
Classification of unlabelled observations in Species1

Distribution Modelling using Point Process Models.2

Emy Guilbault1, Ian Renner1, Michael Mahony2, Eric Beh1.3

Emy.Guilbault@uon.edu.au4

April 19, 20195

1 Abstract6

1. Species distribution modelling, which allows users to predict the spatial distribution of species with the7

use of environmental covariates, has become increasingly popular, with many software platforms providing8

tools to fit species distribution models. However, the species observations used in species distribution9

models can have varying levels of quality and can have incomplete information, such as uncertain species10

identity.11

2. In this paper, we develop two algorithms to reclassify observations with unknown species identities12

which simultaneously predict different species distributions using spatial point processes. We compare the13

performance of the different algorithms using different initializations and parameters with models fitted14

using only the observations with known species identity through simulations.15

3. We show that performance varies with differences in correlation among species distributions, species16

abundance, and the proportion of observations with unknown species identities. Additionally, some of the17

methods developed here outperformed the models that didn’t use the misspecified data.18

4. These models represent an helpful and promising tool for opportunistic surveys where misidentification19

happens or for the distribution of species newly separated in their taxonomy.20

21

Keywords: Presence-only data - Ecological statistics - Misidentification - Classification - Mixture22

modelling - EM algorithm - Machine learning23

2 Introduction and background24

Species distribution modelling has been a popular topic in ecological statistics over the past decade.25

Many tools and methods have been developed to provide a means to explore the distributions of species26

through mapping of suitable environments (Jewell et al., 2007; Peterman et al., 2013; Nezer et al., 2016;27

Inoue et al., 2017; Schank et al., 2017). Although there are a large number of algorithms and software28
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platforms that can fit species distribution models (SDMs), generalization of these methods and specific29

applications to real data sets can be tricky (Burnham & Anderson, 2002; Aarts et al., 2012; Guillera-Arroita30

et al., 2015).31

The most common sources of species information used in SDMs are presence-only (PO) and presence-32

absence (PA) data. PO data only contains information about species presence, in contrast to PA data33

which records both where species have been found present and where they have not been found (Warton34

& Shepherd, 2010; Renner et al., 2015). Although PA data is generally of higher quality, it is also less35

common than PO data because it requires more rigorous planning to visit a set of pre-determined sites.36

On the other hand, PO data sets are very common, arising from surveys or opportunistic sightings, but37

they usually have lower quality (van Strien et al., 2013; Ruete & Leynaud, 2015). Point process models38

(PPMs) are a common tool for fitting SDMs to analyze PO data (Warton & Shepherd, 2010; Mi et al.,39

2014; Renner et al., 2015) and have been used to fit models for real datasets and simulated data (Baddeley40

et al., 2006; Illian et al., 2012; Renner & Warton, 2013; Baddeley et al., 2015).41

Unreliable or unknown species observation identification is also a main concern in ecology. For example,42

species records can become confounded when species taxonomy changes (Mahony et al., 2006). Conservation43

planning efforts depend on clear identification of species and understanding of their distributions and44

habitat requirements (Franklin, 2013; Guisan et al., 2013). Such concerns are very rarely considered while45

building SDMs, as people usually clean the data or make some assumptions to avoid such identification46

problems.47

Mixture modelling is a common tool used to represent complex distributions and aims to identify48

different groups within a dataset while modelling heterogeneity (Martinez, 2015). In communities or49

groups of individuals/species it is possible to classify or cluster them according to covariate information50

by using finite mixture modelling (McLachlan & Peel, 2000; Frame & Jammalamadaka, 2007; Dunstan51

et al., 2013; Fernández-Michelli et al., 2016). One particular application of this approach is to deal with52

over-dispersed data and to model the different ecological processes at the same time for a single species or53

for different species in order to classify them (Matthews et al., 2001; Zhang et al., 2004; Tracey et al.,54

2013).55

Machine learning algorithms are also becoming more common in statistical ecology because they can56

deal with unknown information and recognize some structure in the data (Hastie et al., 2001; Thessen, 2016;57

Browning et al., 2018). Some algorithms can group observations with similar characteristics (unsupervised58

learning) and some use separate labeled datasets (supervised learning) or partially labeled data within the59

studied dataset (semi-supervised learning) to classify the observations (Wendel et al., 2015; Fernández-60

Michelli et al., 2016; Vo et al., 2018; Zhou, 2018). Some recent publications have applied machine learning61

algorithms to fit PPMs in a Bayesian framework (Tran, 2017; Vo et al., 2018), but the literature on using62
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machine learning algorithms to fit PPMs is not yet well-developed. Additionally, several R packages have63

been developed to deal with machine learning procedures (Benaglia et al., 2009; Iovleff, 2018), but none64

accommodate the intersection of point process modelling with mixture modelling or machine learning65

algorithms.66

In this paper we develop new tools for fitting models to multi-species PO data with partial species67

identification by combining the PPM framework with mixture modelling and machine learning approaches68

to accommodate incomplete labelling. These tools implement two algorithms to reclassify the unreliable69

observations to belong to one of the existing species. The first tool fits mixtures of PPMs to all available70

data with an Expectation-Maximization (EM) algorithm and uses them to classify the unreliable points.71

This method will be called Mixture method. The second tool employs an iterative technique to fit72

separate PPMs to points with known labels augmented by some points with unknown labels depending73

on classification probabilities at each iteration. This method will be hereafter known as the Loop method.74

Using simulations, we compare the performance in classification and prediction for the proposed algorithms75

to the simple, standard approach of fitting individual PPMs to the points with known species labels only.76

We found that performance varied based on the choice of initialization and algorithm parameters but77

some of the methods can outperform the fitting of individual PPMs.78

3 New modelling methods79

3.1 Notation80

The fitted point process models in our proposed methods make use of a total of M +N +Q locations as81

follows:82

Let s1 = {s1, . . . , sm1}, s2 = {sm1+1, . . . , sm1+m2}, . . . , sK = {sM−mK +1, . . . , sM} be vectors that83

contain all of the observed locations with known species identities 1, 2, . . . ,K, respectively. These are84

represented by the orange, purple, and turquoise dots in Figure 1 for a hypothetical dataset. Let85

|s1| = m1, |s2| = m2, . . . , |sK | = mK be the number of observed locations with known species identity86

for each of the K species. We collect the M = m1 +m2 + . . .+mK total locations with known species87

identities of all K species in s = {s1, s2, . . . , sK}. Let u = {sM+1, . . . , sM+N} contain the N observed88

locations with uncertain species identities. These are represented by the black question marks in Figure 1.89

Let q = {sM+N+1, . . . , sM+N+Q} contain the locations of Q quadrature points placed along a regular90

c1 × c2 grid throughout the study region (Figure 1). Each quadrature point is placed at the center of one91

of Q unique rectangular grid cells throughout the study region. Let c(s) be the grid cell in which location92

s is contained.93
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Figure 1: Three illustrative point patterns. The orange, purple, and turquoise colored dots represent
locations with known species identity, s1, s2, and s3. The gray dots represent quadrature points q, which
are spaced evenly along a regular grid such that one quadrature point is at the centre of each rectangular
grid cell. The black question marks (left) represent observed locations u with uncertain species identity.
The locations in a1 ∈ u, a2 ∈ u, and a3 ∈ u which are reclassified as belonging to one of the species are
represented by coloured question marks (right).

3.2 Loop methods94

The three loop algorithms proceed by iterating between steps that augment the vectors of locations with95

known species identities s1, s2, . . . , sK with locations a1 ⊂ u,a2 ⊂ u, . . . ,aK ⊂ u, update the quadrature96

weights, and fit point process models as follows:97

1. Fit K initial point process models using the vectors of observed locations with known species identity98

s1, s2, . . . , sK .99

2. Compute the predicted intensities µ̂i(s) for all s ∈ {s ∪ u} for i ∈ {1, . . . ,K}.100

3. Derive an (M +N)×K matrix of membership probabilities ω, where

ω =



ω1(s1) ω2(s1) . . . ωK(s1)

ω1(s2) ω2(s2) . . . ωK(s2)
...

... . . .
...

ω1(sM+N ) ω2(sM+N ) . . . ωK(sM+N )


The membership probability of location s for species i is defined as101

ωi(s) =


1(s ∈ si) : s ∈ s

µ̂i(s)∑K

j=1
µ̂j(s)

: s ∈ u.
(1)

That is, the membership probabilities for the locations with known species identity are 1 for the102

correct species and 0 otherwise, and for the locations with unknown species identity, they are103

proportional to the fitted intensities.104
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4. Define an augmented vector for species i as yi = si ∪ ai for all i ∈ {1, . . . ,K}. We define ai as105

follows:106

• For the Normal method, ai = u (left panel of Figure 2).107

• For the Loop grW method, ai = u[ωi(s)≥δ], where δ is a minimum membership proba-108

bility threshold that takes the following values successively at each iteration {δmax, δmax −109

δstep, . . . , δmin}. That is, the Loop grW method augments the locations with known species110

identity i with the locations with unknown species identity with membership probabilities for111

species i that are higher than the current threshold δ (middel panel of Figure 2).112

• For the Loop hgW method, ai = u[ωi(s)≥ωi,(M+N−a+1)], where ωi,(j) represents the jth smallest113

entry of vector ωi, the ith column of ω, and a represents the number of locations to be augmented.114

We set a to be the same integer for all K species for some a between 1 and bNK c then at each115

iteration a is increased by one (right panel of Figure 2).116

5. Update the quadrature weights for each species. First, assign each location in {y1, . . . ,yK ,q} to a117

grid cell. Then, compute the vector of quadrature weights wi for all points t ∈ {yi ∪ q} as follows:118

wi(t) = c1 × c2 × ωi(t)
1 +

∑
s∈{yi∪q} 1(c(s) = c(t))ωi(s)

. (2)

This way of computing quadrature weights is an extension of standard quadrature weight schemes119

for point process models (Berman & Turner, 1992), in which the weight for location s is equal to the120

area of the grid cell c(s) that contains s divided by the total number of quadrature and observed121

locations in c(s). Here, we divide the area of the grid cell by the sum of the membership probabilities122

of the observed locations in the grid cell (both with and without known species identities) plus 1123

(for the one quadrature point in the grid cell).124

6. Fit point process models using the augmented vector yi, quadrature points q and quadrature weights125

wi for all species i ∈ {1, . . . ,K}.126

7. Return to step 2 and stop when we either reach likelihood convergence or we reach a maximum127

number of iterations that is different depending on the method chosen. Likelihood convergence is128

determined by:129

δl =

∑K
j=1

∣∣∣`jh+1(β)− `jh(β)
∣∣∣(∑K

j=1 `
j
h(β)

) < ε (3)

for some choice of ε, where `(β)jh is the fitted log-likelihood for the jth species at the hth iteration.130

The maximum number of iterations varies for the different methods, as follows:131

• For the Normal method, the maximum number of iterations is set by the user. We set the132
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default number of iterations to be 50.133

• For the Loop grW method, the maximum number of iterations is determined by the choice of134

δmax, δstep, and δmin.135

• For the Loop hgW method, the maximum number of iterations is bNK c− a1, where bcc rounds136

the number c down to the nearest integer, and a1 is the first value of a chosen by the user. In137

the case of decimals numbers, only the floor is considered as the we can’t add more points than138

available per species.139
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Figure 2: (Left) Normal Loop function. We add all points with unknown species labels to each species,
using membership weights that are proportional to the fitted intensities. (Middle) Method Loop grW
function. We add all points with membership probabilities greater than a threshold δmax, then we decreases
from that value to a minimum of δmin by increments of δstep. (Right) Method Loop hgW function. We
add the a points with highest membership probabilities to each species, increasing the number a from 1
to bNK c.

3.3 Mixture of PPMs method140

The four mixture algorithms can be fitted by maximizing a log-likelihood function and reclassifying the141

locations with uncertain identity using an EM algorithm framework. The algorithm proceeds as follows:142

1. We initialize the membership probabilities ω for each location s for each species i in one of the143

following ways:144

• For the knn method, we calculate the distance di(s) of each location s to the kth nearest145

neighbor of species i, for all K species. We calculate the membership probability of location s146

for species i using:147

ωi(s) =


1(s ∈ si) : s ∈ s

zi(s)∑K

j=1
zj(s)

: s ∈ u.
(4)

where148

zi(s) = min1≤j≤K dj(s)
di(s)

(5)
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• For the kmeans method, we define ωi(s) as in (4) but define zi(s) as149

zi(s) =
min1≤j≤K d

C
j (s)

dC
i (s)

, (6)

where dC
i (s) is the distance to the ith centroid of the ith cluster.150

• For the random method, we define ωi(s) as in (4) and zi(s) is drawn randomly from a151

uniform distribution:152

zi(s) ∼ U [0, 1] (7)

• For the equal method, we assign equal membership probabilities for the locations with153

uncertain identity:154

ωi(s) =

 1(s ∈ si) : s ∈ s
1
K : s ∈ u.

(8)

Regardless of the initialization method, the sum of membership probabilities across the all species is155

equal to 1 for all points.156

2. Classify the locations in u to belong to one of the K species based on the membership probabilities157

ω.158

3. Fit a point process model using a marked point pattern, where each observation s has a mark defined159

by the known or classified identity among the K species.160

4. Compute the predicted intensities µ̂i(s) for all s ∈ {s ∪ u} for i ∈ {1, . . . ,K}.161

5. E step: We first get the predicted values of each species at the locations s ∈ {s ∪ u} and calculate162

the predicted intensity of the mixture of K densities using:163

f(s) =
K∑
i=1

πi × fi(s), (9)

where fi(s) is the density at location s for the ith component and πi is the mixing proportion or164

weight of the ith species in the mixture.165

6. We calculate new membership probabilities for each unknown point of u using:166

ωi(s) = µ̂i(s)∑k
i=1 µ̂i(s)

, (10)

where µi(s) is the intensity of the ith species at location s ∈ s . For the observations s with known167

labels, the membership probabilities are set to 1 for the correct species label and 0 otherwise.168

7. M step: Classify the locations in u to belong to one of the K species. The classification for each169
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point s corresponds to the highest membership probability ωi(s) for i ∈ {1, . . . ,K}. We compute170

each species’ proportion of the whole by summing the membership probabilities for each species171

across both s and u.172

8. Compute a marked PPM based on the updated classifications and membership probabilities.173

9. Calculate the model log likelihood using:174

`(β) =
∑
s∈s∪u

f(s,β) =
∑
s∈s∪u

log
K∑
i=1

πi × f(s, βi) (11)

10. Repeat steps 4-9 until we achieve likelihood convergence, defined as follows:175

|`h+1(β)− `h(β)|
(1 + |`h+1(β)|) < ε (12)

where `h(β) is the log-likelihood at the hth iteration and ε is a pre-specified tolerance level.176

4 Simulation framework177

4.1 Simulation data178

To compare the performance of the different algorithms, we simulated patterns t1, t2, and t3 of individuals179

for three species based on “true” distributions defined by four different predictors. Because performance180

could varied based on sample size, the correlations ρi,j among the species distributions, and the proportion181

of observations with unknown labels, we consider similar and different low abundances by randomly182

simulating numbers of points between 20 and 50 for the species as well as the correlation between the true183

species distributions:184

• Case 1: at least two species i and j have distributions that are highly correlated (|ρi,j | ≥ 0.85 for185

some i, j ∈ {1, 2, 3})186

• Case 2: no two species have highly correlated distributions (|ρi,j | < 0.45 for all i, j ∈ {1, 2, 3})187

We chose these values for abundances as they would be small enough such that potential value of adding188

points with unknown species identities could be investigated, and we chose these cutoffs for correlation to189

create clearly distinguishable contexts.190

We then created locations with unknown labels u by hiding uniformly at random a certain proportion of191

the total observations (20%, 50% and 80%). The locations in t1, t2, and t3 that retained their true species192

identities therefore became the simulated point patterns s1, s2, and s3 with known species identities.193

Simulations were conducted using the version 3.4.2 of R (R Development Core Team, 2017) and used high194

performance computing to implement 1000 simulations each for different combinations of abundances,195
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correlation among species distributions, and proportions of observations with unknown labels. We also196

tested different parameters for the knn initialization of the mixture algorithm (the value of k neighbors),197

the Loop grW function (the maximum threshold δmax, minimum threshold δmin and the step size δstep)198

and the Loop hgW function (initial number of points added to the point pattern a).199

4.2 Suite of Evaluation tools200

We consider various measures of performance for comparing the distributions. For classification methods,201

misclassification/accuracy analysis is a common measure of performance (Wendel et al., 2015).We choose202

the highest mixing weight for each observation to determine the labeling when computing accuracy. We203

also compared the final membership probabilities of the correct labels of each point to 1 (the true weight)204

with a residual sum of squares (RSS).205

RSS =
K∑
i=1

∑
s∈ti

(ωi(s)− 1)2, (13)

where ωi(s) is the final membership probability for location s for the correct species i computed using206

the methods outlined in sections 3.2 and 3.3. Considering residual sum of squares (RSS) alone does not207

provide a reliable comparison because the number of unknown observations can vary, so we consider208

meanRSS instead to standardize the measure for all fitted models:209

meanRSS = RSS
N

, (14)

where N is the number of observations with uncertain species identities.210

We also considered measures that compare the true distribution from which we generate the points to211

the predicted distributions of the model. We use a sum of correlations between the true and predicted212

distributions across all species (hereafter referred to as ‘sumcor’) to assess how well the predicted213

distributions align with the true distributions. We can use various correlation measures such as Pearson’s214

correlation coefficient, Kendall’s τ or Spearman’s ρ when computing sumcor.215

Another global measure of predictive performance of the intensity estimates is the Integrated Mean Square216

Error (IMSE) (Swanepoel, 1988; Es, 1997). The function is defined as:217

IMSE = E

(∫ +∞

−∞
((f̂n(x)− f(x))2)dx

)
, (15)

where f̂n(x) is an estimator of the density function f(x). We standardized this value by rescaling the218

intensities to be able to compare each methods even if different number of points are considered and219

compute the IMSE using the values of the true and predicted intensities at the quadrature points q, and220

sum across the 3 species.221
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5 Results222

Here we present the results of the simulations, with more detailed results appearing in the Appendix.223

In this section, we only present the results from the knn, Lopp grW, Loop hgW and individual PPM224

methods that displayed the best performances. First, we present the model performances from varying225

data parameters (abundance, correlation and percentage of hidden labeled data). The individual PPM226

results will be used as a point of comparison with the other methods as the individual method does227

not include any of the points with unknown labels. We, then, focus on varying model parameters in228

the different methods (the value of k for knn, the values of δmax, δmin and δstep for Loop grW and the229

value of a for Loop hgW). For these results, we set k = 1, δmax = 0.5, δmin = 0.1, δstep = 0.1 and a = 5230

according to the algorithm parameters tests presented in section 5.2. For the performance results, the231

sumcor methods displayed the result using the Pearson correlation coefficient.232

5.1 Varying species distributions233

5.1.1 Different abundances and correlated distributions234

In Figure 3, we consider different low abundances (m1 = 32, m2 = 42 and m3 = 23) and where two235

distributions are highly correlated. With regard to classification performance, the different modelling236

methods have similar levels of accuracy, although when comparing meanRSS, the individual and Loop237

grW methods seem to outperform the other methods, especially as we increase the proportion of hidden238

observations. With regard to predictive performance, the Loop grW method appears to have the greatest239

performance when measured by IMSE and sumcor, particularly for 50% and 80% of hidden observations.240

The Loop hgW method performs comparably to the individual PPM method, although its preformance241

gets relatively better as we increase the proportion of hidden observations. The knn method has the242

highest IMSE for 50% and 80% of hidden observations, but it is competitive with the individual PPM243

and loop hgW method when comparing sumcor. See Tables 1 and 2 in the Appendix for a comparison of244

means and medians across all of these measures.245

When examining the predicted intensities with 80% of the observations with hidden species identities, the246

true pattern appears best captured by the Loop grW method (Figure 4), consistent with sumcor. The247

Loop hgW method tends to overpredict the intensities.248

10



k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

0.3

0.4

0.5

0.6

0.7

m
e

a
n

R
S

S

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

50000
100000
150000
200000
250000
300000

IM
S

E

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

0.2

0.4

0.6

0.8

a
c
c

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

k
n

n
in

d
iv

L
o

o
p

g
r

L
o

o
p

h
g

1.8
2.0
2.2
2.4
2.6
2.8

s
u

m
c
o

r

Figure 3: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
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5.1.2 Similar abundances and correlated distributions249

In Figure 5, we consider similar abundances (m1 = 33, m2 = 34 and m3 = 35) and where two distributions250

are highly correlated. With regard to classification performance, the different modelling methods have251

similar levels of accuracy, except the knn method does relatively poorly with 80% of the observations252

hidden. The knn method also suffers worse performance as measured by meanRSS at 50% and 80% of253

hidden observations. Measures of predictive performance are similar to the case with different abundances254

and correlated distributions. The Loop grW method appears to outperform the others as the proportion of255

hidden observations increases, with the Loop hgW method competitive with the individual PPM method.256

The knn method appears to do worse with 80% hidden observations when measured by IMSE. See Tables257

3 and 4 in the Appendix for comparisons of means and medians across all of these measures.258

With 80% hidden observations, the Loop Loop grW method appears to be best aligned with the true259

intensities, as shown in Figure 6.260
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Figure 5: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color represents a different percentage of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m1 = 33, m2 = 34, m3 = 35; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.
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Figure 6: Predicted intensities obtained for the knn, individual, Loop grW and Loop hgW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m1 = 33, m2 = 34, m3 = 35; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.

5.1.3 Different abundances and non correlated distributions261

In Figure 7, we consider different abundances (m1 = 42, m2 = 31 and m3 = 25) and where none of262

the distributions have high correlations. The classification performance and predictive performance263

comparisons look similar to the case of similar abundances and correlated distributions as shown in264

Figure 5, with the knn method having the worst classification performance described here at 50% and 80%265

of hidden observations and the Loop grW method outperforming the others in predictive performance,266

while the Loop hgW method is competitive with the individual PPM method and the knn method lags267

behind with IMSE at 80% of hidden observations. Tables 5 and 6 in the Appendix contains the means268

and medians across all performance measures for this context.269

With 80% of hidden observation as shown in Figure 8, the Loop hgW method for species 1 and 3 and the270

Loop grW method for species 2 and 3 are the closest to the initial process.271
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Figure 7: Measures of performance for the knn, individual, Loop grW and Loop hgW methods. Each
color represents a different percentage of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m1 = 42, m2 = 31, m3 = 25; ρ1,2 = 0.09, ρ1,3 = −0.42, ρ2,3 = 0.20.
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Figure 8: Predicted intensities obtained for the knn, individual, Loop grW and Loop hgW methods and
the initial intensities from the process with 80% of hidden observations. The parameters of abundances
and correlation are: m1 = 42, m2 = 31, m3 = 25; ρ1,2 = 0.09, ρ1,3 = −0.42, ρ2,3 = 0.20.
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5.1.4 Similar abundances and non correlated distribution272

For similar abundances (m1 = 39, m2 = 37, m3 = 38) and non correlated distributions, we again observe273

the same trends, as shown in Figure 9: the knn method is the worst method for relabeling performances274

and the only one not doing as well as the individual method for 50% and 80% of hidden observations.275

As in previous contexts, the Loop grW method shows the best predictive performance, with the Loop276

hgW method being competitive with the individual PPM method, and the knn method having higher277

IMSE than the other methods when 80% of the observations are hidden. Tables 7 and 8 in the Appendix278

contain the mean and median value for all performance measures.279

The predicted intensities show the methods LgrW and knn being the closest to the initial process, as280

shown in Figure 10.281
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Figure 9: Measures of performance for the knn, individual, Loop grW and Loop grW methods. Each
color represents a different proportion of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m1 = 39, m2 = 37, m3 = 38; ρ1,2 = 0.09, ρ1,3 = −0.42, ρ2,3 = 0.20.
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Figure 10: Predicted intensities obtained for the knn, individual, Loopg rW and Loop grW initialization
methods and the initial intensities from the process at 80% of hidden observations. The parameters of
abundances and correlation are:m1=39, m2=37, m3=38; ρ1−2=0.09, ρ1−3=-0.42, ρ2−3=0.20.

5.2 Testing algorithm parameters282

5.2.1 knn method283

We note that when the k nearest neighbor value increases (from 1 up to 20), the model performances284

decrease; Figure 11. It is particularly notable for the performances in prediction where sumcor performances285

decrease and IMSE performances increase. Also, there is an expected drop in performances as we increase286

the proportion of observations with unknown species labels.287
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Figure 11: Model performances for the knn method. Each color represents a different percentage of hidden
observations: in yellow are the performances with 20% of hidden observations, in green with 50% and
in blue with 80%. The parameters of abundances and correlation are: m1 = 32, m2 = 42, m3 = 23;
ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.

5.2.2 Loop grW method288

For the Loop grW method we tested different parameters:289

1. The initial membership probability threshold δmax: while this parameter varies from 0.8 to 0.5 in290

increments of 0.1, the other Loop grW parameters are as follows: δmin = 0.1 and δstep = 0.1.291

2. The final membership probability threshold δmin: while this parameter varies from 0.1 to 0.7 in292

increments of 0.2, the other Loop grW parameters are as follows: δmax = 0.8 and δstep = 0.1.293

3. The step size δstep: while this parameter varies from a minimum of 0.01 to a maximum of 0.2, the294

other Loop grW parameters are as follows: δmax = 0.8 and δmin = 0.1.295

When we change the value of δmax, there is very little difference in performance within each proportion of296

observations with hidden labels, although δmax = 0.5 appears to be slightly superior to the other choices297

for high percentage of hidden observation (Figure 12).298
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Figure 12: Model performances for the Loop grW method and for different values of δmax. Each color
represents a different proportion of hidden observations: in yellow are the performances with 20% of hidden
observations, in green with 50% and in blue with 80%. The parameters of abundances and correlation are:
m1 = 32, m2 = 42, m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.

When changing δmin, the classification accuracy is relatively the same (Figure 13). For MeanRSS, IMSE299

and sumcor, we can observe a curved pattern of performances, where the performances decrease (MeanRSS300

increases, IMSE increases and sumcor decreases) from δmin from 0.1 to 0.5 and then the performances get301

slightly better (MeanRSS decreases, IMSE decreases and sumcor increases) for δmin = 0.7 (Figure 13).302

δmin=0.1 displays the better performances.303
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Figure 13: Model performances for the Loop grW method and for different values of δmin. Each color
represents a different proportion of hidden observations: in yellow are the performances with 20% of hidden
observations, in green with 50% and in blue with 80%. The parameters of abundances and correlation are:
m1 = 32, m2 = 42, m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20

.

Figure 14 shows different performance measures as we vary δstep. There do not appear to be major304

differences in classification performance, although 0.1 appear slightly better for meanRSS. With 50% and305

80% of hidden observations, predictive performance display a curve performances where performances get306

better (IMSE decreases and sumcor increase) from 0.01 till 0.1 and then get worse (IMSE increases and307

sumcor descreases) from 0.1 to 0.2. δstep=0.1 displays the best performances accross all measures.308
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Figure 14: Model performances for the Loop grW method and for different values of weight step. Each
color represents a different proportion of hidden observations: in yellow are the performances with 20%
of hidden observations, in green with 50% and in blue with 80%. The parameters of abundances and
correlation are: m1 = 32, m2 = 42, m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.

5.2.3 Loop hgW method309

In the Loop hgW method, we vary the number of points a added at each iteration. In Figure 15, we can310

see that there is no variation in performances when the number of added points a increases.311
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Figure 15: Model performances for the Loop grW method. Each color boxplot represents a different
percentage of hidden observations: in yellow are the performances for 20% of hidden observations, in
green for 50% and in blue for 80%. The parameters of abundances and correlation are: m1 = 32, m2 = 42,
m3 = 23; ρ1,2 = 0.85, ρ1,3 = −0.09, ρ2,3 = 0.20.

The results for the other combination of abundances and correlation are showed in the Appendix.312

6 Discussion313

In this article, we present a new modelling tool in R that aims to incorporate the observed locations314

with unknown species identities to improve species distributions. These tools accommodate two ways of315

reclassifying information using mixture modelling and the machine learning framework with 7 different316

initialization methods. We tested our algorithms in different contexts where we vary the abundances of317

our species (similar or different), the correlation between them (two distribution are correlated or none are318

correlated) and the proportion of unknown species identities (20%, 50% and 80%). The different methods319

were compared to the individual method which ignores locations with unknown species identities to see320

whether the proposed algorithms allow us to fit distributions that are closer to the initial processes.321

In the results we presented the three best methods. They showed varying performance depending on322

the aspects of the model and the performance measure considered. The novelty of these tools, makes it323

difficult to compare to other existing tools that either do not consider point pattern process (Frame &324

Jammalamadaka, 2007; Frühwirth-Schnatter, 2006; Hui, 2016; Martinez, 2015; Melnykov & Maitra, 2010;325

Quost & Denœux, 2016), Poisson distributions (Figueirido & Jain, 2002; Hui et al., 2015; Scrucca et al.,326
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2016; Woillez et al., 2012), count data (Benaglia et al., 2009; Iovleff, 2018; Leisch, 2004) or implementation327

of mixture (Witten, 2011; Wendel et al., 2015) or semi-supervised learning frameworks (Di Zio et al., 2007;328

Fraley & Raftery, 1998; Jeffries & Pfeiffer, 2001; Taddy & Kottas, 2012).329

The other methods (kmeans, random, equal and normal) not presented previously in the results are330

presented in the Appendix. They show relatively worse performance across all measures, although at331

times, the normal loop method is competitive with the individual PPM and the Loop hgW methods. We332

note that this method performs slightly better when the distributions are correlated.333

We have noticed differences in performance, that are more significant when we increase the proportion334

of observations with hidden labels. While at 20% of hidden observations, all methods performed fairly335

similarly, at 50% and 80% of hidden observations, the loop grW method in particular showed the best336

predictive performances regardless of differences in abundance and correlation among species distributions.337

For this method, only the points with the highest membership probabilities are added. We set the338

maximum and minimum thresholds at δmax = 0.5 and δmin = 0.1 and a step size of δstep = 0.1, but we339

could expect that performances may be better or worse with different choices of these parameters as340

shown in the results. These choices appeared to produce superior performances for most measures than341

other values of these parameters considered. Higher values of δmin led to worse performances. This result342

can be seen as counterintuitive as we can expect that having a smaller interval of weight for example could343

improve this particular performances. It will in other words reduce the interval of weights and better344

discriminate the points of uncertain identity. As for δstep, choosing a value that is too small may lead to345

iterations where no points are added, while choosing a value that is too large may be too discriminating346

and does not allow to reclassify the points.347

The Loop hgW method did not perform as good as the Loop grW method even if it has been shown to be348

as good as the individual method in some contexts. For this method, we add initially a certain number of349

points a that is increased at each iteration. While the a points with highest membership probabilities are350

added, these membership probabilities may be small for large values of a, and this could explain that this351

method is not always doing as good as the best method.352

Interestingly, the knn method was the best of the four mixture methods tested, outperforming the kmeans,353

random and equal initialization options. Previous studies using the EM algorithm for classification and354

clustering data show that such algorithms are highly dependent on the initialization method (Figueirido355

& Jain, 2002; Melnykov & Maitra, 2010; O’Hagan et al., 2012). Additionally, even very popular methods356

like kmeans have some drawbacks. Its performance is dependent on overlapping densities and whether the357

distributions are roughly circular or not. The choice of the centroid is also not consistent and chosen at358

random for the first calculation (Yoo et al., 2012, 2007; Wu et al., 2008). In our simulations, kmeans,359

random and equal methods showed very different results and always performed worse than the other360
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methods as well as mainly overestimating (kmeans and random) and underestimating (equal) the predicted361

intensities compared to the true process.362

Despite outperforming the other mixture modelling methods, the knn method was still not competitive363

with the machine learning methods or the individual PPM method when the proportion of hidden364

observations are 50% or 80%. However, the knn method was quite consistent in the predicted intensities365

and showed similar results to the individual method for the sumcor measure at 50% or 80% of hidden366

observations. Other studies have found that the performance of the knn method is linked to the metric367

chosen to calculate the nearest neighbor distances and the value of the number k of nearest neighbors368

(Weinberger & Saul, 2009; Guo et al., 2003; Wu et al., 2008).369

We tested how the number of neighbors k can influence the model and found that for any combination of370

abundance and correlation, all the measures of performances decrease when the values of k increase. It is371

expected as the neighboring points are further away from one another and could conflate species habitat372

preferences with differing species abundances, but requiring more neighbor points can also stabilize the373

distances. The way of choosing the value of k by utilizing different distance metrics could also impact the374

performances as previously noted, but we shall leave this aspect of the analysis for future consideration.375

In our simulations, we have considered a relatively general case of point patterns and we only varied376

species abundance and correlation among distributions in addition to the proportion of observations with377

hidden information. For real ecological data sets, there are more factors to consider that can influence378

how a model will perform. First, the abundances tested in the simulation are quite low (20-40 points) and379

some methods can show convergence issues in this context. While we use the spatstat package (Baddeley380

et al., 2015) to fit PPMs, we could make use of similar functions in the ppmlasso package (Renner &381

Warton, 2013) which integrate regularization methods like the lasso penalty that can boost performances382

with low sample sizes. A related point is that we included all covariates that were used to generate383

the true point patterns in our models. In real situations, however, we may not have access to the best384

covariates or know which ones truly determine the species distributions. Applying a lasso penalty to help385

in variable selection may therefore be provide a natural way forward in this context. Finally, a key reality386

when dealing with presence-only data is the presence of observer bias, in which sampling effort varies387

throughout the study region. Some models apply a correction for observer bias in the prediction (Hefley388

et al., 2013; Lahoz-Monfort et al., 2014; Warton et al., 2013) and our tools would be able to accommodate389

such improvements.390

7 Conclusion391

The new algorithms presented in this article aim to reclassify observations that have uncertain or unknown392

labels in order to better predict point pattern distributions. We showed that machine learning based393
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models performed better in a general context than mixture based models no matter the initialization394

method and also better than the individual PPM method that does not include the points with unknown395

labels. Our simulations showed encouraging results in this context with good performances in some cases,396

although there are some improvements to implement in order to make the tools more appropriate for real397

life data.398
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