References
Baum, A., Fulton, B. O., Wloga, E., Copin, R., Pascal, K. E., Russo, V., Giordano, S., Lanza, K., Negron, N., Ni, M., Wei, Y., Atwal, G. S., Murphy, A. J., Stahl, N., Yancopoulos, G. D., & Kyratsous, C. A. (2020). Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science (New York, N.Y.)369(6506), 1014–1018. https://doi.org/10.1126/science.abd0831 Bolisetty, P., Tremml, G., Xu, S., & Khetan, A. (2020). Enabling speed to clinic for monoclonal antibody programs using a pool of clones for IND-enabling toxicity studies. mAbs12(1), 1763727. https://doi.org/10.1080/19420862.2020.1763727 Brouwer, P., Caniels, T. G., van der Straten, K., Snitselaar, J. L., Aldon, Y., Bangaru, S., Torres, J. L., Okba, N., Claireaux, M., Kerster, G., Bentlage, A., van Haaren, M. M., Guerra, D., Burger, J. A., Schermer, E. E., Verheul, K. D., van der Velde, N., van der Kooi, A., van Schooten, J., van Breemen, M. J., … van Gils, M. J. (2020). Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science (New York, N.Y.)369(6504), 643–650. https://doi.org/10.1126/science.abc5902 russel, A., Brack, K., Muth, E., Zirwes, R., Cheval, J., Hebert, C., Charpin, J. M., Marinaci, A., Flan, B., Ruppach, H., Beurdeley, P., & Eloit, M. (2019). Use of a new RNA next generation sequencing approach for the specific detection of virus infection in cells. Biologicals : journal of the International Association of Biological Standardization59, 29–36. https://doi.org/10.1016/j.biologicals.2019.03.008 Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C., Chai, X., He, R., Li, X., Lv, Q., Zhu, H., Deng, W., Xu, Y., Wang, Y., Qiao, L., … Xie, X. S. (2020). Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells. Cell182(1), 73-e16. https://doi.org/10.1016/j.cell.2020.05.025 Fan, L., Rizzi, G., Bierilo, K., Tian, J., Yee, J. C., Russell, R., & Das, T. K. (2017). Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines. Biotechnology progress33(6), 1456–1462. https://doi.org/10.1002/btpr.2477 Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., Li, Y., Zhu, L., Wang, N., Lv, Z., Gao, H., Ge, X., Kan, B., Hu, Y., Liu, J., Cai, F., Jiang, D., Yin, Y., Qin, C., Li, J., … Qin, C. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science (New York, N.Y.)369(6499), 77–81. https://doi.org/10.1126/science.abc1932 Hansen, J., Baum, A., Pascal, K. E., Russo, V., Giordano, S., Wloga, E., Fulton, B. O., Yan, Y., Koon, K., Patel, K., Chung, K. M., Hermann, A., Ullman, E., Cruz, J., Rafique, A., Huang, T., Fairhurst, J., Libertiny, C., Malbec, M., Lee, W. Y., … Kyratsous, C. A. (2020). Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science (New York, N.Y.)369(6506), 1010–1014. https://doi.org/10.1126/science.abd0827 He, L., Winterrowd, C., Kadura, I., & Frye, C. (2012). Transgene copy number distribution profiles in recombinant CHO cell lines revealed by single cell analyses. Biotechnology and bioengineering109(7), 1713–1722. https://doi.org/10.1002/bit.24428 Hu, Z., Hsu, W., Pynn, A., Ng, D., Quicho, D., Adem, Y., Kwong, Z., Mauger, B., Joly, J., Snedecor, B., Laird, M. W., Andersen, D. C., & Shen, A. (2017). A strategy to accelerate protein production from a pool of clones in Chinese hamster ovary cells for toxicology studies. Biotechnology progress33(6), 1449–1455. https://doi.org/10.1002/btpr.2467 Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., Tang, X., Yu, J., Lan, J., Yuan, J., Wang, H., Zhao, J., Zhang, S., Wang, Y., Shi, X., Liu, L., … Zhang, L. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature584(7819), 115–119. https://doi.org/10.1038/s41586-020-2380-z Kelley B. (2020). Developing therapeutic monoclonal antibodies at pandemic pace. Nature biotechnology38(5), 540–545. https://doi.org/10.1038/s41587-020-0512-5 Khan, A. S., Benetti, L., Blumel, J., Deforce, D., Egan, W. M., Knezevic, I., Krause, P. R., Mallet, L., Mayer, D., Minor, P. D., Neels, P., & Wang, G. (2018). Report of the international conference on next generation sequencing for adventitious virus detection in biologicals. Biologicals : journal of the International Association of Biological Standardization55, 1–16. https://doi.org/10.1016/j.biologicals.2018.08.002 Khan, A. S., Vacante, D. A., Cassart, J. P., Ng, S. H., Lambert, C., Charlebois, R. L., & King, K. E. (2016). Advanced Virus Detection Technologies Interest Group (AVDTIG): Efforts on High Throughput Sequencing (HTS) for Virus Detection. PDA journal of pharmaceutical science and technology70(6), 591–595. https://doi.org/10.5731/pdajpst.2016.007161 Kunert, R., & Reinhart, D. (2016). Advances in recombinant antibody manufacturing. Applied microbiology and biotechnology100(8), 3451–3461. https://doi.org/10.1007/s00253-016-7388-9 Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5 Li, F., Vijayasankaran, N., Shen, A. Y., Kiss, R., & Amanullah, A. (2010). Cell culture processes for monoclonal antibody production. mAbs2(5), 466–479. https://doi.org/10.4161/mabs.2.5.12720 Munro, T. P., Le, K., Le, H., Zhang, L., Stevens, J., Soice, N., Benchaar, S. A., Hong, R. W., & Goudar, C. T. (2017). Accelerating patient access to novel biologics using stable pool-derived product for non-clinical studies and single clone-derived product for clinical studies. Biotechnology progress33(6), 1476–1482. https://doi.org/10.1002/btpr.2572 Nyon, M. P., Du, L., Tseng, C. K., Seid, C. A., Pollet, J., Naceanceno, K. S., Agrawal, A., Algaissi, A., Peng, B. H., Tai, W., Jiang, S., Bottazzi, M. E., Strych, U., & Hotez, P. J. (2018). Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen. Vaccine36(14), 1853–1862. https://doi.org/10.1016/j.vaccine.2018.02.065 Pinto, D., Park, Y. J., Beltramello, M., Walls, A. C., Tortorici, M. A., Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., Peter, A., Guarino, B., Spreafico, R., Cameroni, E., Case, J. B., Chen, R. E., Havenar-Daughton, C., Snell, G., Telenti, A., Virgin, H. W., … Corti, D. (2020). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature583(7815), 290–295. https://doi.org/10.1038/s41586-020-2349-y Plavsic, M., Shick, K., Bergmann, K. F., & Mallet, L. (2016). Vesivirus 2117: Cell line infectivity range and effectiveness of amplification of a potential adventitious agent in cell culture used for biological production. Biologicals : journal of the International Association of Biological Standardization44(6), 540–545. https://doi.org/10.1016/j.biologicals.2016.08.001 Rajendra, Y., Balasubramanian, S., McCracken, N. A., Norris, D. L., Lian, Z., Schmitt, M. G., Frye, C. C., & Barnard, G. C. (2017). Evaluation of piggyBac-mediated CHO pools to enable material generation to support GLP toxicology studies. Biotechnology progress33(6), 1436–1448. https://doi.org/10.1002/btpr.2495 Richards, B., Cao, S., Plavsic, M., Pomponio, R., Davies, C., Mattaliano, R., Madden, S., Klinger, K., & Palermo, A. (2014). Detection of adventitious agents using next-generation sequencing. PDA journal of pharmaceutical science and technology68(6), 651–660. https://doi.org/10.5731/pdajpst.2014.01025 Rogers, T. F., Zhao, F., Huang, D., Beutler, N., Burns, A., He, W. T., Limbo, O., Smith, C., Song, G., Woehl, J., Yang, L., Abbott, R. K., Callaghan, S., Garcia, E., Hurtado, J., Parren, M., Peng, L., Ramirez, S., Ricketts, J., Ricciardi, M. J., … Burton, D. R. (2020). Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science (New York, N.Y.)369(6506), 956–963. https://doi.org/10.1126/science.abc7520 Scarcelli, J. J., Shang, T. Q., Iskra, T., Allen, M. J., & Zhang, L. (2017). Strategic deployment of CHO expression platforms to deliver Pfizer’s Monoclonal Antibody Portfolio. Biotechnology progress33(6), 1463–1467. https://doi.org/10.1002/btpr.2493 Sempowski, G. D., Saunders, K. O., Acharya, P., Wiehe, K. J., & Haynes, B. F. (2020). Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell181(7), 1458–1463. https://doi.org/10.1016/j.cell.2020.05.041 Shi, R., Shan, C., Duan, X., Chen, Z., Liu, P., Song, J., Song, T., Bi, X., Han, C., Wu, L., Gao, G., Hu, X., Zhang, Y., Tong, Z., Huang, W., Liu, W. J., Wu, G., Zhang, B., Wang, L., Qi, J., … Yan, J. (2020). A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature584(7819), 120–124. https://doi.org/10.1038/s41586-020-2381-y Wang, C. J., Feng, S. F., & Duncan, P. (2014). Defining a sample preparation workflow for advanced virus detection and understanding sensitivity by next-generation sequencing. PDA journal of pharmaceutical science and technology68(6), 579–588. https://doi.org/10.5731/pdajpst.2014.01010 Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell181(4), 894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045 Wright, C., Alves, C., Kshirsagar, R., Pieracci, J., & Estes, S. (2017). Leveraging a CHO cell line toolkit to accelerate biotherapeutics into the clinic. Biotechnology progress33(6), 1468–1475. https://doi.org/10.1002/btpr.2548 Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.)368(6489), 409–412. https://doi.org/10.1126/science.abb3405