REFERENCES
Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., & Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115 (5), 591-602. doi:10.1016/s0092-8674(03)00924-3
Berg, T. v. d., & Tusscher, K. H. t. (2018). Lateral root priming synergystically arises from root growth and auxin transport dynamics.Biorxiv. , 361709. doi:10.1101/361709 %J bioRxiv
Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., . . . Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots.Nature, 433 (7021), 39-44. doi:10.1038/nature03184
Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R., & Kolter, R. (2001). Fruiting body formation by Bacillus subtilis .Proceedings of the National Academy of Sciences of the United States of America, 98 (20), 11621-11626. doi:10.1073/pnas.191384198
Chen, L., Liu, Y., Wu, G., Zhang, N., Shen, Q., & Zhang, R. (2017). Beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 induces plant salt tolerance through spermidine production. Molecular Plant-Microbe Interactions, 30 (5), 423-432. doi:10.1094/mpmi-02-17-0027-r
Chen, Q., Liu, Y., Maere, S., Lee, E., Van Isterdael, G., Xie, Z., . . . Vanneste, S. (2015). A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 6 (1), 8821. doi:10.1038/ncomms9821
De Rybel, B., Vassileva, V., Parizot, B., Demeulenaere, M., Grunewald, W., Audenaert, D., . . . Beeckman, T. (2010). A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Current Biology, 20 (19), 1697-1706. doi:10.1016/j.cub.2010.09.007
De Smet, I., Tetsumura, T., De Rybel, B., Frei dit Frey, N., Laplaze, L., Casimiro, I., . . . Beeckman, T. (2007). Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis .Development, 134 (4), 681-690. doi:10.1242/dev.02753
De Smet, I., Vassileva, V., De Rybel, B., Levesque, M. P., Grunewald, W., Van Damme, D., . . . Beeckman, T. (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root.SCIENCE, 322 (5901), 594-597. doi:10.1126/science.1160158
Dharmasiri, N., Dharmasiri, S., & Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature, 435 (7041), 441-445. doi:10.1038/nature03543
Ditengou, F. A., Muller, A., Rosenkranz, M., Felten, J., Lasok, H., van Doorn, M. M., . . . Polle, A. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 6 , 6279. doi:10.1038/ncomms7279
Du, Y., & Scheres, B. (2018). Lateral root formation and the multiple roles of auxin. Journal of Experimental Botany, 69 (2), 155-167. doi:10.1093/jxb/erx223
Dubrovsky, J. G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M. G., Friml, J., Shishkova, S., . . . Benkova, E. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells.Proceedings of the National Academy of Sciences of the United States of America, 105 (25), 8790-8794. doi:10.1073/pnas.0712307105
Fernandez, A., Drozdzecki, A., Hoogewijs, K., Vassileva, V., Madder, A., Beeckman, T., & Hilson, P. (2015). The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation.Journal of Experimental Botany, 66 (17), 5245-5256. doi:10.1093/jxb/erv329
Finkel, O. M., Salas-Gonzalez, I., Castrillo, G., Conway, J. M., Law, T. F., Teixeira, P. J. P. L., . . . Dangl, J. L. (2020). A single bacterial genus maintains root growth in a complex microbiome. Nature . doi:10.1038/s41586-020-2778-7
Fukaki, H., Nakao, Y., Okushima, Y., Theologis, A., & Tasaka, M. (2005). Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis . Plant Journal, 44 (3), 382-395. doi:10.1111/j.1365-313X.2005.02537.x
Fukaki, H., Tameda, S., Masuda, H., & Tasaka, M. (2002). Lateral root formation is blocked by a gain-of-function mutation in theSOLITARY-ROOT/IAA14 gene of Arabidopsis . Plant Journal, 29 (2), 153-168. doi:10.1046/j.0960-7412.2001.01201.x
Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology & Biochemistry, 37 (3), 395-412. doi:10.1016/j.soilbio.2004.08.030
Gutierrez, L., Mongelard, G., Flokova, K., Pacurar, D. I., Novak, O., Staswick, P., . . . Bellini, C. (2012). Auxin controlsArabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell, 24 (6), 2515-2527. doi:10.1105/tpc.112.099119
Himanen, K., Boucheron, E., Vanneste, S., Engler, J. D., Inze, D., & Beeckman, T. (2002). Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell, 14 (10), 2339-2351. doi:10.1105/tpc.004960
Kim, J.-Y., Henrichs, S., Bailly, A., Vincenzetti, V., Sovero, V., Mancuso, S., . . . Nam, H.-G. (2010). Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. Journal of Biological Chemistry, 285 (30), 23307-23315. doi:10.1074/jbc.M110.105981
Kircher, S., & Schopfer, P. (2018). The plant hormone auxin beats the time for oscillating light-regulated lateral root induction.Development, 145 (23), dev169839. doi:10.1242/dev.169839
Kong, X., Zhang, C., Zheng, H., Sun, M., Zhang, F., Zhang, M., . . . Ding, Z. (2020). Antagonistic interaction between auxin and SA signaling pathways regulates bacterial infection through lateral root inArabidopsis . Cell Reports, 32 (8), 108060. doi:10.1016/j.celrep.2020.108060
Laskowski, M., Grieneisen, V. A., Hofhuis, H., Hove, C. A., Hogeweg, P., Maree, A. F., & Scheres, B. (2008). Root system architecture from coupling cell shape to auxin transport. Plos Biology, 6 (12), e307. doi:10.1371/journal.pbio.0060307
Laskowski, M., & Ten Tusscher, K. H. (2017). Periodic lateral root priming: What makes it tick? Plant Cell, 29 (3), 432-444. doi:10.1105/tpc.16.00638
Lee, H. W., Cho, C., & Kim, J. (2015). Lateral Organ Boundaries Domain16 and 18 act downstream of the AUXIN1 and Like-Auxin3 auxin influx carriers to control lateral root development inArabidopsis . Plant Physiology, 168 (4), 1792-1806. doi:10.1104/pp.15.00578
Lopez-Bucio, J., Campos-Cuevas, J. C., Hernandez-Calderon, E., Velasquez-Becerra, C., Farias-Rodriguez, R., Macias-Rodriguez, L. I., & Valencia-Cantero, E. (2007). Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana .Molecular Plant-Microbe Interactions, 20 (2), 207-217. doi:10.1094/MPMI-20-2-0207
Malamy, J. E., & Benfey, P. N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana .Development, 124 (1), 33-44.
Martinez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10 (3), 293-319. doi:10.4067/s0718-95162010000100006
Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., . . . Kasahara, H. (2011). The main auxin biosynthesis pathway in Arabidopsis . Proceedings of the National Academy of Sciences of the United States of America, 108 (45), 18512-18517. doi:10.1073/pnas.1108434108
Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wuensche, H., & Baldwin, I. T. (2013). Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition Plant Cell, 25 (7), 2731-2747. doi:10.1105/tpc.113.114744
Moller, B. K., Xuan, W., & Beeckman, T. (2017). Dynamic control of lateral root positioning. Current Opinion in Plant Biology, 35 , 1-7. doi:10.1016/j.pbi.2016.09.001
Moreno-Risueno, M. A., Van Norman, J. M., Moreno, A., Zhang, J., Ahnert, S. E., & Benfey, P. N. (2010). Oscillating gene expression determines competence for periodic Arabidopsis root branching.SCIENCE, 329 (5997), 1306-1311. doi:10.1126/science.1191937
Motte, H., Vanneste, S., & Beeckman, T. (2019). Molecular and environmental regulation of root development. Annual Review of Plant Biology, 70 , 465-488. doi:10.1146/annurev-arplant-050718-100423
Nakazawa, M., Yabe, N., Ichikawa, T., Yamamoto, Y. Y., Yoshizumi, T., Hasunuma, K., & Matsui, M. (2001). DFL1 , an auxin-responsiveGH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant Journal, 25 (2), 213-221. doi:10.1046/j.1365-313x.2001.00957.x
Nishimura, T., Hayashi, K.-i., Suzuki, H., Gyohda, A., Takaoka, C., Sakaguchi, Y., . . . Koshiba, T. (2014). Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant Journal, 77 (3), 352-366. doi:10.1111/tpj.12399
Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., & Tasaka, M. (2007). ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis . Plant Cell, 19 (1), 118-130. doi:10.1105/tpc.106.047761
Okushima, Y., Overvoorde, P. J., Arima, K., Alonso, J. M., Chan, A., Chang, C., . . . Theologis, A. (2005). Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members inArabidopsis thaliana : Unique and overlapping functions ofARF7 and ARF19 . Plant Cell, 17 (2), 444-463. doi:10.1105/tpc.104.028316
Orman-Ligeza, B., Morris, E. C., Parizot, B., Lavigne, T., Babé, A., Ligeza, A., . . . Draye, X. (2018). The xerobranching response represses lateral root formation when roots are not in contact with water.Current Biology, 28 (19), 3165-3173.e3165. doi:https://doi.org/10.1016/j.cub.2018.07.074
Ortiz-Castro, R., Martinez-Trujillo, M., & Lopez-Bucio, J. (2008).N -acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana . Plant, Cell & Environment, 31 (10), 1497-1509. doi:10.1111/j.1365-3040.2008.01863.x
Ortiz-Castro, R., Valencia-Cantero, E., & Lopez-Bucio, J. (2008). Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling & Behavior, 3 (4), 263-265. doi:10.4161/psb.3.4.5204
Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putidaindoleacetic acid in development of the host plant root system.Applied and Environmental Microbiology, 68 (8), 3795-3801. doi:10.1128/aem.68.8.3795-3801.2002
Perez-Flores, P., Valencia-Cantero, E., Altamirano-Hernandez, J., Pelagio-Flores, R., Lopez-Bucio, J., Garcia-Juarez, P., & Macias-Rodriguez, L. (2017). Bacillus methylotrophicus M4-96 isolated from maize (Zea mays ) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles.Protoplasma, 254 (6), 2201-2213. doi:10.1007/s00709-017-1109-9
Pickett, F. B., Wilson, A. K., & Estelle, M. (1990). The aux1mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiology, 94 (3), 1462-1466. doi:10.1104/pp.94.3.1462
Roman, G., Lubarsky, B., Kieber, J. J., Rothenberg, M., & Ecker, J. R. (1995). Genetic analysis of ethylene signal transduction inArabidopsis thaliana : five novel mutant loci integrated into a stress response pathway. Genetics, 139 (3), 1393-1409.
Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth inArabidopsis . Proceedings of the National Academy of Sciences of the United States of America, 100 (8), 4927-4932. doi:10.1073/pnas.0730845100
Shao, J., Xu, Z., Zhang, N., Shen, Q., & Zhang, R. (2014). Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9.Biology and Fertility of Soils, 51 (3), 321-330. doi:10.1007/s00374-014-0978-8
Staswick, P. E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M. T., Maldonado, M. C., & Suza, W. (2005). Characterization of anArabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell, 17 (2), 616-627. doi:10.1105/tpc.104.026690
Strader, L. C., Wheeler, D. L., Christensen, S. E., Berens, J. C., Cohen, J. D., Rampey, R. A., & Bartel, B. (2011). Multiple facets ofArabidopsis seedling development require indole-3-butyric acid-derived auxin. Plant Cell, 23 (3), 984-999. doi:10.1105/tpc.111.083071
Tang, L. P., Zhou, C., Wang, S. S., Yuan, J., Zhang, X. S., & Su, Y. H. (2017). FUSCA3 interacting with LEAFY COTYLEDON2 controls lateral root formation through regulating YUCCA4 gene expression inArabidopsis thaliana . New Phytologist, 213 (4), 1740-1754. doi:10.1111/nph.14313
Ulmasov, T., Murfett, J., Hagen, G., & Guilfoyle, T. J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell, 9 (11), 1963-1971. doi:10.1105/tpc.9.11.1963
Van Norman, J. M., Xuan, W., Beeckman, T., & Benfey, P. N. (2013). To branch or not to branch: the role of pre-patterning in lateral root formation. Development, 140 (21), 4301-4310. doi:10.1242/dev.090548
Vermeer, J. E., & Geldner, N. (2015). Lateral root initiation inArabidopsis thaliana : a force awakens. F1000Prime Reports, 7 , 32. doi:10.12703/P7-32
Vermeer, J. E., von Wangenheim, D., Barberon, M., Lee, Y., Stelzer, E. H., Maizel, A., & Geldner, N. (2014). A spatial accommodation by neighboring cells is required for organ initiation inArabidopsis . SCIENCE, 343 (6167), 178-183. doi:10.1126/science.1245871
Vermeer, J. E. M., von Wangenheim, D., Barberon, M., Lee, Y., Stelzer, E. H. K., Maizel, A., & Geldner, N. (2014). A spatial accommodation by neighboring cells is required for organ initiation inArabidopsis . SCIENCE, 343 (6167), 178-183. doi:10.1126/science.1245871
Wilmoth, J. C., Wang, S. C., Tiwari, S. B., Joshi, A. D., Hagen, G., Guilfoyle, T. J., . . . Reed, J. W. (2005). NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant Journal, 43 (1), 118-130. doi:10.1111/j.1365-313X.2005.02432.x
Wu, G., Liu, Y., Xu, Y., Zhang, G., Shen, Q., & Zhang, R. (2018). Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Molecular Plant-Microbe Interactions, 31 (5), 560-567. doi:10.1094/mpmi-11-17-0273-r
Xie, Y., Wang, J., Zheng, L., Wang, Y., Luo, L., Ma, M., . . . Xuan, W. (2019). Cadmium stress suppresses lateral root formation by interfering with the root clock. Plant, Cell & Environment, 42 (12), 3182-3196. doi:10.1111/pce.13635
Xuan, W., Audenaert, D., Parizot, B., Moller, B. K., Njo, M. F., De Rybel, B., . . . Beeckman, T. (2015). Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root.Current Biology, 25 (10), 1381-1388. doi:10.1016/j.cub.2015.03.046
Xuan, W., Band, L. R., Kumpf, R. P., Van Damme, D., Parizot, B., De Rop, G., . . . Beeckman, T. (2016). Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis .SCIENCE, 351 (6271), 384-3877. doi:10.1126/science.aad2776
Xuan, W., De Gernier, H., & Beeckman, T. (2020). The dynamic nature and regulation of the root clock. Development, 147 (3), dev181446. doi:10.1242/dev.181446
Xuan, W., Opdenacker, D., Vanneste, S., & Beeckman, T. (2018). Long-term in vivo imaging of luciferase-based reporter gene expression in Arabidopsis roots. Methods in molecular biology (Clifton, N.J.), 1761 , 177-190. doi:10.1007/978-1-4939-7747-5_13
Zadnikova, P., Petrasek, J., Marhavy, P., Raz, V., Vandenbussche, F., Ding, Z., . . . Benkova, E. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana .Development, 137 (4), 607-617. doi:10.1242/dev.041277
Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I., & Pieterse, C. M. (2013). Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiology, 162 (1), 304-318. doi:10.1104/pp.112.212597
Zhao, Y. (2012). Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular plant, 5 (2), 334-338. doi:10.1093/mp/ssr104
Zhao, Y. D., Christensen, S. K., Fankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, D., & Chory, J. (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. SCIENCE, 291 (5502), 306-309. doi:10.1126/science.291.5502.306
Zou, C., Li, Z., & Yu, D. (2010). Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. The Journal of Microbiology, 48 (4), 460-466. doi:10.1007/s12275-010-0068-z
Zuniga, A., Poupin, M. J., Donoso, R., Ledger, T., Guiliani, N., Gutierrez, R. A., & Gonzalez, B. (2013). Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Molecular Plant-Microbe Interactions, 26 (5), 546-553. doi:10.1094/MPMI-10-12-0241-R