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Abstract

This article analyzes and compares the two algorithms for the numerical
solutions of the fractional isothermal chemical equations (FICEs) based
on mass action kinetics for autocatalytic feedback, involving the con-
version of a reactant in the Liouville-Caputo sense. The first method is
based upon the spectral collocation method (SCM), where the proper-
ties of Legendre polynomials are utilized to reduce the FICEs to a set of
algebraic equations. We then use the well-known method like Newton-
Raphson method (NRM) to solve the set of algebraic equations. The
second method is based upon the properties of Newton polynomial in-
terpolation (NPI) and the fundamental theorem of fractional calculus.
We utilize these methods to construct the numerical solutions of the
FICEs. The accuracy and effectiveness of these methods is satisfied
graphically by combining the numerical results and plotting the abso-
lute error. Also, the absolute errors are tabulated, and a good agreement
found in all cases.
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1. INTRODUCTION

In the past few decades, the topic of the fractional differential equations has been
the attention of many researchers and scientists. This is because many models related
to the real world can’t be modeled with classical differential equations. Therefore, the
fractional differential equations can be used in simulation and modeling of many prob-
lems. For example in electrical, electronic, mechanical, biological and other areas of
application related to the real world. For more details see [1, 2]. Unfortunately, it is
difficult to find an exact solution for most of these models. As a result, the numeri-
cal and approximate methods have won the interest of many researchers. Using these
methods, researchers were able to study and analyze the dynamic systems that gov-
ern these models. There are many such methods including, He’s variational iteration
method [3, 4], homotopy analysis [5, 6, 7], Fourier spectral methods [8], Adomian’s
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decomposition method [9, 10], collocation methods [11, 12, 13, 14], finite difference
schemes [15] and spectral methods[16, 17, 18, 19, 20, 21]. The model with three types
of isothermal chemical reactions, this model is an extension of the model that Scott [22]
and colleagues studied. The triple model includes three types of isothermal chemical
reactions to include the thermal response capable of supporting complex periodic re-
actions as well as non-cyclical responses. The relatively stable reactant P is converted
into a final product D through the chemical reaction of this model that contains three
intermediate chemical species, U, V and W. These chemical reactions are

P — U, rate= kgp, (1)

P4+W —=U+W, rate= kypw, (2)

U—V, rate=kyu, (3)

U+2V — 3V, rate = kjuv?, (4)

V — W, rate=k)V, (5)

W — D, rate = ksw, (6)

The governing rate equations for these reactions can be obtained by applying a mass
action analysis to (1)—(6),

dp
— = —kop — kypw, 7
e 0p — kwpw (7)
du 9
— = kop + kupw — kou — kjuv”, (8)
dr
d
% = kou + kiuv? — kov, (9)
dw 9
— = kgu + kiuv® — kov, (10)
dr
In dimensionless form, these equations are
d
WP g0+ ) (1)
t
d
%~ 510+ B) — 35— o, (12)
dp
v = B2+ B — P, (13)
dBy
P2 = By — 14
7 B3 — P, (14)
where k.P kiky\ 3 k13 k1k2\ 3
_he _ 1Ry 2 _ N1\ 2 _ 173\ 2
61_ k3 ) 62 ( k% ) a: 63 (k4> ) /84 <k4k%>

are the dimensionless concentrations of the four chemical species and ¢t = k,7 is the
dimensionless time. In addition, the dimensionless reaction rates are

1
1= () ) =) = (), “:kggzzl:);'
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The importance and novelty of this work, it is to establish numerical approximate
formulas in order to obtain numerical solutions for the proposed model of great im-
portance in chemical applications. These formulas enable many researchers in applied
sciences to benefit from them in studying the behavior and characteristics of these sys-
tems. After studying the accuracy of these numerical methods presented in this paper,
a strong correlation can be made for the numerical results as well as the laboratory
results. Also, the strong impetus for this study is that many fractional systems do not
have exact solutions, so that the behavior of the solutions can be studied, and then the
need to create schemes and iterative solutions is required.

In this section, we present the definitions and their properties that will be used in
this work, [23, 24].

Definition 1. For A > 0, and §(t) € L1(a,b), with Li(a,b) the space of all integrable
functions on (a,b), then the Riemann-Liouville fractional integral of order A, denoted
by JO)‘, is given by

<@MQZFALA@—XW1ﬂWWX (15)

Definition 2. For A > 0, the Liouville-Caputo fractional derivative of order A, denoted
by LCDS‘, is defined by

1 ! n—A—1pyn
FCODRB(t) = F(n—/\)/o (t—x)" M 'D"B(x)dx (16)

(n—1<A<n;neN={1,2,3---}),

Replacing the derivatives % in the dimensionless chemical reaction equations (11)—

(14) by the fractional derivatives ¢D;', 0 < A < 1, t > 0, we obtain the fractional
isothermal chemical model in the Liouville-Caputo sense as

oD Bi(t) = —aBi(d + Ba), (17)
0D} B2(t) = B1(9 + Ba) — BaB} — Ba, (18)
Y0 D B3(t) = Bafis + Ba — B, (19)
00D} Ba(t) = B3 — Ba. (20)

In this paper, the numerical scheme and solutions for the fractional isothermal chemical
model in the Liouville-Caputo sense are constructed in the second and third sections.
For the numerical results presented in the fourth section. The conclusion is presented
in the fifth section.

2. LEGENDRE SPECTRAL COLLOCATION METHOD

Orthogonal functions play a very important role in the development of many nu-
merical methods to address many real-world problems. Where by using the orthogonal
functions, the solutions are approximated. By converting fractional differential models
into a set of algebraic equations, then one of the known numerical methods is used
to find an approximate solution to the resulting set of algebraic equations. By using
well-known mathematical software, such as Mathematica or Matlab, we can easily find
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the Legendre coefficients, thereby creating numerical solutions of the fractional model
presented in this paper (see [25] to [28]).

2.1. Numerical Scheme and Its Convergence Analysis. We begin by defining
the shifted Legendre polynomials on the interval [0,1] with the variable z = 2¢ — 1.
These polynomials have the following property:

Gi(t) = Gr(2t — 1) = Gop(V),

where the set {Gi(z) : £k = 0,1,2,---} forms a family of orthogonal Legendre poly-
nomials on the interval [—1, 1] (see, for details [29]). The analytic form of the shifted
Legendre polynomials of degree s is given by

L (—1)*tE (s ! _ _
@Mﬂzijxggw&;?%k (Go(t) =1; Gi(t) =2t — 1; s = 2,3,4,---). (21)
k=0

The function 3(t) € £2[0, 1] can be expressed and approximated as a linear combination
of the first (m + 1) terms of Gg(t), as follows:

m
Bt) ~ Bm(t) =D aiGy(t), m=1,2,3,4,---, (22)
i=0
where the coefficients a; are given by

1 —
ai—(2i—i—1)/0 B Gr(t)dt  (i=0,1,2,---).

Now, we state the following useful theorem.

Theorem 1. [30] Let (t) be approzimated by the shifted Legendre polynomials in (22).
Suppose also that A > 0. Then

D)= S aHG, (23)

i=[A] k=[]

where

g _ G +R)IT(k+1)
BETED2 (k) T(k—X+1)

2.2. Construction the LSCM. We will now implement the Legendre spectral collo-
cation method to solve numerically the FICEs are given by (17)—(20) as follows [33]

Bim(t) = BiaGr(t),  Bom(t) =D PakGi(t),
k=0 k=0

B3,m(t) = Z Bs ik Gi(t) and Bam(t) = Z Bai Gi(2). (24)
k=0 k=0

Substituting these expansions into the FICEs (17)—(20) and using (23), we obtain
m =[]

Z Z B Hz‘(,)\k) A= g (Z B, Gk(t)> (19 + Z Bai Gy, (t)) , (25)
k=0 k=0

i=[A] k=0
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m =[] m m
> 52,¢Hl-(f,3 ik (Zﬁu@k(t)) (19+Zﬁ4,i@k(t))

i=[A] k=0

- (Z Ba,i Gk(t)> ) (26)

m  i—[X] m m 2
Z B3,i Hz(Ak) R = (Z B2,i Gk(t)> (Z B3,i Gk(t>>
i=[A] k=0 k=0 k=0
+ (Z B2,k @k(t)> - <Z B3, @k(f)> ) (27)
k=0 k=0
m =[] N m - m
Z Z Bui Hi(,k) R = (Z B3,k Gk(t)> - <Z Bai Gk(t)> (28)
i=[\] k=0 k=0 k=0
The equations (25)-(28) are collocated at m nodes t,, p=0,1,...,m — 1, as follows

m  i—[A] m m
) OID D (Zﬂu ©k<tp>> (“ZB @’““p)>’ )

i=[A] k=0 k=0 k=0
m i—[A] A m ~ m
Z Z Ba,i Hl(Ak) t;_k_’\ = (Z Bu,i Gk(tp)> (19 + Z Bai sz(tp)>
i=[A] k=0 k=0 k=0
m m 2
- <Z /3271' @k(tp)> (Z 5371' Gk(tp)>
k=0 k=0
- < Ba,i Gk(%)) ; (30)
k=0
m Z—|—X| m m 2
DY Bsa Hl(Ak) th = <Z Pa,i Gk<tp>> (Z (5% Gk(t’p)>
i=[A] k=0 k=0 k=0
+ (Z B2,k @k(tp)> - <Z B3, @k(tp)> ; (31)
k=0 k=0
m =[] m m
Z Z Bai Hﬁﬂ) thhA = (Z B3,k Gk(tp)> - (Z B Gk(tp)> (32)
i=[A\] k=0 k=0 k=0
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In addition, the associated initial conditions can be obtained by using the expansions
Egs. (24). We thus have

m .
> (=1)' Bri = Buro, (33)
i=0
m .
> (=1) Bai = B0, (34)
i=0
m .
> (=1) B3 = B, (35)
i=0
m .
> (=1) Bai = Bao. (36)
i=0
Finally, using the Newton-Raphson iteration method, we can solve this system of alge-
braic equations and get the unknowns 51, 52i, £3,i, Bai, ¢ =0,1,--- ,m.

3. NEWTON POLYNOMIAL INTERPOLATION

In this section, the numerical solutions of the proposed fractional system will be
investigate, by establishing the iterative formulas, and employing them in finding the
numerical solutions [34]. We apply the fundamental theorem of fractional calculus on
(17)—(20) to obtain the following iterative formulas

510~ 510) = 1755 [ (=m0 +300) (=0 a (37)
8a(t) = 52(0) = 5557 | (B0 + 8400) = B0 B 0) = 52000 ) ¢ = i,
(3)
1 ¢ 9 A-1
81(0) = (0 = 5557 | (B0800 + 52000 = B0 (1= ) (39)
i) = 51(0) = 55 | (8400 = B0 ¢ =0 (40)

These equations (37)—(40) can be reformulated as

Br(tns1) — f1(0) = P(l)\Z/tmm+1 —a () (0 + Balx )))(th—X)A—ldX, (41)

altr) = 5200 = 55 2 [ (B0 -+ Bi(0) ~ B00B0) — ()
m=2 tm
X (tir1 — x)dx, (42)

tmg1
Bs(tnsr) — B0 %Z L7 (3008800 + 500 - 8500) tmir =20 e
(13)
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Baltnin) = Ba(0 %Z [ (800 = 8300 (s =0 e (44

Using Newton polynomial interpolation as in [35], we obtain

n tm+1 1

Z (= aBiltm-2)(@ + Baltu- 2)>)/ e

tm (tn—i-l

Bi(tn+1) = 1(0) + /\)

( — aBi(tn1)(0 + Baltm1)) )

m=2

— B (tm2) (0 + ﬂ4<tm_2)>)> [ (t(XtMQ)dX

n+1 — X)l A

/

+ 2thFO\) mZ:; (( —aBy(tm) 0+ /84(tm))) — 2( —aBi(tm1) (0 + ﬂ4(tm_1)))

+ ( — aBi(tmz)(9 + /34(tm_2>))> /ttm+1 Ot —tmet) g )

n

Balt) = 52(0) + 1755 3 (Biltn-)(0+ Ba(tu2)

=2

tm+1 1
_/32(tm—2)6§(tm—2)_BQ(tm—Q))/t ' mdx

+ hl“l()\) mz:ﬂ ((51(%1)(?9 + Baltm—1)) = Bo(tm—1)B3(tm—1) — 52(%71))

/N

Br(tm—2)(V + Ba(tm—2)) — Bo(tm—2)B3 (tm—2) — 52(%-2)))

e O ((ﬁl<tm><ﬂ + Baltm)) = Baltm) B (tm) — Baltm)
= 2(B1 (b )(0 + Ba(tm—1)) = Baltin—1) B (tm-1) = Baltun-1))
+ (B(tm-2) (0 + Baltm—2)) = Baltim—2) B3 (tn-2) — BQ(tmz))>

« /tm+1 (X - tm—2)(X - tm_l)dX.
tm (tnrr — )
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B3(tny1) = % Z (ﬁ2 tim—2)B3(tm—2) + Bo(tm_2) — 53(%—2))

m:2
1

tm+1
x dy
/tm (tns1 —x)PA

n

+ hrl(A) 2 ((ﬁz(tml)ﬁg(tml) + Batm—1) — gg(tmfln

— (Boltm-2)83(tm—) + Baltm ) — 53<tm_2>)> |
W;( P ((m( )8 () + Baltm) = B (tm) )
- 2(520%—1)53 (tm—1) + B2(tm-1) — ﬁs(tm—l))

+ <B2(tm72)/8§(tm72) + B2(tm72) - ﬁ3(tm2))>

bmt1 (X - tm—2)(X - tm—l)
X dy. 47
/tm (tn1 — X))t X (47

1

Baltnsr) = Ba(0) + +15

X
1 n
+ e mz::z
fmt1 (X - tm72)
<[, T
+ %;F(A) 77122 ((Ba(tm) - 54(tm)> — 2(63(tm_1) - 54(tm_1))

N <ﬁ3(tm72) B 64(tm2)>> /ttm+1 (X - tm—?)(x — tm_l) dX (48)

(tnr1 — X)L

(Buttn-a) = 5atn-2)) [ i

)
<ﬁ3(tm—1) - 54(tm—1)) - (53(%—2) - 54(%—2)))

m=2
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The integrals in these Newton interpolation formulae are evaluated directly. The nu-
merical solutions of (17)—(20) involving the LC derivative are then given by

)\ n
Biltin) = B10) + s 2 (= Biltn2)(9+ Baltm2))) s

L1 +A) “

by n
" r(2h+ P> << ~ @ Biltn)(0+ Baltn1)

m=2

- ( — o fr1(tm—2)(0 + 54(%2)))) Ay

h? "
+ Wﬁ; (( = aBi(tm) (0 + Ba(tm))) = 2( = @ Ba(tm1) (9 + Baltm-1)) )
+ ( —afi(tm—2)(V + ﬂ4(tm_2))>> Ags, (49)

A n
Balt) = B2(0) + iy O (Aa(tua)(9+ Baltn-s)
m=2
~ Baltm-2) 8 (tm2) — Baltm-2) ) As
R~ )
+ T ((mtm_l)w + Baltm1)) = Balbm-1) 83 (tm-1) — Baltm-1))
m=2

- (Bl(tmf2)(19 + Ba(tm—2)) — Bo(tm—2)B3 (tm—2) — /BQ(th))>A2

A n
* 2r(§ P ( B1(tm) (9 + Ba(tm)) — Ba(tm) B3 () — Ba(tm))

m=2

= 2(B1(tm) (0 + Baltm-1)) = Boltm—1) B3 (1) = Ba(tm-1) )

+ (51 (tm—2) (0 + Ba(tm—2)) — Bo(tm—2)B5 (tm—2) — 52(tm2))>/\3, (50)
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A n
Baltin) = B2(0) + 3 2 (Bl )8R tm2) + Bt 2) = Paltm-2)) A
"y Ba(t 3(t t t
+ F(2+)\)mZ:2 < 2 (tm—1)05(tm—1) + B2 (tm—1) — B3( m,1)>

- (ﬁQ(tm—z)ﬂg(tm—z) + Ba(tm—2) — 53(%—2))) Ao

3+>\ Z ((ﬁz )B5 (tm) + Ba(tm) _/63(tm)>

- 2(@(% 1)53(%,1) + Baltm1) = Bs(tm-1) )

+ <52(tm—2)5§(tm—2) + Ba(tm-2) — 53(%—2))) As, (51)
)\ n
Ba(tns1) = B4(0) + (1h+)\) 2 (53(tm—2) _/84(tm—2)>A1
t e T T( 2 Y ((53 tm—1) = Ba(tm— 1)) - </83(tm—2) - 54(tm—2)>>/\2
+ 3 + )\ m:2 53 tm B4 tm)) - 2(B3(tmfl) - 54(tm71))
+ (53(%—2) - 54(%—2)))1\3 (52)
where
A =mn—-—m+1)*=(n—m), (53)
Agz(n—m+1))‘((n—m+3+2)\)—(n—m+3+3/\)), (54)
As=(n—m+ 1)/\(2(71 —m)? 4 (BA+10)(n —m) + 2)2 + 9\ + 12) (55)
(- m))‘<2(n —m)2 4+ (5A+ 10)(n — m) + 6A2 + 18X + 12). (56)

4. NUMERICAL RESULTS AND DISCUSSION

In this section, the numerical results of the FICEs will be compared through the
propped methods in this work. It will illustrate the comparison of numerical solutions
through the figures and tables for different values of A. Fig. 1(a)—(d) show the compar-
ison of the numerical solutions of FICEs by two proposed methods for A =1, m = 21,
h =0.003, L =10, « = 0.5, 9 = 0.1, v = 0.05 and § = 2. It can be seen that the
from Fig. 1 that the two numerical solutions of FICEs agree in terms of behavior and
their close to each other. In Fig. 2, the absolute errors between the two solutions are
shown for the same parameter values as in Fig. 1. It is evident from this figure that
the absolute error is very small and the error between the two solutions decreases with
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the use of more terms in the first method and the use of more iterations in the second
method. In Figures 3 and 4 the calculations are repeated for the same values as in
Figures 1 and 2 but in this case A = 0.8 was set. This case is very important due it
is the goal of this work, which is a comparative study of two different methods of the
numerical solutions of FICEs. Also, we notice in these figures that the numerical solu-
tions for the two methods are very close to each other and exhibit the same behavior.
Also in the Tables 1-8, the numerical solutions are calculated using the two methods
presented in this work. And the calculations of the absolute error in the case of the
integer order and non-integer order for FICEs were done. From these tables we also
note the accuracy and efficacy of numerical solutions, given the order of the absolute
error, where, it ranges between 10~2 and 10~7. The numerical results obtained in this
paper agree with the numerical results obtained in [36].

@ (b
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FiGURE 1. Graph of the comparison between the numerical so-
lutions for o = 0.5,9 = 0.1, = 0.05,0 = 2,m = 21, h = 0.003, L =
10, A = 1. (Blue dashed color: NPI; Red solid color: SCM)
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FIGURE 2. Graph of the absolute error between the numerical
solutions for a = 0.5,9 =0.1,7 = 0.05,0 =2,m = 21,h = 0.003, L =

10,A =1

n | Sfisem(®)| Biner | |Brsom(t) — Binpl

0 0.2 0.2 3.19162 x 10~ 1®
200 | 0.162359 | 0.162662 3.03478 x 10~*
400 | 0.137154 | 0.137364 2.09480 x 10~*
600 | 0.119369 0.11952 1.51060 x 104
800 | 0.106315 | 0.106428 1.12920 x 10~
1000 | 0.0964151 | 0.096502 8.69248 x 1075
1200 | 0.0886838 | 0.0887527 6.88986 x 1075
1400 | 0.0824808 | 0.0825367 5.59788 x 10~°
1600 | 0.0773756 | 0.0774223 4.66744 x 107°
1800 | 0.073073 | 0.0731128 3.97719 x 107°
2000 | 0.0693664 | 0.0694011 3.46306 x 107°
2200 | 0.0661096 | 0.0661403 3.07003 x 107°
2400 | 0.0631978 | 0.0632255 2.76781 x 1075
2600 | 0.0605554 | 0.0605807 2.52558 x 107°
2800 | 0.0581273 | 0.0581506 2.33462 x 1075
3000 | 0.0558729 | 0.0558947 2.17804 x 1075

TABLE 1. The absolute error between the numerical solutions
for « =0.5,9=0.1,y=0.05,0 =2,m =21,Ah=0.003,L =10, A = 1.
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FicUrE 3. Graph of the comparison between the numerical so-
lutions for o = 0.05,9 = 2,v = 0.05,0 = 0.2, m = 21,h = 0.003,L =
10, A = 0.8. (Blue dashed color: NPI; Red solid color: SCM)

n | B2scm(t) Boner | |Be2,scMm(t) — P2 NPl

0 0.1 0.1 6.64074 x 10719
200 | 0.104424 | 0.104521 9.68429 x 107°
400 | 0.0891975 | 0.0893786 1.81056 x 10~*
600 | 0.0710369 | 0.0712117 1.74852 x 10~*
800 | 0.0550999 | 0.0552427 1.42801 x 10~*
1000 | 0.0424772 | 0.0425876 1.1044 x 1074
1200 | 0.0329242 | 0.0330062 8.20209 x 104
1400 | 0.0258433 | 0.025904 6.07221 x 1074
1600 | 0.02064 | 0.0206844 4.44039 x 107
1800 | 0.0168194 | 0.0168521 3.26876 x 107°
2000 | 0.014003 | 0.0140272 2.42145 x 107°
2200 | 0.0119112 | 0.0119292 1.80192 x 1075
2400 | 0.0103409 | 0.0103545 1.36329 x 107°
2600 | 0.00914671 | 0.00915729 1.05799 x 107>
2800 | 0.00822487 | 0.00823305 8.1831 x 1076
3000 | 0.00750075 | 0.00750716 6.41186 x 106

TABLE 2. The absolute error between the numerical solutions
for a =0.5,9=0.1,7y=0.05,0 =2,m =21,h =0.003,L =10, A = 1.
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FIGURE 4. Graph of the absolute error between the numeri-
cal solutions for a = 0.05,% = 2,v = 0.05,0 = 0.2,m = 21,h =
0.003,L =10, =0.8.

n | B3scm(t) Banpr | |B3,5cm(t) — B3 npi

0 0.08 0.08 6.93889 x 10~
200 | 0.106587 0.106335 2.51509 x 104
400 | 0.0915829 | 0.0915039 7.90304 x 1075
600 | 0.0724219 | 0.0729348 5.12911 x 104
800 | 0.0566815 | 0.0565243 1.57174 x 10~
1000 | 0.0431098 | 0.0435182 4.08387 x 104
1200 | 0.033895 | 0.0336778 2.17171 x 104
1400 | 0.0260243 | 0.026389 3.64716 x 104
1600 | 0.0212759 | 0.0210359 2.3997 x 1074
1800 | 0.0168213 | 0.0171086 2.87229 x 1074
2000 | 0.0144162 0.014216 2.00189 x 104
2200 | 0.0118207 | 0.0120696 2.48862 x 104
2400 | 0.0107311 | 0.0104603 2.7080 x 10~*
2600 | 0.00881768 | 0.00923811 420430 x 10~4
2800 | 0.00813945 | 0.00829586 1.56405 x 104
3000 | 0.00759008 | 0.00755687 3.32133 x 107°
TABLE 3. The absolute error between the numerical solutions
for « =0.5,9=0.1,y=0.05,0 =2,m =21,h =0.003,L =10, A = 1.




TABLE 4. The absolute error between the numerical solutions
for a =0.5,9=0.1,y=0.05,0 =2,m =21,h =0.003,L = 10, A = 1.

Fractional Chemical Model

n | Basem(t) | Banpr | |Bascm(t) — Banpil

0 0.6 0.6 7.24247 x 10717
200 | 0.459588 | 0.460777 1.18848 x 1073
400 | 0.357414 | 0.358309 8.94975 x 10~*
600 | 0.279207 | 0.279887 6.80213 x 10~4
800 | 0.218143 | 0.218691 5.47852 x 10~%
1000 | 0.17028 0.170696 4.15683 x 1074
1200 | 0.132766 | 0.133105 3.38834 x 1074
1400 | 0.103528 | 0.103778 2.49804 x 10~
1600 | 0.0807937 | 0.0810007 2.06965 x 10~4
1800 | 0.063239 | 0.0633866 1.47547 x 10~4
2000 | 0.0496907 | 0.0498149 1.2425 x 1074
2200 | 0.0393028 | 0.0393879 8.50452 x 107°
2400 | 0.0313156 | 0.0313926 7.6974 x 1075
2600 | 0.0252256 | 0.0252684 4.27996 x 1075
2800 | 0.0205407 | 0.0205778 3.70776 x 10~°
3000 | 0.0169492 | 0.0169816 3.24183 x 1075

n | Bisem(t) | Piner | |1Biscm(t) — Binprl

0 0.2 0.2 6.071532 x 1018
200 | 0.159387 | 0.159618 2.30538 x 1074
400 | 0.140645 | 0.140746 1.00463 x 10~4
600 | 0.128397 | 0.128448 5.08711 x 107°
800 | 0.119538 | 0.119614 7.53509 x 10~°
1000 | 0.112869 | 0.112891 2.21489 x 10~°
1200 | 0.107517 | 0.107565 4.81515 x 107°
1400 | 0.103194 | 0.103212 1.81214 x 107°
1600 | 0.0995369 | 0.0995646 2.77116 x 1075
1800 | 0.0964235 | 0.0964438 2.03372 x 1075
2000 | 0.093711 | 0.0937263 1.52962 x 10~°
2200 | 0.0913054 | 0.091324 1.85645 x 10~°
2400 | 0.0891566 | 0.0891726 1.59665 x 10~°
2600 | 0.0872193 | 0.0872242 4.89773 x 1076
2800 | 0.0854236 | 0.0854423 1.86806 x 10~°
3000 | 0.0837683 | 0.0837989 3.06043 x 107°
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TABLE 5. The absolute error between the numerical solutions
for o« = 0.5,9 = 0.1,7v = 0.05,0 = 2,m = 21,h = 0.003,L = 10, \ =
0.8.
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TABLE 6. The absolute error between the numerical solutions
for o = 0.5,9 = 0.1,7v = 0.05,60 = 2,m = 21,h = 0.003,L = 10, \ =

Khaled M. Saad

n | Basem(t)| Bonpr | |B2.50Mm(t) — Banpil

0 0.1 0.1 2.168404 x 1018
200 | 0.100177 0.10021 3.34464 x 107°
400 | 0.0862051 | 0.0862899 8.48489 x 10~°
600 | 0.0734054 | 0.0735147 1.09363 x 10~°
800 | 0.0630386 | 0.0630745 3.59705 x 1075
1000 | 0.0546495 | 0.0547271 7.75792 x 107°
1200 | 0.0480308 | 0.0480499 1.91111 x 107°
1400 | 0.0426172 | 0.0426683 5.1118 x 107°
1600 | 0.0382718 | 0.0382874 1.56726 x 10~°
1800 | 0.0346542 | 0.0346832 2.90497 x 107°
2000 | 0.0316701 | 0.0316866 1.64846 x 10~°
2200 | 0.029152 | 0.0291699 1.7855 x 10~°
2400 | 0.0270286 | 0.0270359 7.23923 x 106
2600 | 0.0251817 | 0.02521 2.82558 x 107°
2800 | 0.0236307 | 0.0236344 3.72900 x 10~6
3000 | 0.0222676 | 0.0222641 3.52774 x 1076

0.8.
n | B3sem(t) | Baner | 183scm(t) — Banprl
0 0.08 0.08 3.469447 x 1018

200 | 0.102461 | 0.101539 9.22728 x 104
400 | 0.088632 | 0.0878293 8.02756 x 104
600 | 0.0737625 | 0.0748701 1.10762 x 1073
800 | 0.0650606 | 0.0642195 8.41055 x 104
1000 | 0.0547668 | 0.0556929 926154 x 10~*
1200 | 0.0497238 | 0.0488716 8.52278 x 104
1400 | 0.0424371 | 0.0433749 9.37781 x 1074
1600 | 0.0397346 | 0.0389017 8.32905 x 104
1800 | 0.0344243 | 0.0352226 7.9836 x 1074
2000 | 0.0328434 | 0.0321648 6.78616 x 104
2200 | 0.0288634 | 0.0295975 7.34043 x 1074
2400 | 0.0282892 | 0.0274212 8.68008 x 104
2600 | 0.0243502 | 0.0255596 1.20941 x 1073
2800 | 0.0234221 | 0.0239537 5.31656 x 104
3000 | 0.0237056 | 0.0225574 1.14814 x 1073

TABLE 7. The absolute error between the numerical solutions
for o« = 0.5,9 = 0.1,7v = 0.05,60 = 2,m = 21,h = 0.003,L = 10, \ =
0.8.



Fractional Chemical Model

n | Basem(t) | Banpr | |Bascm(t) — Banpil

0 0.6 0.6 7.806256 x 10~ 18
200 | 0.445779 | 0.446702 922925 x 10~*
400 | 0.365854 | 0.366332 4.77962 x 1074
600 | 0.309166 | 0.309406 2.39652 x 10~*
800 | 0.265732 0.2661 3.68341 x 10~*
1000 | 0.231844 | 0.231963 1.18446 x 10~
1200 | 0.204193 | 0.204444 2.51442 x 1074
1400 | 0.181822 | 0.181901 7.94219 x 104
1600 | 0.163035 | 0.163197 1.61688 x 10~
1800 | 0.147437 | 0.147512 7.43729 x 107°
2000 | 0.134137 | 0.134236 9.88674 x 107°
2200 | 0.122846 | 0.122905 5.93385 x 10°
2400 | 0.113066 | 0.113162 9.57111 x 1075
2600 | 0.104737 | 0.104725 1.24414 x 107°
2800 | 0.0973151 | 0.0973716 5.65149 x 107°
3000 | 0.0907919 | 0.0909248 1.32908 x 10~
TABLE 8. The absolute error between the numerical solutions
for o = 0.5,9 = 0.1,7v = 0.05,60 = 2,m = 21,h = 0.003,L = 10, \ =
0.8.
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5. CONCLUSION

In this paper, two numerical methods are presented to evaluate the numerical solu-
tions of the fractional isothermal chemical equations. The first method is based on the
use of the properties of Legendr polynomial and collocation method. Whereas the sec-
ond method is constructed with Newton polynomial interpolation and the fundamental
theorem of fractional calculus. These two methods were employed to find numerical
solutions for the fractional isothermal chemical equations. The numerical solutions
were compared using the two methods presented by combining the solutions together,
as well as calculating the amount of absolute error between the numerical solutions.
This is illustrated by means of figures and tables, found to be good compatibility, and
the order of the error is very small. All the numerical solutions obtained by using the
computer program package Mathematica. This study gives us a good impression that
it can be applied to many fractional differential models, as well as to more than one
variable.

This research can be extended so that, we can focus on using fractional space-time
derivatives on isothermal chemical equations. It is also possible to re-study this re-
search in case the fractional-order as a time-varying function.

Conflicts of Interest: The author declares that he has no conflicts of interest.
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