol. , 11, 124.
63.
Laughlin, D.C., Gremer, J.R., Adler, P.B., Mitchell, R.M. & Moore, M.M. (2020). The Net Effect of Functional Traits on Fitness. Trends in Ecology & Evolution .
64.
Lee, Y.W., Gould, B.A. & Stinchcombe, J.R. (2014). Identifying the genes underlying quantitative traits: a rationale for the QTN programme.AoB Plants , 6.
65.
Lemos, M.V., Chiaia, H.L.J., Berton, M.P., Feitosa, F.L., Aboujaoud, C., Camargo, G.M. et al. (2016). Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC genomics , 17, 213.
66.
Leonard, A.E., Kelder, B., Bobik, E.G., Chuang, L.-T., Lewis, C.J., Kopchick, J.J. et al. (2002). Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids , 37, 733-740.
67.
Li, Y., Monroig, O., Zhang, L., Wang, S., Zheng, X., Dick, J.R. et al. (2010). Vertebrate fatty acyl desaturase with Δ4 activity.Proc. Natl. Acad. Sci. U. S. A. , 107, 16840-16845.
68.
Lin, G., Wang, L., Te Ngoh, S., Ji, L., Orbán, L. & Yue, G.H. (2018). Mapping QTL for omega-3 content in hybrid saline tilapia. Marine biotechnology , 20, 10-19.
69.
Loehlin, D.W., Ames, J.R., Vaccaro, K. & Carroll, S.B. (2019). A major role for noncoding regulatory mutations in the evolution of enzyme activity. Proc. Natl. Acad. Sci. U. S. A. , 116, 12383-12389.
70.
Loehlin, D.W. & Carroll, S.B. (2016). Expression of tandem gene duplicates is often greater than twofold. Proc. Natl. Acad. Sci. U. S. A. , 113, 5988-5992.
71.
Lynch, M. (2007). The Origins of Genome Architecture . Sinauer Associates.
72.
Lynch, M. & Walsh, B. (1998). Genetics and analysis of quantitative traits . Sinauer Sunderland, MA.
73.
Maeda, H.A. (2019). Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. Front. Plant Sci. , 10, 881.
74.
Malcicka, M., Visser, B. & Ellers, J. (2018). An Evolutionary Perspective on Linoleic Acid Synthesis in Animals. Evol. Biol. , 45, 15-26.
75.
Martin-Creuzburg, D., Sperfeld, E. & Wacker, A. (2009). Colimitation of a freshwater herbivore by sterols and polyunsaturated fatty acids.Proc. Biol. Sci. , 276, 1805-1814.
76.
Martin-Creuzburg, D. & von Elert, E. (2009). Good food versus bad food: the role of sterols and polyunsaturated fatty acids in determining growth and reproduction of Daphnia magna. Aquatic Ecology , 43, 943-950.
77.
Matsunari, H., Hashimoto, H., Oda, K., Masuda, Y., Imaizumi, H., Teruya, K. et al. (2013). Effects of docosahexaenoic acid on growth, survival and swim bladder inflation of larval amberjack (Seriola dumerili, Risso). Aquac. Res. , 44, 1696-1705.
78.
McCann, J.C. & Ames, B.N. (2005). Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am. J. Clin. Nutr. , 82, 281-295.
79.
McCarty, J.P. & Winkler, D.W. (1999). Foraging Ecology and Diet Selectivity of Tree Swallows Feeding Nestlings. Condor , 101, 246-254.
80.
Melián, C.J., Matthews, B., de Andreazzi, C.S., Rodríguez, J.P., Harmon, L.J. & Fortuna, M.A. (2018). Deciphering the Interdependence between Ecological and Evolutionary Networks. Trends Ecol. Evol. , 33, 504-512.
81.
Mesa-Rodriguez, A., Maria Hernandez-Cruz, C., Beatriz Betancor, M., Fernandez-Palacios, H., Izquierdo, M.S. & Roo, J. (2018). Effect of increasing docosahexaenoic acid content in weaning diets on survival, growth and skeletal anomalies of longfin yellowtail (Seriola rivoliana, Valenciennes 1833). Aquac. Res. , 49, 1200-1209.
82.
Michelson, C.I., Clark, R.G. & Morrissey, C.A. (2018). Agricultural land cover does not affect the diet of Tree Swallows in wetland-dominated habitats. Condor , 120, 751-764.
83.
Miller, A.H. (1949). Some ecologic and morphologic considerations in the evolution of higher taxonomic categories. Ornithologie als biologische Wissenschaft , 84-88.
84.
Møller, I.M., Jensen, P.E. & Hansson, A. (2007). Oxidative Modifications to Cellular Components in Plants. Annu. Rev. Plant Biol. , 58, 459-481.
85.
Monroig, Ó. & Kabeya, N. (2018). Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: a comprehensive review. Fish. Sci. , 84, 911-928.
86.
Morais, S., Castanheira, F., Martinez-Rubio, L., Conceição, L.E.C. & Tocher, D.R. (2012). Long chain polyunsaturated fatty acid synthesis in a marine vertebrate: ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity. Biochim. Biophys. Acta , 1821, 660-671.
87.
Morrison, E.S. & Badyaev, A.V. (2016). Structuring evolution: biochemical networks and metabolic diversification in birds. BMC Evol. Biol. , 16, 168.
88.
Mueller, M.J. (2004). Archetype signals in plants: the phytoprostanes.