References
  1. Crooke, S. T. (Ed.). Antisense drug technology: principles, strategies, and applications . CRC press, 2007 .
  2. Chan, J. H.; Lim, S.; Wong, W. F. Antisense oligonucleotides: from design to therapeutic application. Clin. Exp. Pharmacol. Physiol.  2006 , 33 (5‐6), 533-540.
  3. Bennett, C. F.; Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol.  2010 ,50 , 259-293.
  4. Lima, W. F.; Wu, H.; Crooke, S. T. Human RNases H. Meth. Enzymol.  2001 , 341 , 430.
  5. Cerritelli, S. M.; Crouch, R. J. Ribonuclease H: the enzymes in eukaryotes. FEBS J.  2009 , 276 (6), 1494-1505.
  6. Galderisi, U.; Cascino, A.; Giordano, A. Antisense oligonucleotides as therapeutic agents. J. Cell. Physiol1999 ,181 (2), 251-257.
  7. Vitravene Study Group. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol.  2002 , 133 (4), 467-474.
  8. Le Calvez, H.; Yu, M.; Fang, F. Biochemical prevention and treatment of viral infections–A new paradigm in medicine for infectious diseases. Virol. J.  2004 , 1 (1), 12.
  9. Stein, C. A.; Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther.  2017 , 25 (5), 1069-1075.
  10. Zamecnik, P. C.; Stephenson, M. L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci.  1978 ,75 (1), 280-284.
  11. Tavitian, B.; Terrazzino, S.; Kühnast, B.; Marzabal, S.; Stettler, O.; Dollé, F.; Crouzel, C. In vivo imaging of oligonucleotides with positron emission tomography. Nat. Med.19984 (4), 467-471.
  12. Geary, R. S. Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin. Drug Metab. Toxicol.20095 (4), 381-391.
  13. Kurreck, J. Antisense technologies: improvement through novel chemical modifications. Eur. J. Biochem. 2003270 (8), 1628-1644.
  14. Campbell, J. M.; Bacon, T. A.; Wickstrom, E. Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J. Biochem. Bioph. Meth.199020 (3), 259-267.
  15. Chen, X.; Dudgeon, N.; Shen, L.; Wang, J. H. Chemical modification of gene silencing oligonucleotides for drug discovery and development. Drug Discov. Today. 2005 , 10 (8), 587-593.
  16. Manoharan, M. 2′-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim. Biophys. Acta (BBA)-Gene Struct. Expr.19991489 (1), 117-130.
  17. Bennett, C. F.; Baker, B. F.; Pham, N.; Swayze, E.; Geary, R. S. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol.201757 , 81-105.
  18. Shen, W.; De Hoyos, C. L.; Migawa, M. T.; Vickers, T. A.; Sun, H.; Low, A.; Bell, M. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol. 201937 (6), 640-650.
  19. Monia, B. P.; Lesnik, E. A.; Gonzalez, C.; Lima, W. F.; McGee, D.; Guinosso, C. J.; Freier, S. M. Evaluation of 2’-modified oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 1993268 (19), 14514-14522.
  20. Hyrup, B.; Nielsen, P. E. Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorg. Med. Chem.19964 (1), 5-23.
  21. Elayadi, A. N.; Corey, D. R. Application of PNA and LNA oligomers to chemotherapy. Curr. Opin. Invest. Dr.20012 (4), 558-561.
  22. Declercq, R.; Aerschot, A. V.; Read, R. J.; Herdewijn, P.; Meervelt, L. V. Crystal structure of double helical hexitol nucleic acids. J. Am. Chem. Soc. 2002124 (6), 928-933.
  23. Pensato, S.; Saviano, M.; Romanelli, A. New peptide nucleic acid analogues: synthesis and applications. Expert Opin. Biol. Ther. , 20077 (8), 1219-1232.
  24. Veedu, R. N.; Wengel, J. Locked nucleic acid as a novel class of therapeutic agents. RNA Biol.20096 (3), 321-323.
  25. Stein, C. A.; Hansen, J. B.; Lai, J.; Wu, S.; Voskresenskiy, A.; H⊘ g, A.; Soifer, H. S. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res. 201038 (1), e3-e3.
  26. Wan, W. B.; Seth, P. P. The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem. 201659 (21), 9645-9667.
  27. Shibahara, S.; Mukai, S.; Nishihara, T.; Inoue, H.; Ohtsuka, E.; Morisawa, H. Site-directed cleavage of RNA. Nucleic Acids Res.198715 (11), 4403-4415.
  28. Monia, B. P.; Lesnik, E. A.; Gonzalez, C.; Lima, W. F.; McGee, D.; Guinosso, C. J.; Freier, S. M. Evaluation of 2’-modified oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 1993268 (19), 14514-14522.
  29. Henry, S. P.; Geary, R. S.; Yu, R.; Levin, A. A. Drug properties of second-generation antisense oligonucleotides: how do they measure up to their predecessors?. Curr. Opin. Invest. Dr. (London, England: 2000) , 20012 (10), 1444.
  30. Yamamoto, T.; Harada-Shiba, M.; Nakatani, M.; Wada, S.; Yasuhara, H.; Narukawa, K.; Imanishi, T. Cholesterol-lowering action of BNA-based antisense oligonucleotides targeting PCSK9 in atherogenic diet-induced hypercholesterolemic mice. Mol. Ther. Nucleic Acids.20121 , e22.
  31. Pedersen, L.; Hagedorn, P. H.; Lindholm, M. W.; Lindow, M. A kinetic model explains why shorter and less affine enzyme-recruiting oligonucleotides can be more potent. Mol. Ther. Nucleic Acids.20143 , e149.
  32. Lundin, K. E.; Gissberg, O.; Smith, C. E. Oligonucleotide therapies: the past and the present. Hum. Gene Ther.201526 (8), 475-485.
  33. Sharma, S.; Sonavane, U. B.; Joshi, R. R. Quantum chemical studies of peptide nucleic acid monomers and role of cyclohexyl modification on backbone flexibility. Int. J. Quantum Chem.2009109 (4), 890-896.
  34. Malrieu, J. P. Semiempirical Methods of Electronic Structure Calculation. Part A. Techniques. Modern Theoretical Chemistry,1977 , Vol. 7.
  35. Uppuladinne, M. V.; Jani, V.; Sonavane, U. B.; Joshi, R. R. Quantum chemical studies of novel 2′‐4′ conformationally restricted antisense monomers. Int. J. Quantum Chem. 2013113 (23), 2523-2533.
  36. Uppuladinne, M. V.; Sonavane, U. B.; Deka, R. C.; Joshi, R. R. Structural insight into antisense gapmer-RNA oligomer duplexes through molecular dynamics simulations. J. Biomol. Struct. Dyn.201937 (11), 2823-2836.
  37. Koshkin, A. A.; Nielsen, P.; Meldgaard, M.; Rajwanshi, V. K.; Singh, S. K.; & Wengel, J. LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA: LNA duplexes. J. Am. Chem. Soc.1998120 (50), 13252-13253.
  38. Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M.; Wengel, J. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron. 199854 (14), 3607-3630.
  39. Obika, S.; Nanbu, D.; Hari, Y.; Morio, K. I.; In, Y.; Ishida, T.; Imanishi, T. Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C3,-endo sugar puckering. Tetrahedron Lett. 199738 (50), 8735-8738.
  40. Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J. I.; Morio, K. I.; Doi, T.; Imanishi, T. Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O, 4′-C-methyleneribonucleosides. Tetrahedron Lett.199839 (30), 5401-5404.
  41. Khvorova, A.; Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol.201735 (3), 238-248.
  42. Gavane, V.; Koulgi, S.; Jani, V.; Uppuladinne, M. V.; Sonavane, U.; Joshi, R. TANGO: A high through‐put conformation generation and semiempirical method‐based optimization tool for ligand molecules. J. Comput. Chem. 201940 (7), 900-909.
  43. Dennington, R.; Keith, T.; Millam, J. GaussView, version 5. 2009.
  44. MOPAC2009, J. J. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA. 2008.
  45. Ditchfield, R. H. W. J.; Hehre, W. J.; Pople, J. A. Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys.197154 (2), 724-728.
  46. Petersson, G. A.; Bennett, A. A., TG Tens, MA Al-Laham, WA Shirley, J. Mantzaris. J. Chem. Phys . 198889 , 2193-2218.
  47. Krishnan, R. B. J. S.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys.198072 (1), 650-654.
  48. Gaussian, R. A. (2003). 03, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, JA Montgomery, Jr. T. Vreven, KN Kudin, JC Burant, JM Millam, SS Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, GA Pet, J. Mol. Struct.  666 , 31-39.
  49. O’boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: a library for package‐independent computational chemistry algorithms. J Comp Chem . 2008 , 29 (5), 839-845.
  50. Gaussian09, R. (2009). 02, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani in no. 3 Gaussian. Inc., Wallingford4 .
  51. Chattaraj, P. K.; Sarkar, U.; Roy, D. R., Electrophilicity index.Chem. Rev. 2006 , 106, 2065- 2091
  52. Hazarika, K. K.; Baruah, N. C. Deka, R. C. Molecular structure and reactivity of antituberculosis drug molecules isoniazid, pyrazinamide, and 2-methylheptylisonicotinate: a density functional approach. Struct. Chem. 200920 (6), 1079-1085.
  53. Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Fractional charge perspective on the band gap in density-functional theory. Phys. Rev. B ,200877 (11), 115123.
  54. Parr, R. G.; Szentpaly, L. V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999121 (9), 1922-1924.
  55. Chattaraj, P. K.; Giri, S. Stability, reactivity, and aromaticity of compounds of a multivalent superatom. J. Phys. Chem. A.2007111 (43), 11116-11121.
  56. Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K. Electrophilicity-based charge transfer descriptor. J. Phys. Chem. A. 2007111 (7), 1358-1361.
  57. Ayers, P. W.; Parr, R. G. Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J. Am. Chem. Soc. 2000122 (9), 2010-2018.
  58. Liu, S. B.; Chattaraj, P. K. Chemical reactivity theory: A density functional view. 2009.
  59. Yang, W.; Parr, R. G.; Pucci, R. Electron density, Kohn–Sham frontier orbitals, and Fukui functions. J. Chem. Phys.198481 (6), 2862-2863.
  60. Parr, R. G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 1984106 (14), 4049-4050.
  61. Ayers, P. W.; Levy, M. Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity”. Theor. Chem. Acc. 2000103 (3-4), 353-360.
  62. Yang, W.; Parr, R. G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. 198582 (20), 6723-6726.
  63. Chandra, A. K.; Nguyen, M. T. Fukui function and local softness. Chemical reactivity theory: a density-functional view. Taylor and Francis, New York , 2008, 163-178.
  64. Jerbi, J.; Springborg, M. Computational study of the reactivity of cytosine derivatives. J. Comput. Chem.201738 (14), 1049-1056.
  65. Jerbi, J.; Springborg, M. Reactivity descriptors for DNA bases and the methylation of cytosine. Int. J. Quantum Chem.2018118 (11), e25538.
  66. Gidado, A. S.; Abubakar, S.; Shariff, M. A. DFT, RHF and MP2 based study of the thermodynamic, electronic and non-optical properties of DNA nucleobases. BAJOPAS. 201710 (1), 115-127.
  67. Dwivedi, A.; Baboo, V.; Bajpai, A. Fukui function analysis and optical, electronic, and vibrational properties of tetrahydrofuran and its derivatives: A complete quantum chemical study. J. Theor. Chem. 20152015 .
  68. Rajkhowa, S.; Hussain, I.; K Hazarika, K.; Sarmah, P.; Chandra Deka, R. Quantitative structure-activity relationships of the antimalarial agent artemisinin and some of its derivatives–a DFT approach. Comb. Chem. High Throughput Screen.201316 (8), 590-602.