References
- Bayer, D., Seifert, S., Pretzsch, H. 2013. Structural crown properties
of Norway spruce (Picea abies [L.] Karst.) and European beech
(Fagus sylvatica [L.]) in mixed versus pure stands revealed by
terrestrial laser scanning. Trees 27: 1035-1047.
https://doi.org/10.1007/s00468-013-0854-4
- Bergeron, Y., Leduc, A., Hervery, B.D., Gauthier, S. 2002. Natural
fore regime: A guid for sustainable management of the Canadian boreal
forest. Silva Fennica 36: 553. https://doi.org/10.14214/sf.553
- Butler, B.J., Leatherberry, E.C. 2004. America’s family forest owners.
Journal of Forestry 102: 4-14.
https://doi.org/10.1093/jof/102.7.4
- Cajander, A.K. 1913. Ueber Waldtypen. Acta Forestalia Fennica 1:
article id 7526. https://doi.org/10.14214/aff.7526
- Calders, K., Adams, J., Armston, J., Bartholomeus, H., Bauwens, S.,
Bentley, L.P., Chave, J., Danson, F.M., Demol, M., Disney, M.,
Gaulton, R., Krishna Moorthy, S.M., Levick, S., Saarinen, N., Schaaf,
C., Stovall, A., Terryn, L., Wilkes, P., Verbeeck, H. 2020.
Terrestrial laser scanning in forest ecology: Expanding the horizon.
Remote Sensing of Environment 251: 112102.
https://doi.org/10.1016/j.rse.2020.112102
- Calders, K., Lewis, P., Disney, M., Verbesselt, J., Herold, M. 2013.
Investigating assumptions of crown archetypes for modelling LiDAR
retursn. Remote Sensing of Environment 134: 39-49.
https://doi.org/10.1016/j.rse.2013.02.018
- Calders, K., Origo, N., Disney, M., Nightingale, J., Woodgate, W.,
Armston, J., Lewis, P. 2018. Variability and bias in active and
passive ground-based measurements of effective plant, wood and leaf
area index. Agricultural and Forest Meteorology 252: 231-240.
https://doi.org/10.1016/j.agrformet.2018.01.029
- Camarretta, N., Harrison, P.A., Bailey, T., Potts, B., Lucieer, A.,
Davidson, N., Hunt, M. 2020. Monitoring forest structure to guide
adaptive management of forest restoration: a review of remote sensing
approaches. New Forests 51: 573-596.
https://doi.org/10.1007/s11056-019-09754-5
- Dorji, Y., Annighöfer, P., Ammer, C., Seidel, D. 2019. Response of
Beech (Fagus sylvatica L.) Trees to Competition—New Insights from
Using Fractal Analysis. Remote Sensing 11: 2656.
https://doi.org/10.3390/rs11222656
- Ehbrecht, M., Schall, P., Ammer, C., Seidel, D. 2017. Quantifying
stand structural complexity and its relationship with forest
management, tree species diversity and microclimate. Agricultural and
Forest Meteorology 242: 1-9.
http://dx.doi.org/10.1016/j.agrformet.2017.04.012
- Fedrowitz, K., Koricheva, J., Baker, S.C., Lindenmayer, D.B., Palik,
B., Rosenvald, R., Beese, W., Franklin, J.F., Kouki, J., MacDonald,
E., Messier, C., Svedrup-Thygeson, A., Gustafsson, L. 2014. Can
retention forestry help conserve biodiversity? A meta-analysis.
Journal of Applied Ecology 51: 1669-1679.
https://doi.org/10.1111/1365-2664.12289
- Georgi, L., Kunz, M., Fichtner, A., Härdtle, W., Reich, K.F., Strum,
K., Welle, T., von Oheimb, G. 2018. Long-term abandonment of forest
management has a strong impact on tree morphology and wood volume
allocation pattern of European beech (Fagus sylvatica L.).
Forests 9: 704. https://doi.org/10.3390/f9110704
- Gough, C.M., Atkins, J.W., Fahey, R.T., Hardiman, B.S. 2019. High
rates of primary production in structurally complex forests. Ecology
100: e02864. https://doi.org/10.1002/ecy.2864
- Hardiman, B.S., Bohrer, G., Gough, C.M., Vogel, C.S., Curtis, P.S.
2011. The role of canopy structural complexity in wood net primary
production of a maturing northern deciduous forest. Ecology 92:
1818-1827. https://doi.org/10.1890/10-2192.1
- Hugosson, M., Ingermason, F. 2004. Objectives and motivations of
small-scale forest owners; theoretical modelling and qualitative
assessment. Silva Fennica 38: 430.
https://doi.org/10.14214/sf.430
- Isenburg, M. 2019. LAStools—Efficient LiDAR Processing Software,
(version 181001 academic); rapidlasso GmbH: Gilching, Germany.
http://rapidlasso.com/LAStools
- Ishii, H.T., Tanabe, S., Hiura, T. 2004. Exploring the relationship
among canopy structure, stand productivity, and biodiversity of
temperate forest ecosystems. Forest Science 50: 342-355.
- Jacobs, M., Rais, A., Pretzsch, H. 2020. Analysis of stand density
effects on the stem form of Norway spruce trees and volume
miscalculation by traditional form factor equations using terrestrial
laser scanning (TLS). Canadian Journal of Forest Research 50: 51-64.
https://doi.org/10.1139/cjfr-2019-0121
- Juchheim, J., Annighöfer, P., Ammer, C., Calders, K., Raumonen, P.,
Seidel, D. 2017. How management intensity and neighborhood composition
affect the structure of beech (Fagus sylvatica L.) trees. Trees
31(5): 1723-1735. https://doi.org/10.1007/s00468-017-1581-z
- Kozlowski, T. 1964. Shoot growth in woody plants. Botanical Review
30(3): 335-392. Available http://www.jstor.org/stable/4353695
[cited October 8, 2020]
- Kuuluvainen, T. 2009. Forest management and biodiversity conservation
based on natural ecosystem dynamics in Northern Europe: The complexity
challenge. AMBIO: A Journal of the Human Environment 38: 309-315.
https://doi.org/10.1579/08-A-490.1
- Liang, X., Litkey, P., Hyyppä, J., Kaartinen, H., Vastaranta, M.,
Holopainen, M. 2012. Automatic stem mapping using single-scan
terrestrial laser scanning. IEEE Transactions on Geoscience and Remote
Sensing 50: 661-670. https://doi.org/10.1109/TGRS.2011.2161613
- Mandelbrot, B. B. 1977. The fractal geometry of nature . New
York, NY: W.H. Freeman Company.
- Mäkinen, H., Isomäki, A. 2004. Thinning intensity and long-term
changes in increment and stem form of Scots pine trees. Forest Ecology
and Management 203: 21-34.
https://doi.org/10.1016/j.foreco.2004.07.028
- McElhinny, C., Gibbons, P., Brack, C., Bauhus, J. 2005. Forest and
woodland stand structural complexity: Its definition and measurement.
Forest Ecology and Management 218: 1-24.
https://doi.org/10.1016/j.foreco.2005.08.034
- Messier, C., Puettmann, K.J., Coates, K.D. (Eds) 2013. Managing
forests as complex adaptive systems – Building resilience to the
challenge of global change. Routledge, Oxford, UK. 353 p.
- Metz, J., Seidel, D., Schall, P., Scheffer, D., Schulze, E.-D. 2013.
Crown modelling by terrestrial laser scanning as an approach to assess
the effect of aboveground intra- and interspecific competition on tree
growth. Forest Ecology and Management 310: 275-288.
https://doi.org/10.1016/j.foreco.2013.08.014
- Meyer, F., Beucher, S. 1990. Morphological segmentation. Journal of
Visual Communication and Image Representation 1:21–46.
https://doi.org/10.1016/1047-3203(90)90014-M
- Laasasenaho, J. 1982. TaperCurve and Volume Functions forPine, Spruce and Birch ;
Metsäntutkimuslaitos: Vantaa, Finland.
- Osawa, A., Kurachi, N. 2004. Spatial leaf distribution and
self-thinning exponent of Pinus banksiana and Populus
tremuloides . Trees 18: 327-338. DOI 10.1007/s00468-003-0310-y
- Pickover, C.A. 2009. The Math Book – From Pythagoras to the 57th
Dimension, 250 Milestones in the History of Mathematics. Sterling
Publishing. 532 p.
- Pinheiro, J., Bates, M. D., DebRoy, S.S., Sarkar, D. 2013. Nlme:
Linear and nonlinear mixed effects models. R package.
- Popescu, S.C., Wynne, R.H. 2004. Seeing the Trees in the Forest.
Photogrammetric Engineering & Remote Sensing 70: 589–604.
https://doi.org/10.14358/PERS.70.5.589
- Pretzsch, H. 2014. Canopy space filling and tree crown morphology in
mixed-species stands compared with monocultures. Forest Ecology and
Management 327: 251-264.
https://doi.org/10.1016/j.foreco.2014.04.027
- Puettmann, K.J., Wilson, S.McG., Baker, S.C., Donoso, P.J., Drössler,
L., Amente, G., Harvey, B.D., Knoke, T., Lu, Y., Nocentini, S., Putz,
F.E., Yoshida, T. Bauhus, J. 2015. Silvicultural alternatives to
conventional even-aged forest management – what limits global
adoption? Forest Ecosystems 2: 8.
https://doi.org/10.1186/s40663-015-0031-x
- Ritter, T., Schwarz, M.,
Tockner, A., Leisch, F., Nothdurft, A. 2017. Automatic mapping of
forest stands based on three-dimensional point clouds derived from
terrestrial laser-scanning. Forests 8 (8): 265.
https://doi.org/10.3390/f8080265
- Roxburgh, S., Noble, I. 2013. Encyclopedia of Biodiversity.
2nd Edition. Academic Press. 5504 p.
- Saarinen, N., Kankare, V., Vastaranta, M., Luoma, V., Pyörälä, J.,
Tanhuanpää, T., Liang, X., Kaartinen, H., Kukko, A., Jaakkola, A., Yu,
X., Holopainen, M., Hyyppä, J. 2017. Feasibility of Terrestrial Laser
Scanning for Collecting Stem Volume Information from Single Trees.
ISPRS Journal of Photogrammetry and Remote Sensing 123:140-158.
https://doi.org/10.1016/j.isprsjprs.2016.11.012
- Saarinen, N., Kankare, V., Yrttimaa, T., Viljanen, N., Honkavaara, E.,
Holopainen, M., Hyyppä, J., Huuskonen, S., Hynynen, J., Vastaranta, M.
2020. Assessing the effects of thinning on stem growth allocation of
individual Scots pine trees. Forest Ecology and Management 474:
118344. https://doi.org/10.1016/j.foreco.2020.118344
- Shenker, O.R. 1994. Fractal geometry is not the geometry of nature.
Studies in History and Philosophy of Science Part A. 25: 967-981.
https://doi.org/10.1016/0039-3681(94)90072-8
- Seidel, D. 2018. A holistic approach to determine tree structural
complexity based on laser scanning data and fractal analysis. Ecology
and Evolution 8: 128-134. https://doi.org/10.1002/ece3.3661
- Seidel, D., Annighöfer, P., Stiers, M., Zemp, C.D., Burkardt, K.,
Ehbrecht, M., Willim, K., Kreft, H., Hölscher, D., Ammer, C. 2019a.
How a measure of tree structural complexity relates to architectural
benefit-to-cost ratio, light availability, and growth of trees.
Ecology and Evolution 9: 7134-7142.
https://doi.org/10.1002/ece3.5281
- Seidel, D., Ehbrecht, M. Dorji, Y., Jambay, J., Ammer, C., Annighöfer,
P. 2019b. Identifying architectural characteristics that determine
tree structural complexity. Trees 33: 911-949.
https://doi.org/10.1007/s00468-019-01827-4
- Seidel, D., Leuschner, C., Müller, A., Krause, B. 2011. Crown
plasticity in mixed forests–Quantifying asymmetry as a measure of
competition using terrestrial laser scanning. Forest Ecology and
Management 261: 2123-2132.
https://doi.org/10.1016/j.foreco.2011.03.008
- Tomlinson, P.B. 1983. Tree Architecture: New approaches help to define
the elusive biological property of tree form. American Scientist 71:
141-149. Available at: https://www.jstor.org/stable/27851897
[cited July 3, 2020]
- Urquhart, J., Cortney, P. 2011. Seeing the owner behind the trees: A
typology of small-scale private woodland owners in England. Forest
Policy and Economics 13: 535-544.
https://doi.org/10.1016/j.forpol.2011.05.010
- White, J. 1980. Demographic factors in population of plants. In:
Solbrig, O.T. (Ed.) Demography and Evaluation in Plant Populations.
Botanical Monographs 15. University of California Press. Berkeley and
Los Angeles, USA. 222 p.
- von Gadow, K., Zhang, Z.Y., Wehenkel, C., Pommerening, A.,
Corral-Rivas, J., Korol, M., Myklush, S., Hui, G.Y., Kiviste, A.,
Zhao, X.H. 2012. Forest Structure and Diversity. In: Pukkala, T., von
Gadow, K. (eds) Continuous Cover Forestry. Managing Forest Ecosystems
23. Spronger, Dodrecth, The Netherlands. pp. 29-83.
http://doi.org/10.1007/978-94-007-2202-6_2
- Yrttimaa, T., Saarinen, N., Kankare, V., Hynynen, J., Huuskonen, S.,
Holopainen, M., Hyyppä, J., Vastaranta, M. 2020. Performance of
terrestrial laser scanning to characterize managed Scots pine (Pinus
sylvestris L.) stands is dependent on forest structural variation.
EarthArXiv. March 5. https://doi.org/10.31223/osf.io/ybs7c
- Yrttimaa, T., Saarinen, N., Kankare, V., Liang, X., Hyyppä, J.,
Holopainen, M., Vastaranta, M. 2019. Investigating the Feasibility of
Multi-Scan Terrestrial Laser Scanning to Characterize Tree Communities
in Southern Boreal Forests. Remote Sensing 11: 1423.
https://doi.org/10.3390/rs11121423
- Zenner, EK. 2015. Differential growth response to increasing growing
stock and structural complexity in even- and uneven-sized mixedPicea abies stands in southern Finland. Canadian Journal of
forest Research 46: 1195 – 1204.
https://doi.org/10.1139/cjfr-2015-0400