REFERENCES
Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., Hartmann, H.,
Landhausser, S.M., Tissue, D.T. et al. (2017). A multi-species
synthesis of physiological mechanisms in drought-induced tree mortality.Nat. Ecol. Evol. , 1, 1285-1291.
Albornoz, F.E., Burgess, T.I., Lambers, H., Etchells, H., Laliberté, E.
& Power, A. (2017). Native soilborne pathogens equalize differences in
competitive ability between plants of contrasting nutrient-acquisition
strategies. J. Ecol. , 105, 549-557.
Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa, F.et al. (2019). Amazonian rainforest tree mortality driven by
climate and functional traits. Nat. Clim. Chang. , 9, 384-388.
Alster, C.J., Weller, Z.D. & von Fischer, J.C. (2018). A meta-analysis
of temperature sensitivity as a microbial trait. Glob. Chang.
Biol. , 24, 4211-4224.
Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein,
P.R. & Daszak, P. (2004). Emerging infectious diseases of plants:
pathogen pollution, climate change and agrotechnology drivers.Trends Ecol. Evol. , 19, 535-544.
Bachelot, B., Alonso‐Rodríguez, A.M., Aldrich‐Wolfe, L., Cavaleri, M.A.,
Reed, S.C. & Wood, T.E. (2020). Altered climate leads to positive
density‐dependent feedbacks in a tropical wet forest. Glob. Chang.
Biol. , 26, 3417-3428.
Bagchi, R., Gallery, R.E., Gripenberg, S., Gurr, S.J., Narayan, L.,
Addis, C.E. et al. (2014). Pathogens and insect herbivores drive
rainforest plant diversity and composition. Nature , 506, 85-88.
Bell, T., Freckleton, R.P. & Lewis, O.T. (2006). Plant pathogens drive
density-dependent seedling mortality in a tropical tree. Ecol.
Lett. , 9, 569-574.
Bennett, J.A., Maherali, H., Reinhart, K.O., Lekberg, Y., Hart, M.M. &
Klironomos, J. (2017). Plant-soil feedbacks and mycorrhizal type
influence temperate forest population dynamics. Science , 355,
181-184.
Bever, J.D. (2003). Soil community feedback and the coexistence of
competitors conceptual frameworks and empirical tests. New
Phytol. , 157, 465-473.
Bever, J.D., Westover, K.M. & Antonovics, J. (1997). Incorporating the
soil community into plant population dynamics: the utility of the
feedback approach. J. Ecol. , 85, 561-573.
Bolger, A.M., Lohse, M. & Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics , 30,
2114–2120.
Brunner, I., Herzog, C., Dawes, M.A., Arend, M. & Sperisen, C. (2015).
How tree roots respond to drought. Front. Plant Sci. , 6, 547.
Chakraborty, S. (2005). Potential impact of climate change on
plant-pathogen interactions. Australas. Plant Pathol. , 34,
443-448.
Chan, W.-P., Chen, I.-C., Colwell, R.K., Liu, W.-C., Huang, C.-Y. &
Shen, S.-F. (2016). Seasonal and daily climate variation have opposite
effects on species elevational range size. Science , 351,
1437-1439.
Chen, L., Swenson, N.G., Ji, N., Mi, X., Ren, H., Guo, L. et al.(2019). Differential soil fungus accumulation and density dependence of
trees in a subtropical forest. Science , 366, 124-128.
Connell, J.H. (1971). On the role of natural enemies in preventing
competitive exclusion in some marine animals and in rain forest trees.
In: Dynamics of Populations (eds. Boer, PJD & Gradwell, GR).
Center for Agriculture Publishing and Documentation Wageningen, pp.
298-312.
Corrales, A., Henkel, T.W. & Smith, M.E. (2018). Ectomycorrhizal
associations in the tropics - biogeography, diversity patterns and
ecosystem roles. New Phytol. , 220, 1076-1091.
Delgado-Baquerizo, M., Guerra, C.A., Cano-Díaz, C., Egidi, E., Wang,
J.-T., Eisenhauer, N. et al. (2020). The proportion of soil-borne
pathogens increases with warming at the global scale. Nat. Clim.
Chang. , 10, 550-554.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor,
C.K., Haak, D.C. et al. (2008). Impacts of climate warming on
terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci.
U.S.A. , 105, 6668-6672.
Dornelas, M., Gotelli, N.J., McGill, B., Shimadzu, H., Moyes, F.,
Sievers, C. et al. (2014). Assemblage time series reveal
biodiversity change but not systematic loss. Science , 344,
296-299.
Eck, J.L., Stump, S.M., Delavaux, C.S., Mangan, S.A. & Comita, L.S.
(2019). Evidence of within-species specialization by soil microbes and
the implications for plant community diversity. Proc. Natl. Acad.
Sci. U.S.A. , 116, 7371-7376.
Edgar, R.C. (2010). Search and clustering orders of magnitude faster
than BLAST. Bioinformatics , 26, 2460–2461.
Feeley, K.J., Joseph Wright, S., Nur Supardi, M.N., Kassim, A.R. &
Davies, S.J. (2007). Decelerating growth in tropical forest trees.Ecol. Lett. , 10, 461-469.
García-Guzmán, G., Trejo, I. & Sánchez-Coronado, M.E. (2016). Foliar
diseases in a seasonal tropical dry forest: Impacts of habitat
fragmentation. For. Ecol. Manag. , 369, 126-134.
Germain, S.J. & Lutz, J.A. (2021). Shared friends counterbalance shared
enemies in old forests. Ecology , (online).
Ghalambor, C.K., Huey, R.B., Martin, P.R., Tewksbury, J.J. & Wang, G.
(2006). Are mountain passes higher in the tropics? Janzen’s hypothesis
revisited. Integr. Comp. Biol. , 46, 5-17.
Gonzalez, A., Cardinale, B.J., Allington, G.R.H., Byrnes, J., Endsley,
K.A., Brown, D.G. et al. (2016). Estimating local biodiversity
change: a critique of papers claiming no net loss of local diversity.Ecology , 97, 1949–1960.
Guo, J., Ling, N., Chen, Z., Xue, C., Li, L., Liu, L. et al.(2020). Soil fungal assemblage complexity is dependent on soil fertility
and dominated by deterministic processes. New Phytol. , 226,
232-243.
Hannula, S.E., Morrien, E., de Hollander, M., van der Putten, W.H., van
Veen, J.A. & de Boer, W. (2017). Shifts in rhizosphere fungal community
during secondary succession following abandonment from agriculture.ISME J. , 11, 2294-2304.
Hillebrand, H., Blasius, B., Borer, E.T., Chase, J.M., Downing, J.A.,
Eriksson, B.K. et al. (2018). Biodiversity change is uncoupled
from species richness trends: Consequences for conservation and
monitoring. J. Appl. Ecol. , 55, 169-184.
Hollister, R.D. & Webber, P.J. (2000). Biotic validation of small
open-top chambers in a tundra ecosystem. Glob. Chang. Biol. , 6,
835-845.
IPCC (2013). Climate change 2013: The physical science basis.
Contribution of working group I to the fifth assessment report of the
intergovernmental panel on climate change . Cambridge, UK.
Janzen, D.H. (1970). Herbivores and the number of tree species in
tropical forests. Am. Nat. , 104, 501-528.
Johnson, D.J., Needham, J., Xu, C., Massoud, E.C., Davies, S.J.,
Anderson-Teixeira, K.J. et al. (2018). Climate sensitive
size-dependent survival in tropical trees. Nat. Ecol. Evol. , 2,
1436-1442.
Kandlikar, G.S., Johnson, C.A., Yan, X., Kraft, N.J.B. & Levine, J.M.
(2019). Winning and losing with microbes: how microbially mediated
fitness differences influence plant diversity. Ecol. Lett. , 22,
1178-1191.
Khaliq, I., Hof, C., Prinzinger, R., Bohning-Gaese, K. & Pfenninger, M.
(2014). Global variation in thermal tolerances and vulnerability of
endotherms to climate change. Proc. Royal Soc. B , 281, 20141097.
Koljalg, U., Larsson, K.H., Abarenkov, K., Nilsson, R.H., Alexander,
I.J., Eberhardt, U. et al. (2005). UNITE: a database providing
web-based methods for the molecular identification of ectomycorrhizal
fungi. New Phytol. , 166, 1063-1068.
Legeay, J., Husson, C., Cordier, T., Vacher, C., Marcais, B. & Buée, M.
(2019). Comparison and validation of Oomycetes metabarcoding primers for
Phytophthora high throughput sequencing. J. Plant Pathol. , 101,
743-748.
Li, R.B., Yu, S.X., Wang, Y.F., Staehelin, C. & Zang, R.G. (2009).
Distance-dependent effects of soil-derived biota on seedling survival of
the tropical tree legume Ormosia semicastrata . J. Veg.
Sci. , 20, 527-534.
Liu, Y., Fang, S., Chesson, P. & He, F. (2015). The effect of
soil-borne pathogens depends on the abundance of host tree species.Nat. Commun. , 6:10017.
Liu, Y. & He, F. (2019). Incorporating the disease triangle framework
for testing the effect of soil‐borne pathogens on tree species
diversity. Funct. Ecol. , 33, 1211-1222.
Liu, Y., Yu, S., Xie, Z.-P. & Staehelin, C. (2012). Analysis of a
negative plant-soil feedback in a subtropical monsoon forest. J.
Ecol. , 100, 1019-1028.
Magoč, T. & Salzberg, S.L. (2011). FLASH: fast length adjustment of
short reads to improve genome assemblies. Bioinformatics , 27,
2957–2963.
Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W. & Nobre,
C.A. (2008). Climate change, deforestation, and the fate of the Amazon.Science , 319, 169–172.
Mangan, S.A., Schnitzer, S.A., Herre, E.A., Mack, K.M., Valencia, M.C.,
Sanchez, E.I. et al. (2010). Negative plant-soil feedback
predicts tree-species relative abundance in a tropical forest.Nature , 466, 752-755.
Mariotte, P., Mehrabi, Z., Bezemer, T.M., De Deyn, G.B., Kulmatiski, A.,
Drigo, B. et al. (2018). Plant-Soil Feedback: Bridging Natural
and Agricultural Sciences. Trends Ecol. Evol. , 33, 129-142.
Marx, D.H. (1972). Ectomycorrhizae as biological deterrents to
pathogenic root infections. Annu. Rev. Phytopathol. , 10, 429-454.
Merges, D., Bálint, M., Schmitt, I., Böhning-Gaese, K., Neuschulz, E.L.
& Power, A. (2018). Spatial patterns of pathogenic and mutualistic
fungi across the elevational range of a host plant. J. Ecol. ,
106, 1545-1557.
Milici, V.R., Dalui, D., Mickley, J.G., Bagchi, R. & Fridley, J.
(2020). Responses of plant–pathogen interactions to precipitation:
Implications for tropical tree richness in a changing world. J.
Ecol. , 108, 1800-1809.
Mommer, L., Cotton, T.E.A., Raaijmakers, J.M., Termorshuizen, A.J., van
Ruijven, J., Hendriks, M. et al. (2018). Lost in diversity: the
interactions between soil-borne fungi, biodiversity and plant
productivity. New Phytol. , 218, 542-553.
Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J.et al. (2016). FUNGuild: An open annotation tool for parsing
fungal community datasets by ecological guild. Fungal Ecol. , 20,
241-248.
Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J.,
Jeppesen, T.S., Schigel, D. et al. (2019). The UNITE database for
molecular identification of fungi: handling dark taxa and parallel
taxonomic classifications. Nucleic Acids Res. , 47, D259-D264.
Nottingham, A.T., Meir, P., Velasquez, E. & Turner, B.L. (2020). Soil
carbon loss by experimental warming in a tropical forest. Nature ,
584, 234-237.
Pugnaire, F.I., Morillo, J.A., Peñuelas, J., Reich, P.B., Bardgett,
R.D., Gaxiola, A. et al. (2019). Climate change effects on
plant-soil feedbacks and consequences for biodiversity and functioning
of terrestrial ecosystems. Sci. Adv. , 5: eaaz1834.
Romero, F., Cazzato, S., Walder, F., Vogelgsang, S., Bender, S.F. & van
der Heijden, M.G.A. (2021). Humidity and high temperatureare important
for predicting fungal disease outbreaks worldwide. New
Phytologist , (online).
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M.,
Hollister, E.B. et al. (2009). Introducing mothur: Open-source,
platform-independent, community-supported software for describing and
comparing microbial communities. Appl. Environ. Microbiol. , 75,
7537–7541.
Schroeder, J.W., Dobson, A., Mangan, S.A., Petticord, D.F. & Herre,
E.A. (2020). Mutualist and pathogen traits interact to affect plant
community structure in a spatially explicit model. Nat. Commun. ,
11, 2204.
Segnitz, R.M., Russo, S.E., Davies, S.J. & Peay, K.G. (2020).
Ectomycorrhizal fungi drive positive phylogenetic plant–soil feedbacks
in a regionally dominant tropical plant family. Ecology , 101,
e03083.
Swinfield, T., Lewis, O.T., Bagchi, R. & Freckleton, R.P. (2012).
Consequences of changing rainfall for fungal pathogen-induced mortality
in tropical tree seedlings. Ecol. Evol. , 2, 1408-1413.
Taylor, D.L., Walters, W.A., Lennon, N.J., Bochicchio, J., Krohn, A.,
Caporaso, J.G. et al. (2016). Accurate estimation of fungal
diversity and abundance through improved lineage-specific primers
optimized for Illumina amplicon sequencing. Appl. Environ.
Microbiol. , 82, 7217-7226.
Tedersoo, L., Bahram, M. & Zobel, M. (2020). How mycorrhizal
associations drive plant population and community biology.Science , 367, eaba1223.
Thompson, S., Alvarez-Loayza, P., Terborgh, J. & Katul, G. (2010). The
effects of plant pathogens on tree recruitment in the Western Amazon
under a projected future climate: a dynamical systems analysis. J.
Ecol. , 98, 1434-1446.
van der Putten, W.H., Bradford, M.A., Brinkman, E.P., van de Voorde,
T.F.J. & Veen, G.F. (2016). Where, when and how plant–soil feedback
matters in a changing world. Funct. Ecol. , 30, 1109-1121.
Vellend, M., Baeten, L., Myers-Smith, I.H., Elmendorf, S.C., Beausejour,
R., Brown, C.D. et al. (2013). Global meta-analysis reveals no
net change in local-scale plant biodiversity over time. Proc.
Natl. Acad. Sci. U.S.A. , 110, 19456-19459.
Vetrovsky, T., Kohout, P., Kopecky, M., Machac, A., Man, M., Bahnmann,
B.D. et al. (2019). A meta-analysis of global fungal distribution
reveals climate-driven patterns. Nat. Commun. , 10, 5142.
Vlam, M., Baker, P.J., Bunyavejchewin, S. & Zuidema, P.A. (2014).
Temperature and rainfall strongly drive temporal growth variation in
Asian tropical forest trees. Oecologia , 174, 1449-1461.
Wang, J., Zhang, H., Gao, J., Zhang, Y., Liu, Y. & Tang, M. (2021).
Effects of ectomycorrhizal fungi (Suillus variegatus ) on the
growth, hydraulic function, and non-structural carbohydrates ofPinus tabulaeformis under drought stress. BMC Plant Biol. ,
21, 171.
Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der
Putten, W.H. & Wall, D.H. (2004). Ecological linkage between
aboveground and belowground biology. Science , 304, 1629-1633.
Wright, S.J., Muller-Landau, H.C. & Schipper, J. (2009). The future of
tropical species on a warmer planet. Conserv. Biol. , 23,
1418-1426.
Xu, H., Li, Y.D., Lin, M.X., Wu, J.H., Luo, T.S., Zhou, Z. et al.(2015). Community characteristics of a 60 ha dynamics plot in the
tropical montane rain forest in Jianfengling, Hainan Island.Biodiversity Science , 23, 192-201 (Chinese with English
abstract).
TABLE 1 Estimated coefficients (Coef) and standard errors (SE)
of the negative binomial generalized linear mixed models (GLMMs) for
modelling the responses of relative abundances of plant-pathogenic fungi
to the three experimental treatments (OTC warming versus control,
pesticides versus without pesticides, and distance to the parent
trees). The model coefficients estimated the treatment effects. The
random effects controlled the variation between the two focal tree
species and the variation among the three adult trees of each focal
species. For the 421 FUNGuild classified pathogens, the random effect
variances were 0.15 and 0.08, respectively.