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ARTICLE INFO ABSTRACT

The  aim of  this  analysis  was  to  model  the  pantograph -  catenary  system at  static
equilibrium and provide analytical solutions by computing the natural frequencies of
the  system,  mode  functions,  equivalent  stiffness  of  the  catenary  system  and  the
deflections of the catenary wire as a function of position, time and tensioning force.
Furthermore,  dynamic  analysis  was  conducted  analytically  and  the  results  of  the
dynamic performance were obtained. It was shown that the dynamic response of the
catenary system is dependent on the design parameters in which tensioning force is
included. It was also shown that low tensioning forces result in high risk of contact loss
and increased wave propagation in the catenary wire while high tensioning forces result
in increased static stresses in the catenary system. The results in this article can be used
to select  optimum tensioning forces  and design parameters  for  desired pantograph-
catenary dynamic performance for different applications.
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1 Introduction

The use of light rail trains in Africa is increasing due to rapid
population  growth  in  cities  and  high  rate  of  infrastructure
development.  This  is  also  because  of  their  numerous
advantages  over  the  conventional  road  vehicles.  Light  rail
trains  are  very  safe,  reliable,  sustainable,  cheap,
environmental  friendly,  convenient,  and  comfortable  for
passengers and they also enable mass transportation of people
[1] – [3].  Most of the light rail trains are electric trains and
they draw power from the overhead line electrification system
via the pantograph  [4]. As the pantograph slides against the
catenary  wire,  friction  is  generated  which  leads  to  gradual
wear of the pantograph as well as the contact wire  [5]. The
amount of friction force  generated   depends on the electric
spark due to loss of pantograph contact and design parameters
of the catenary system among which the tensioning force of
the  catenary  wire  is  included  [6].  The pantograph-catenary
system  dynamic  behavior  has  been  studied  intensely  by
numerous  researchers  and  prior  studies  have  identified  the
effects  of  the  catenary  system  parameters  on  the  dynamic
performance of the pantograph. Factors that affects the quality
of current collection of the pantograph include the catenary
stiffness  variation in  the overhead  wire  [7],  the pantograph
stiffness,  the rail  vehicle speed, the pantograph uplift force,
fluctuations of the contact force and the propagated flexural
wave motion in the overhead  wire etc.  [8].  To ensure high
quality current collection of the pantograph, reduced rate of
overhead  wire  wear,  reduced  risk  of  arcing  and  increased
lifespan,  the catenary system parameters  must be optimized
[9]. The performance of an electric train mainly depends on
the  quality  of  current  collection  of  the  pantograph  [10].
Different approaches and methodologies have been presented
by various scholars  on how to use analytical  techniques to

optimize the parameters of the pantograph-catenary system so
as  to  reduce  maintenance  and  operational  cost,  boost  the
revenues of the rail industry and increase its competition as
well as its market share in the transportation industry. Hyeon
and Kim [11] investigated the influence of contact wire pre-
sag  on  the  dynamics  of  the  pantograph  catenary  system.
Garcia [12] studied the effects of the catenary system stiffness
on the contact  force variation and he concluded that a high
catenary  stiffness  reduces  the  contact  force  variation  and
improve the quality of pantograph current collection. Another
researcher  [13] investigated  dynamic  performance  and
parameter optimization of pantograph-catenary system and he
proved that the dynamic performance depends on the speed of
the rail vehicle apart from other factors. Taylor [14] modelled
the  pantograph-catenary  system  as  a  time-varying,  single
degree-of-freedom  system  to  facilitate  an  analytical
investigation of the system dynamics and he used the finite
element method to determine the catenary characteristics and
Floquet theory to analyze the behavior of the coupled system.
They  concluded  that  to  achieve  better  current  collection
quality the head of the pantograph should be made as light as
possible and the average stiffness of the catenary should be
high.
A more overarching approach to the optimization of a single
parameter  of  the  catenary  system  and  a  comprehensive
evaluation on its  effect  on the dynamic performance is  not
identified  in  most  past  researches.  Therefore  a  single
parameter (i.e. catenary tensioning) is going to be investigated
in this paper and its effects on wear and pantograph-catenary
dynamics  are  presented.  The  dynamic  performance  of  a
pantograph highly depends on the catenary system stiffness
which in turn highly depends on the catenary tensioning [15].
It is crucial to gain an insight in recent investigation on the
pantograph-catenary dynamic performance. Wu and Brennan



[16] investigated the dynamic response of a single degree of
freedom coupled  catenary  pantograph system by evaluating
the dynamic stiffness  of the catenary  system as the contact
force  divided  by  the  vertical  displacement  caused  by  that
particular  force  at  a  certain  point  in  time.  Their  analysis
provided a basic understanding of the interaction between the
pantograph and the catenary  system and it  showed that  the
dynamic  performance  of  the  pantograph-catenary  system
highly depends on the catenary dynamic stiffness which is a
function  of  tensioning  force  and  catenary  span  length.
Increasing the tension results in increased catenary stiffness as
well as the stresses acting on the catenary system. Therefore
there is need to optimize the catenary tensioning force to best
suit  the operation condition of a particular  railway line.  To
focus on the investigated parameters a variety of pantograph
models  have  been  presented  by  many researchers.  In  most
cases,  the  true  physical  structure  and  behavior  of  the
pantograph are neglected. Benet and Alberto [17] modeled the
pantograph as two string mass system without damping and
they took into consideration the stiffness between the contact
surfaces  (i.e.  the  pantograph  pan-head  and  the  catenary
conductor).  Kumaniecka  [18] identified the pantograph as a
three  mass  system  with  four  degrees  of  freedom.   A
pantograph  model  to  be  adopted  in  this  paper  has  been
presented  by  [19] which  identify  a  pantograph  as  a  three
degree  of  freedom  mass-spring  system  with  damping  and
stiffness between the contact surfaces. To obtain the response
of the coupled pantograph catenary system a range of methods
are available. A researcher in [16] used the Fourier transform
using the Floquet’s theory to obtain the steady state response
of  a  single  degree  of  freedom  couple  pantograph-catenary
system. Taylor  [14] obtained the free vibration modes of the
overhead  wire  system  and  the  contact  force  using  the
Reyleigh-Ritz  and  modal  analysis  methods,  respectively.
Another  coupled  pantograph-catenary  system was  analyzed
and solved by [12] using a fourth-order Runge–Kutta method
taking  into  account  Kuhn–Tucker  conditions.  All  these
methods  showed  that  even  though  analytical  methods  are
sophisticated and at some point cumbersome, they provide an
in  depth  understanding  of  the  basic  interaction  between  a
tensioned,  spring  supported  string  subjected  to  a  periodic
dynamic load. The same approach as presented by previous
researchers will be used in this paper.
A full analysis of the pantograph-catenary system from one
mast  to  another  results  in  nonlinear  equations  of  motion
because  of  the  variation  of  the  catenary  parameters  across
droppers.  The  variations  in  the  catenary  stiffness  and
tensioning  is  very  small  in-between  dropper  that  it  can  be
neglected and these parameters can be assumed as constants,
but  as  we  over  pass  a  dropper  the  variation  in  these
parameters  is  significant  that  it  can’t  be  neglected.  To
simplify  the  analytical  analysis  of  the  coupled  pantograph-
catenary  system  most  of  the  above  mentioned  researchers
analyzed  the  motion  of  the  pantograph  in-between  two
droppers  where  the  catenary  parameters  and  properties  are
constant and the governing equations of the physical system
are linear. Analytical methods are not as efficient as software
packages in solving nonlinear governing equations of a full
catenary system. To cater for the nonlinearity of the dynamics
of  the  pantograph-catenary  system  due  to  variations  in
parameters, the Finite Element Approach (FEA) is adopted by
researchers  [20] to  have  an  in-depth  understanding  of  the
catenary system response due to variations in parameters.

Zhou and Zhang [13] used the finite element method and time
integration method to solve the coupled equation of motion
for the pantograph and the catenary system. Their aim was to
find an optimal design of catenary and pantograph system by
analyzing the influence of different design parameters on the
dynamic performance. Using the FEA model their conclusion
was that the dynamic performance of the pantograph-catenary
system highly depends on the design parameters,  including
the  stiffness  and  damping  of  the  pan-head  and  frame,  the
static uplift force and the tension of the contact  wire.  They
showed that  to avoid contact  loss between the contact  wire
and the pantograph at high train speeds the catenary tension
must be increased.  This is  true for the improvement  of  the
quality of current collection but increased tension force means
increased stresses in the catenary wire and this might increase
the rate of wear and reduce the lifespan of the catenary system
leading to high maintenance costs and possibly losses. 
This paper aims on identifying the optimal tensioning force in
the  catenary  system  used  in  light  rail  transits.  A
comprehensive  evaluation  of  a  single  parameter  of  the
catenary  system  is  going  to  be  provided  which  is  not
identified my most recent studies on the dynamic performance
of the pantograph catenary system. An analytical solution for
the catenary vertical displacement due to the contact force is
going to be provided using the orthogonality principle. The
catenary stiffness is described as a ratio of the contact force to
the catenary vertical displacement.

2 Catenary system

A  catenary  system consists  of  components  put  together  to
supply electric current to the train via a pantograph(a device
mounted  on  electric  locomotives  which  is  used  to  collect
electric current from overhead line electrification system for
moving trains) sliding on the contact wire.  The quantity of
current supplied to the train is determined by the quality of
contact  between the pantograph and the catenary wire  [18].
High contact forces can cause excessive wear on the sliding
surfaces, while too weak forces may lead to contact losses and
sparking,  which  apart  from  the  catenary  and  pantograph
damage it can interrupt the energy supply to the train. 

2.1 Catenary-Pantograph model 

The  pantograph  is  modeled  as  a  spring-mass  system
consisting of  the contact  strip and the lower and the upper
frames.  The  uplift  force  due  to  the  pantograph  hydraulic
system, the aerodynamic forces due to wind and the contact
force  were  taken  into  consideration  in  this  study.  The
pantograph moved at  a  constant  velocity of  120 km/h.  The
contact  wire  is  suspended  from the  messenger  wire  by the
droppers,  and  the  messenger  wire  hangs  directly  on  the
supports at each end of the span. The contact wire is modeled
as a thin Euler-Bernoulli beam [22] having bending stiffness
EI and a constant tensioning force T, in between the mast and
L is the distance between the two masts as shown in Fig. 1
below.   To  simplify  the  model,  the  following assumptions
were made for the catenary system;

 The catenary wire system is assumed to be a beam
under vertical vibration.

 The catenary wire is model as a thin Euler-beam with
pre-tensioned force.

 The contact wire is modeled between two droppers.



 The  beam  is  subjected  to  bending  due  to  contact
force.

 The pantograph contact force is in vertical direction
upwards.

 The displacement of the catenary wire is only in the 
vertical direction.

Fig. 1. Catenary-Pantograph model

y (x ,t )is the vertical displacement of the catenary wire.
T is the tensioning forces.

P(x ,t ) is the pantograph contact force.
v0 is the velocity of the train.
The inertia force is given by;

I ( x , t )= ρAdx
dy ( x , t )

d t 2
, (1)

whereρ∧Aare the contact wire material density and the 
cross sectional area respectively. dx is an infinitesimal length 
along the longitudinal length of the catenary system.    
The  governing  equation  of  the  catenary  contact  system  is
defined as:

∂2

∂x2 [EI
∂2 y
∂ x2 ]+ρA

∂2 y
∂ t2

−T
∂2 y
∂ x2

=f ( x ,t ) ,    (2)

where  f (x , t) is the summation of all external force acting
on the catenary contact wire and it consist of 

 Gravitational force, mg which is assumed to be
negligible in this study since the mass in contact
wire at the point of contact with the pantograph
is  very  small  relative  to  the  masses  of  the
pantograph upper and lower frames.

 Contact force, P ( x , t ) .
 Aerodynamic force.
 Pantograph uplift force.

To fully  understand  the  dynamic  behavior  of  the  catenary-
pantograph system the governing equation of the system i.e.

Eq. (2) was solved analytically taking into consideration two
scenarios. First, the free vibration condition was considered to
obtain  the  natural  frequencies  and  mode  shapes  of  the
catenary system. Second, the forced vibration condition was
considered  to  compute  the  dynamic  response  of  the
pantograph-catenary system which is in terms of the catenary
vertical displacements and is denoted byy ( x , t ).

2.2  Catenary system modal analysis

Under free vibration the governing equation is written as:

∂2

∂x2 [EI
∂2 y
∂ x2 ]+ρA

∂2 y
∂ t2

−T
∂2 y
∂ x2

=0 .                     (3)   

Apply the separation of variables technique; the free vibration
response can be assumed as:

y ( x , t )=∑
n=1

∞

Y n ( x ) ( Ancosɷn t+Bn sinɷn t ) ,    (4)

where  Y n(x ) is  the  contact  wire  spatial  amplitude  of

vibration corresponding to the nth mode and ωn  is the natural
frequency of vibration of the contact  wire corresponding to

nth mode of vibration.
Substituting Eq. (4) into Eq. (3) yields:

EI
∂4Y n

∂x4
( Ancosɷn t+Bn sinɷnt )

−T
∂2Y n

∂x2
( An cosɷt+Bn sinɷt )

+ρA
∂2 (An cosɷt+Bn sinɷn t )

∂t 2
=0

   (5)

Eq. (5) can be reduced into

d4Y n

d x4
−

T
EI

d2Y n

d x2
−
ρA
EI

ɷn
2Y n=0 ,

  (6)

The solution of ODE in Eq. (6) is given by 

Y n ( x )=C1 cosh (r1 x )+C1sinh (r 1 x )
+C3cos (r2 x )+C4 sin (r2 x ) ,

 (7)

where ri , for i=1 ,2 is given by:

r1
2 ,r 2

2
=

T
2 EI

±√ T 2

4 E2 I 2
+
ρAɷ2

EI
;    (8)

and  r iis  obtained  by  solving  the  resulting  frequency
characteristic equation from Eq. (6).
The boundary conditions of a simply supported beam are:

y(x, t)

vo

T

T

T

T



@x=0 ;Y (0 )=0 ;
d2Y (0 )

d x2
=0.    (9)

@x=L ;Y (L )=0 ;
d2Y (L)

d x2
=0.    (10)

Applying the boundary conditions in Eq. (10) we obtain the
values of r1 and r2 :

Y ( x )=C2sinh (r1 x )+C4 sin (r 2 x ) ,  (11)

C2
C4

=
−sin r 2L

sinh r1 L
,

  (12)

sinh r1 L≠0 ,       (13)

−sin r2 L=0 ,

r2 L=arc sin 0+πn ,

     (14)

r2=
πn
L
,n=1,2,3 ,…,

      (15)

Y n ( x )=Cn[
−sin r2 L

sinh r1 L
sinh (r1 x )+sin ( r2x )] ,

      (16)

whereCn is the vibration mode constant.

Eq.  (16)  is  defined  as  the  mode  function  or  the  normal
function  of  the  nth mode  of  vibration.  Recalling  that  the
natural frequencies of the catenary are evaluated as follows:

( nπl )
2

=
T
2 EI

−√ T 2

4 E2 I 2
+
ρAɷn

2

EI
.

 (17)

Solving forɷn, we have;

ɷn=
π 2

L2 √
EI
ρA

[n4+
L2n2T

EI π2
]
1
2 .   (18)

Eq.  (18)  corresponds  to  the  natural  frequencies  of  the  nth

mode of vibrations.

2.3  Catenary system dynamic response 

The contact  wire  is  modeled  as  a  simply  supported  Euler-
Bernoulli beam subjected to a moving contact load from the
pantograph. The contact force is not a constant, it varies due
to variations in aerodynamic forces, catenary tensioning force
and train speeds. To capture the real physical behavior of the
contact force it is assumed there is a concentrated harmonic
force at a certain point on the contact wire and in time [23].

P(x ,t )=f 0 sinωt sin
nπx
L

,
  (19)

where 
L is length of the beam between the two masts, 

x  is the position of moving force,

ω is the forcing frequency, 

f 0  is the force amplitude,

The  governing  equation  of  the  Euler  Bernoulli  beam  will
result into:

EI
∂4 y
∂x4

−T
∂2 y
∂x2

+ρA
∂2 y
∂ t 2

=f 0 sinωt sin
nπx
L

.
      

  (20)

A variety of methods have been used to obtain the solution of
a  forced  vibration  Euler  Bernoulli  beam partial  differential
equation. A paper in A.I.N. Press [24] presented the solution
of  a  Forced  vibration  Euler–Bernoulli  beams  by  means  of
dynamic  Green  functions.  In  this  study  the  orthogonality
concept was used. From the free vibration solution presented
above, the response of the system is given by:

y ( x , t )=∑
n=1

∞

cn sin( nπxL ) (Acos ωn t+Bsinωnt ) .
 (21)

Because the beam is subjected to a harmonically varying load
we assume the particular solution of the governing equation
Eq. (20) to be harmonic as well and take the form as:

y ( x , t )=∑
n=1

∞

anY n sin( nπxL )sinωt ,
 

 (22)

whereωis the sameas the forcing frequency . 
Differentiating  Eq.  (21)  and  substituting  one  mode
corresponding particular solution into the governing equation
we obtain:

EI an( nπxL )
4

sin( nπxL )sinωt+T an( nπxL )
2

sin( nπxL )sinωt
−ρA anω

2 sin( nπxL )sin ωt=f 0 sinωt sin( nπxL );

 

(23)

Simplifying further, 

EI an( nπxL )
4

+T an( nπxL )
2

−ρA anωn
2
=f 0 .

  (24)

We now have:

an=
f 0

EI ( nπxL )
4

+T ( nπxL )
2

−ρA ω2
.

  (25)

The forced vibration solution for Euler Bernoulli beam then
becomes:

yn ( x , t )=∑
n=1

∞ cn sin( nπxL ) (An cosωnt+Bnsinωn t )

+an sin( nπxL )sinωt .



(26)                                    

Applying the initial conditions to Eq. (26);

y ( x ,0 )=0 ,
∂Y (x ,0)

∂t
=0 ,cn=1,

       (27)

y ( x , t )=∑
n=1

∞

ansin ( nπxL )(sinωt−
ω
ωn

sinωn t) .      (28)

The expression of y ( x , t ) defined so far is due to a harmonic
contact  force  at  a  particular  point  on  the  catenary.   To
transform the load into a moving force we conduct Fourier
transform  [22] by defining the point load,  P as a distributed
load  f(x) over a small finite interval  2∆ x  where P is at the
middle.

f ( x )={
0 ,0<x<d−∆ x

P
2∆ x

,d−∆ x<x<d+∆ x

0 , d+∆ x<x<L

,   (29)

where  d  is the distance from the starting point to the point
where the force is acting on, and L is the length of the beam.
Using sine Fourier transformation and defining:

 
Transformation and defining  f n from the given  f(x),  we can
write;

f n=
2
L

∫
d−∆ x

d+∆x
P
2∆x

sin( nπxL )dx= P
L∆ x [−L

nπ
cos ( nπxL )]

limits¿ d−∆ x ¿d+∆ x ,

  (30)

f n=
2P
L [sin( nπdL )

sin (nπ ∆ xL )
nπ ∆ x
L

] .
  (31)

Taking the limit as ∆ x  approaches 0, we can write:

f n=
2P
L [sin( nπdL ) lim∆ x→ 0

sin( nπ ∆ xL )
nπ ∆x
L

]=2PL sin( nπdL ) ,

where

  (32)

d=v0 t ; and, 
d is the position of the moving force, 
v0 the velocity of the moving force, and
t the time.

Modifying Eq. (28) by substituting in ω=
nπ v0
L

,

the response of the catenary wire subjected to a moving load
becomes:

y ( x , t )=∑
n=1

∞

a fn [sin ( nπ v0L
t)− ω

ωn

sin (ωn t )] ,   (33)

where
 

a fn=

2 P
L
sin (nπxL )

EI ( nπxL )
4

+T (nπxL )
2

−ρA (
nπ v0
L )

2 .

Defining the catenary equivalent dynamic stiffness K as:

K=
P

yn ( x , t )
,

  (34)

K=∑
n=1

∞ EI ( nπxL )
4

+T ( nπxL )
2

−ρA (
nπ v0
L

)

2

2
L
sin( nπxL ) [sin

nπ v0
L

t−
ω
ωn

sinωnt ]
.  (35)

3  Pantograph modal analysis

(a)

(b)

 



Fig. 2. (a) Pantograph physical model [10]. (b) Pantograph
mathematical model.

The physical parameters of the pantograph represented by Fig.
2 are described here below:

Pan-head mass: m1 = 7.5 1kg,

Upper arm mass: m2 =  5.855 kg,

Lower arm mass: m3 =  4.645 kg,

Pan head damping constant: c1 = 0 N.s/m,

Upper arm damping constant: c2 = 0 N.s/m,

Lower arm: c3  = 70 N.s/m,

Pan-head stiffness: k 1 = 8380 N/ m,

Upper arm stiffness: k 2 = 6200 N /m,

Lower arm stiffness: k 3 = 80 N/ m,

Uplift force at the base of the pantograph: F0 = 70 N,

Aerodynamic force on upper arm: F1 = 120 N,

Average pan head-catenary contact force:F c  = 50 N.

From Fig. 2 of  the pantograph model,  the equations of the
pantograph is given as 

m1 ẍ1+c1 ẋ1−c1 ẋ2+(k1 )x1−k1x2=Fc ,

m2 ẍ2−c2 ẋ3−c1 ẋ1+(c1+c2 )+(k 2+k1 )x2−k1 x1−k2 x3=F1 ,

m3 ẍ3−c2 ẋ2+ (c3+c2 ) ẋ3+(k 2+k3 ) x3−k2 x2=F0 .
(36)

Considering the free un-damped vibration of the pantograph
we can write:

[
m1 0 0
0 m2 0
0 0 m3

]{
ẍ1
ẍ2
ẍ3

}+[
k1 −k1 0

−k1 k1+k2 −k2
0 −k 2 k 2+k3

]{
x1
x2
x3

}={
0
0
0}.

(37)
Assuming

x i ( t )=X icos (ωt+θ1 )∧¿

ẍ i (t )=−X iω
2 cos (ωt+θ1 ) for i=1;2 ;3.   

  (38)

and performing substitution into Eq. (37)  we get:

ZX=0 , (39)

where
Z=¿

and

X={
X1
X2
X3

}.
The natural frequencies of the pantograph are obtained from
the eigenvalues of the matrix Z.

ω2
1=4.4 

ω2
2=1246.8 

ω2
3=3706.8

The corresponding modes of vibration are obtained from the
eigenvector: 

ω1=2.0976modes=[
−0.5807
−0.5784
−0.5729 ] , 

ω2=35.31modes=[
−0.5562
0.0653
0.8285 ] .

ω3=60.88modes=[
−0.3508
0.8147

−0.4618] , 



4 Discussion

The analysis was conducted in between two masts. A contact
force  moving at  a  constant  speed of  120 Km/h was used to
determine the dynamic behavior  of the catenary.  To analyze
the effects  of tensioning on the dynamic performance of the
pantograph-catenary system, the equivalent dynamic stiffness
of  the  catenary  was  determined  by  dividing  the  dynamic
response  of  the  catenary  system  by  the  contact  force  at  a
particular position in time. Therefore, prior to investigating the
effects of tensioning on dynamic performance of the catenary-
pantograph  system,  the  dynamic  response  of  the  catenary
system  due  to  a  moving  force  was  studied.   The  natural
frequencies of the catenary system corresponding to different
tensioning  forces  ranging  from  15  KN to  35  KN  and  also
corresponding to different modes from mode 1 to 6 are shown
in the Figure 3.

To observe the behavior of the natural frequencies at different
tensioning  forces,  increments  of  4  KN were  given  for  each
mode and  the  natural  frequencies  were  calculated  for  the  6
modes. As it can be seen from the Fig. 3 above, that the natural
frequencies  increase  as  the  tensioning  force  increases.
Increased  natural  frequencies  result  in  increased  structural
stiffness which reduces the displacement of the catenary in the
vertical  direction  but increases  the wear between the sliding
surfaces  due  to  increases  system  static  stresses.  A  plot  of
natural frequencies against tensioning forces as shown in Fig.
3, there is a linear relationship between tensioning forces and
natural frequencies. This insight gives a picture of the nature of
an optimum tensioning force range.  In  the methodology, the
natural  frequencies  of  the  pantograph  were  calculated.  An
optimum tensioning value should provide natural frequencies
of  the  catenary  at  all  modes  far  away  from  the  natural
frequencies of the pantograph to avoid resonance and improve
stability. Between tensioning values of  15 KN and  23 KN the
natural frequencies of the catenary are within the same range as
that of the pantograph which means catenary tensioning values
within the 15 KN-23 KN range increases the risk of resonance
which is unacceptable due to its adverse effects on the dynamic
performance  of  that  catenary-pantograph  system.  A  plot  of
dynamic stiffness against tensioning force is shown in Fig. 5.

Fig. 3. Fundamental natural frequencies against tensioning
forces

4.1 Dynamic stiffness of the catenary system

As it can be observed from Fig. 4, the catenary stiffness has
its highest value near the supports (i.e. @ x=10 m and @ x=40

m) this fact is because on practical grounds the contact wire is
fixed to the masts at both ends and the stiffness is high due to
the rigidity of the masts. The stiffness against position graph
is a parabolic curve with its minimum at the middle of the
span. This behavior is expected because the catenary is loose
at the middle of the span as compared to the ends. Therefore it
is expected that the deflection of the catenary in the vertical
direction will be high as the pantograph moves. The catenary
tensioning  forces  ranges  from  15  KN  to  35  KN and  the
catenary stiffness behaves in a wave form as the tensioning
force increases.



Fig. 4. Dynamic stiffness (N/m) of the catenary wire in a span at various tensioning forces (N)

Fig. 5. The dynamic response of the catenary contact wire due to a moving average contact force of 50 N.

At a tensioning value of  15 KN and at  x=10 m the catenary
stiffness  is  high and decreases  as  the  tension increases.  At
tensions between  18 KN and  20 KN the stiffness reaches its
minimum and gradually increases again. At the middle of the
specified  range  of  the  tensioning  force  value  the  catenary
reaches a peak value that is lower than the catenary stiffness
at the ends. As observed from the graph the catenary stiffness
behaves the same way with tensioning force as the pantograph
moves from one end of the span to another.
Increasing  the  contact  force  results  in  an  increase  in  the
catenary vertical displacements as it has been demonstrated in
the Fig. 5. A maximum deflection when a contact force of 100
N is used is  42 mm while when a force of  50 N is used the
deflection  is  20 mm.  The  normal  average  contact  force  on
practical grounds is 50 N.

5  Conclusions 

In  conclusion  to  this  work  it  has  been  addressed  that  the
catenary  system is  subjected  to  various  static  and  dynamic
loads.  The catenary  is  also subject  to  vibrations due to  the
movement of  the pantograph or winds.  The life  span of an
electric overhead system solely depends on the quality of the
contact  wire,  messenger  wire  and  droppers.  The  quality  of
these  catenary  system  members  depends  on  the  degree  of
parameter optimization done on them. The whole focus of this
study  was  to  improve  the  quality  of  the  catenary  system
through  optimization  of  the  tensioning  force.  The  results
indicated  that  increasing  the  tensioning  force  increased  the
stiffness of the catenary systems thereby reducing the vertical
displacements  of  the  contact  wire.   It  means  there  is  an
increase in stability but the stresses acting on the catenary are



directly proportional to the tensioning force therefore there is
a limit to how much the tensioning force will be set depending
on the yield strength of the material used for the contact wire.
Lower tensioning forces resulted in low stiffness values which
increased the deflection of the catenary in the vertical sense
and increased risk of resonance since the natural frequencies
of the catenary coincide with those of the pantograph. Hence
to  improve  the  dynamic  performance  of  the  pantograph-
catenary  system according  to  the  dimensions  given  in  this
study a range of tensioning force values from 24 KN to 31 KN
was prescribed.
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