References
- Crooke, S. T. (Ed.). Antisense drug technology: principles,
strategies, and applications . CRC press, 2007 .
- Chan, J. H.; Lim, S.; Wong, W. F. Antisense oligonucleotides: from
design to therapeutic application. Clin. Exp. Pharmacol.
Physiol. 2006 , 33 (5‐6), 533-540.
- Bennett, C. F.; Swayze, E. E. RNA targeting therapeutics: molecular
mechanisms of antisense oligonucleotides as a therapeutic
platform. Annu. Rev. Pharmacol. Toxicol. 2010 ,50 , 259-293.
- Lima, W. F.; Wu, H.; Crooke, S. T. Human RNases H. Meth.
Enzymol. 2001 , 341 , 430.
- Cerritelli, S. M.; Crouch, R. J. Ribonuclease H: the enzymes in
eukaryotes. FEBS J. 2009 , 276 (6), 1494-1505.
- Galderisi, U.; Cascino, A.; Giordano, A. Antisense oligonucleotides as
therapeutic agents. J. Cell. Physiol . 1999 ,181 (2), 251-257.
- Vitravene Study Group. A randomized controlled clinical trial of
intravitreous fomivirsen for treatment of newly diagnosed peripheral
cytomegalovirus retinitis in patients with AIDS. Am. J.
Ophthalmol. 2002 , 133 (4), 467-474.
- Le Calvez, H.; Yu, M.; Fang, F. Biochemical prevention and treatment
of viral infections–A new paradigm in medicine for infectious
diseases. Virol. J. 2004 , 1 (1), 12.
- Stein, C. A.; Castanotto, D. FDA-approved oligonucleotide therapies in
2017. Mol. Ther. 2017 , 25 (5), 1069-1075.
- Zamecnik, P. C.; Stephenson, M. L. Inhibition of Rous sarcoma virus
replication and cell transformation by a specific
oligodeoxynucleotide. Proc. Natl. Acad. Sci. 1978 ,75 (1), 280-284.
- Tavitian, B.; Terrazzino, S.; Kühnast, B.; Marzabal, S.; Stettler, O.;
Dollé, F.; Crouzel, C. In vivo imaging of oligonucleotides with
positron emission tomography. Nat. Med.1998 , 4 (4), 467-471.
- Geary, R. S. Antisense oligonucleotide pharmacokinetics and
metabolism. Expert Opin. Drug Metab. Toxicol.2009 , 5 (4), 381-391.
- Kurreck, J. Antisense technologies: improvement through novel chemical
modifications. Eur. J. Biochem. 2003 , 270 (8),
1628-1644.
- Campbell, J. M.; Bacon, T. A.; Wickstrom, E. Oligodeoxynucleoside
phosphorothioate stability in subcellular extracts, culture media,
sera and cerebrospinal fluid. J. Biochem. Bioph. Meth.1990 , 20 (3), 259-267.
- Chen, X.; Dudgeon, N.; Shen, L.; Wang, J. H. Chemical modification of
gene silencing oligonucleotides for drug discovery and
development. Drug Discov. Today. 2005 , 10 (8),
587-593.
- Manoharan, M. 2′-Carbohydrate modifications in antisense
oligonucleotide therapy: importance of conformation, configuration and
conjugation. Biochim. Biophys. Acta (BBA)-Gene Struct. Expr.1999 , 1489 (1), 117-130.
- Bennett, C. F.; Baker, B. F.; Pham, N.; Swayze, E.; Geary, R. S.
Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol.2017 , 57 , 81-105.
- Shen, W.; De Hoyos, C. L.; Migawa, M. T.; Vickers, T. A.; Sun, H.;
Low, A.; Bell, M. Chemical modification of PS-ASO therapeutics reduces
cellular protein-binding and improves the therapeutic
index. Nat. Biotechnol. 2019 , 37 (6), 640-650.
- Monia, B. P.; Lesnik, E. A.; Gonzalez, C.; Lima, W. F.; McGee, D.;
Guinosso, C. J.; Freier, S. M. Evaluation of 2’-modified
oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of
gene expression. J. Biol. Chem. 1993 , 268 (19),
14514-14522.
- Hyrup, B.; Nielsen, P. E. Peptide nucleic acids (PNA): synthesis,
properties and potential applications. Bioorg. Med. Chem.1996 , 4 (1), 5-23.
- Elayadi, A. N.; Corey, D. R. Application of PNA and LNA oligomers to
chemotherapy. Curr. Opin. Invest. Dr.2001 , 2 (4), 558-561.
- Declercq, R.; Aerschot, A. V.; Read, R. J.; Herdewijn, P.; Meervelt,
L. V. Crystal structure of double helical hexitol nucleic
acids. J. Am. Chem. Soc. 2002 , 124 (6), 928-933.
- Pensato, S.; Saviano, M.; Romanelli, A. New peptide nucleic acid
analogues: synthesis and applications. Expert Opin. Biol.
Ther. , 2007 , 7 (8), 1219-1232.
- Veedu, R. N.; Wengel, J. Locked
nucleic acid as a novel class of therapeutic agents. RNA Biol.2009 , 6 (3), 321-323.
- Stein, C. A.; Hansen, J. B.; Lai, J.; Wu, S.; Voskresenskiy, A.; H⊘ g,
A.; Soifer, H. S. Efficient gene silencing by delivery of locked
nucleic acid antisense oligonucleotides, unassisted by transfection
reagents. Nucleic Acids Res. 2010 , 38 (1),
e3-e3.
- Wan, W. B.; Seth, P. P. The medicinal chemistry of therapeutic
oligonucleotides. J. Med. Chem. 2016 , 59 (21),
9645-9667.
- Shibahara, S.; Mukai, S.; Nishihara, T.; Inoue, H.; Ohtsuka, E.;
Morisawa, H. Site-directed cleavage of RNA. Nucleic Acids Res.1987 , 15 (11), 4403-4415.
- Monia, B. P.; Lesnik, E. A.; Gonzalez, C.; Lima, W. F.; McGee, D.;
Guinosso, C. J.; Freier, S. M. Evaluation of 2’-modified
oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of
gene expression. J. Biol. Chem. 1993 , 268 (19),
14514-14522.
- Henry, S. P.; Geary, R. S.; Yu, R.; Levin, A. A. Drug properties of
second-generation antisense oligonucleotides: how do they measure up
to their predecessors?. Curr. Opin. Invest. Dr. (London,
England: 2000) , 2001 , 2 (10), 1444.
- Yamamoto, T.; Harada-Shiba, M.; Nakatani, M.; Wada, S.; Yasuhara, H.;
Narukawa, K.; Imanishi, T. Cholesterol-lowering action of BNA-based
antisense oligonucleotides targeting PCSK9 in atherogenic diet-induced
hypercholesterolemic mice. Mol. Ther. Nucleic Acids.2012 , 1 , e22.
- Pedersen, L.; Hagedorn, P. H.; Lindholm, M. W.; Lindow, M. A kinetic
model explains why shorter and less affine enzyme-recruiting
oligonucleotides can be more potent. Mol. Ther. Nucleic Acids.2014 , 3 , e149.
- Lundin, K. E.; Gissberg, O.; Smith, C. E. Oligonucleotide therapies:
the past and the present. Hum. Gene Ther.2015 , 26 (8), 475-485.
- Sharma, S.; Sonavane, U. B.; Joshi, R. R. Quantum chemical studies of
peptide nucleic acid monomers and role of cyclohexyl modification on
backbone flexibility. Int. J. Quantum Chem.2009 , 109 (4), 890-896.
- Malrieu, J. P. Semiempirical Methods of Electronic Structure
Calculation. Part A. Techniques. Modern Theoretical Chemistry,1977 , Vol. 7.
- Uppuladinne, M. V.; Jani, V.; Sonavane, U. B.; Joshi, R. R. Quantum
chemical studies of novel 2′‐4′ conformationally restricted antisense
monomers. Int. J. Quantum Chem. 2013 , 113 (23),
2523-2533.
- Uppuladinne, M. V.; Sonavane, U. B.; Deka, R. C.; Joshi, R. R.
Structural insight into antisense gapmer-RNA oligomer duplexes through
molecular dynamics simulations. J. Biomol. Struct. Dyn.2019 , 37 (11), 2823-2836.
- Koshkin, A. A.; Nielsen, P.; Meldgaard, M.; Rajwanshi, V. K.; Singh,
S. K.; & Wengel, J. LNA (locked nucleic acid): an RNA mimic forming
exceedingly stable LNA: LNA duplexes. J. Am. Chem. Soc.1998 , 120 (50), 13252-13253.
- Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar,
R.; Meldgaard, M.; Wengel, J. LNA (Locked Nucleic Acids): Synthesis of
the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil
bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic
acid recognition. Tetrahedron. 1998 , 54 (14),
3607-3630.
- Obika, S.; Nanbu, D.; Hari, Y.; Morio, K. I.; In, Y.; Ishida, T.;
Imanishi, T. Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine.
Novel bicyclic nucleosides having a fixed C3,-endo sugar
puckering. Tetrahedron Lett. 1997 , 38 (50),
8735-8738.
- Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J. I.; Morio, K. I.; Doi, T.;
Imanishi, T. Stability and structural features of the duplexes
containing nucleoside analogues with a fixed N-type conformation,
2′-O, 4′-C-methyleneribonucleosides. Tetrahedron Lett.1998 , 39 (30), 5401-5404.
- Khvorova, A.; Watts, J. K. The chemical evolution of oligonucleotide
therapies of clinical utility. Nat. Biotechnol.2017 , 35 (3), 238-248.
- Gavane, V.; Koulgi, S.; Jani, V.; Uppuladinne, M. V.; Sonavane, U.;
Joshi, R. TANGO: A high through‐put conformation generation and
semiempirical method‐based optimization tool for ligand
molecules. J. Comput. Chem. 2019 , 40 (7),
900-909.
- Dennington, R.; Keith, T.; Millam, J. GaussView, version 5. 2009.
- MOPAC2009, J. J. Stewart, Stewart Computational Chemistry, Colorado
Springs, CO, USA. 2008.
- Ditchfield, R. H. W. J.; Hehre, W. J.; Pople, J. A. Self‐consistent
molecular‐orbital methods. IX. An extended Gaussian‐type basis for
molecular‐orbital studies of organic molecules. J. Chem. Phys.1971 , 54 (2), 724-728.
- Petersson, G. A.; Bennett, A. A., TG Tens, MA Al-Laham, WA Shirley, J.
Mantzaris. J. Chem. Phys . 1988 , 89 , 2193-2218.
- Krishnan, R. B. J. S.; Binkley, J. S.; Seeger, R.; Pople, J. A.
Self‐consistent molecular orbital methods. XX. A basis set for
correlated wave functions. J. Chem. Phys.1980 , 72 (1), 650-654.
- Gaussian, R. A. (2003). 03, MJ Frisch, GW Trucks, HB Schlegel, GE
Scuseria, MA Robb, JR Cheeseman, JA Montgomery, Jr. T. Vreven,
KN Kudin, JC Burant, JM Millam, SS Iyengar, J. Tomasi, V. Barone, B.
Mennucci, M. Cossi, G. Scalmani, N. Rega, GA Pet, J. Mol.
Struct. 666 , 31-39.
- O’boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: a library for
package‐independent computational chemistry algorithms. J Comp
Chem . 2008 , 29 (5), 839-845.
- Gaussian09, R. (2009). 02, MJ Frisch, GW Trucks, HB Schlegel, GE
Scuseria, MA Robb, JR Cheeseman, G. Scalmani in no. 3
Gaussian. Inc., Wallingford , 4 .
- Chattaraj, P. K.; Sarkar, U.; Roy, D. R., Electrophilicity index.Chem. Rev. 2006 , 106, 2065- 2091
- Hazarika, K. K.; Baruah, N. C. Deka, R. C. Molecular structure and
reactivity of antituberculosis drug molecules isoniazid, pyrazinamide,
and 2-methylheptylisonicotinate: a density functional
approach. Struct. Chem. 2009 , 20 (6), 1079-1085.
- Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Fractional charge perspective
on the band gap in density-functional theory. Phys. Rev. B ,2008 , 77 (11), 115123.
- Parr, R. G.; Szentpaly, L. V.; Liu, S. Electrophilicity
index. J. Am. Chem. Soc. 1999 , 121 (9),
1922-1924.
- Chattaraj, P. K.; Giri, S. Stability, reactivity, and aromaticity of
compounds of a multivalent superatom. J. Phys. Chem. A.2007 , 111 (43), 11116-11121.
- Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K.
Electrophilicity-based charge transfer descriptor. J. Phys.
Chem. A. 2007 , 111 (7), 1358-1361.
- Ayers, P. W.; Parr, R. G. Variational principles for describing
chemical reactions: the Fukui function and chemical hardness
revisited. J. Am. Chem. Soc. 2000 , 122 (9),
2010-2018.
- Liu, S. B.; Chattaraj, P. K. Chemical reactivity theory: A density
functional view. 2009.
- Yang, W.; Parr, R. G.; Pucci, R. Electron density, Kohn–Sham frontier
orbitals, and Fukui functions. J. Chem. Phys.1984 , 81 (6), 2862-2863.
- Parr, R. G.; Yang, W. Density functional approach to the
frontier-electron theory of chemical reactivity. J. Am. Chem.
Soc. 1984 , 106 (14), 4049-4050.
- Ayers, P. W.; Levy, M. Perspective on “Density functional approach to
the frontier-electron theory of chemical reactivity”. Theor.
Chem. Acc. 2000 , 103 (3-4), 353-360.
- Yang, W.; Parr, R. G. Hardness, softness, and the fukui function in
the electronic theory of metals and catalysis. Proc. Natl. Acad.
Sci. 1985 , 82 (20), 6723-6726.
- Chandra, A. K.; Nguyen, M. T. Fukui function and local
softness. Chemical reactivity theory: a density-functional view.
Taylor and Francis, New York , 2008, 163-178.
- Jerbi, J.; Springborg, M. Computational study of the reactivity of
cytosine derivatives. J. Comput. Chem.2017 , 38 (14), 1049-1056.
- Jerbi, J.; Springborg, M. Reactivity descriptors for DNA bases and the
methylation of cytosine. Int. J. Quantum Chem.2018 , 118 (11), e25538.
- Gidado, A. S.; Abubakar, S.; Shariff, M. A. DFT, RHF and MP2 based
study of the thermodynamic, electronic and non-optical properties of
DNA nucleobases. BAJOPAS. 2017 , 10 (1), 115-127.
- Dwivedi, A.; Baboo, V.; Bajpai, A. Fukui function analysis and
optical, electronic, and vibrational properties of tetrahydrofuran and
its derivatives: A complete quantum chemical study. J. Theor.
Chem. 2015 , 2015 .
- Rajkhowa, S.; Hussain, I.; K Hazarika, K.; Sarmah, P.; Chandra Deka,
R. Quantitative structure-activity relationships of the antimalarial
agent artemisinin and some of its derivatives–a DFT
approach. Comb. Chem. High Throughput Screen.2013 , 16 (8), 590-602.