References:
Ahti, T., Hämet-Ahti, L. & Jalas, J. (1968). Vegetation zones and their
sections in northwestern Europe. Annales Botanici Fennici , 5,
169–211.
Altermatt, F. (2010). Climatic warming increases voltinism in European
butterflies and moths. Proceedings of the Royal Society B:
Biological Sciences , 277, 1281–1287.
Amano, T., Freckleton, R.P., Queenborough, S.A., Doxford, S.W.,
Smithers, R.J., Sparks, T.H., et al. (2014). Links between plant
species’ spatial and temporal responses to a warming climate.Proc. R. Soc. B. , 281, 20133017.
Anderson, J.T. (2016). Plant fitness in a rapidly changing world.New Phytol , 210, 81–87.
Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury,
J.J. & Chunco, A.J. (2011). Do species’ traits predict recent shifts at
expanding range edges? Ecology Letters , 14, 677–689.
Arietta, A.Z.A., Freidenburg, L.K., Urban, M.C., Rodrigues, S.B.,
Rubinstein, A. & Skelly, D.K. (n.d.). Phenological delay despite
warming in wood frog Rana sylvatica reproductive timing: a 20-year
study. Ecography , n/a.
Betzholtz, P.-E., Pettersson, L.B., Ryrholm, N. & Franzén, M. (2013).
With that diet, you will go far: trait-based analysis reveals a link
between rapid range expansion and a nitrogen-favoured diet.Proceedings of the Royal Society B: Biological Sciences , 280,
20122305.
Boogart, J., Van Strien, A. & Pannekoek, J. (2020). rtrim: Trends and
Indices for Monitoring Data. R package version 2.1.1.
Brommer, J.E. (2004). The range margins of northern birds shift
polewards. Annales Zoologici Fennici , 41, 391–397.
Chen, I.-C., Hill, J.K., Ohlemuller, R., Roy, D.B. & Thomas, C.D.
(2011). Rapid Range Shifts of Species Associated with High Levels of
Climate Warming. Science , 333, 1024–1026.
Chuine, I. (2010). Why does phenology drive species distribution?Phil. Trans. R. Soc. B , 365, 3149–3160.
Cleland, E., Chuine, I., Menzel, A., Mooney, H. & Schwartz, M. (2007).
Shifting plant phenology in response to global change. Trends in
Ecology & Evolution , 22, 357–365.
Cooper, N., Freckleton, R.P. & Jetz, W. (2011). Phylogenetic
conservatism of environmental niches in mammals. Proceedings of
the Royal Society B: Biological Sciences , 278, 2384–2391.
Coulthard, E., Norrey, J., Shortall, C. & Harris, W.E. (2019).
Ecological traits predict population changes in moths. Biological
Conservation , 233, 213–219.
Crossley, M.S., Meier, A.R., Baldwin, E.M., Berry, L.L., Crenshaw, L.C.,
Hartman, G.L., et al. (2020). No net insect abundance and
diversity declines across US Long Term Ecological Research sites.Nature Ecology & Evolution , 4, 1368–1376.
Davies, T.J., Wolkovich, E.M., Kraft, N.J.B., Salamin, N., Allen, J.M.,
Ault, T.R., et al. (2013). Phylogenetic conservatism in plant
phenology. Journal of Ecology , 101, 1520–1530.
Davis, M.B. & Shaw, R.G. (2001). Range Shifts and Adaptive Responses to
Quaternary Climate Change. Science , 292, 673–679.
Davis, M.B., Shaw, R.G. & Etterson, J.R. (2005). Evolutionary Responses
to Changing Climate. Ecology , 86, 1704–1714.
Dennis, E.B., Freeman, S.N., Brereton, T. & Roy, D.B. (2013). Indexing
butterfly abundance whilst accounting for missing counts and variability
in seasonal pattern. Methods in Ecology and Evolution , 4,
637–645.
Dennis, E.B., Morgan, B.J.T., Freeman, S.N., Brereton, T.M. & Roy, D.B.
(2016). A generalized abundance index for seasonal invertebrates.Biometrics , 72, 1305–1314.
Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D.,
Heliölä, J., et al. (2012). Differences in the climatic debts of
birds and butterflies at a continental scale. Nature Climate
Change , 2, 121–124.
Diamond, S.E., Frame, A.M., Martin, R.A. & Buckley, L.B. (2011).
Species’ traits predict phenological responses to climate change in
butterflies. Ecology , 92, 1005–1012.
Díaz, S., Settele, J., Brondízio, E., Ngo, H.T., Guèze, M., Agard, J.,et al. (2019). Summary for policymakers of the global assessment
report on biodiversity and ecosystem services of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services, 44.
Donoghue, M.J. (2008). A phylogenetic perspective on the distribution of
plant diversity. Proceedings of the National Academy of Sciences ,
105, 11549–11555.
Ekroos, J., Heliölä, J. & Kuussaari, M. (2010). Homogenization of
lepidopteran communities in intensively cultivated agricultural
landscapes. Journal of Applied Ecology , 47, 459–467.
European Commision. (2020). COMMUNICATION FROM THE COMMISSION TO
THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL
COMMITTEE AND THE COMMITTEE OF THE REGIONS EU Biodiversity Strategy for
2030 Bringing nature back into our lives COM/2020/380 final .
Fei, S., Desprez, J.M., Potter, K.M., Jo, I., Knott, J.A. & Oswalt,
C.M. (2017). Divergence of species responses to climate change.Science Advances , 3, e1603055.
Franks, S.E., Pearce‐Higgins, J.W., Atkinson, S., Bell, J.R., Botham,
M.S., Brereton, T.M., et al. (2018). The sensitivity of breeding
songbirds to changes in seasonal timing is linked to population change
but cannot be directly attributed to the effects of trophic asynchrony
on productivity. Glob Change Biol , 24, 957–971.
Freckleton, R.P., Harvey, P.H., Pagel, M. & Losos, A.E.J.B. (2002).
Phylogenetic Analysis and Comparative Data: A Test and Review of
Evidence. The American Naturalist , 160, 712–726.
Fric, Z.F., Rindoš, M. & Konvička, M. (2020). Phenology responses of
temperate butterflies to latitude depend on ecological traits.Ecology Letters , 23, 172–180.
Glorvigen, P., Gundersen, G., Andreassen, H.P. & Ims, R.A. (2013). The
role of colonization in the dynamics of patchy populations of a cyclic
vole species. Oecologia , 173, 161–167.
Hällfors, M.H., Antão, L.H., Itter, M., Lehikoinen, A., Lindholm, T.,
Roslin, T., et al. (2020). Shifts in timing and duration of
breeding for 73 boreal bird species over four decades. PNAS , 117,
18557–18565.
Hanski, I. & Ovaskainen, O. (2003). Metapopulation theory for
fragmented landscapes. Theoretical Population Biology , 64,
119–127.
Hanski, I., Pöyry, J., Pakkala, T. & Kuussaari, M. (1995). Multiple
equilibria in metapopulation dynamics. Nature , 377, 618–621.
Helama, S., Tolvanen, A., Karhu, J., Poikolainen, J. & Kubin, E.
(2020). Finnish National Phenological Network 1997–2017: from
observations to trend detection. Int J Biometeorol , 64,
1783–1793.
Hodgson, J.A., Thomas, C.D., Oliver, T.H., Anderson, B.J., Brereton,
T.M. & Crone, E.E. (2011). Predicting insect phenology across space and
time. Global Change Biology , 17, 1289–1300.
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution
of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Core Writing Team, R.K.
Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland,.
Ives, A.R. & Zhu, J. (2006). Statistics For Correlated Data:
Phylogenies, Space, And Time. Ecological Applications , 16,
20–32.
Jylhä, K., Tuomenvirta, H., Ruosteenoja, K., Niemi-Hugaerts, H., Keisu,
K. & Karhu, J.A. (2010). Observed and Projected Future Shifts of
Climatic Zones in Europe and Their Use to Visualize Climate Change
Information. Wea. Climate Soc. , 2, 148–167.
Kharouba, H.M., Algar, A.C. & Kerr, J.T. (2009). Historically
calibrated predictions of butterfly species’ range shift using global
change as a pseudo-experiment. Ecology , 90, 2213–2222.
Klink, R. van, Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A.
& Chase, J.M. (2020). Meta-analysis reveals declines in terrestrial but
increases in freshwater insect abundances. Science , 368,
417–420.
Konvicka, M., Maradova, M., Benes, J., Fric, Z. & Kepka, P. (2003).
Uphill Shifts in Distribution of Butterflies in the Czech Republic:
Effects of Changing Climate Detected on a Regional Scale. Global
Ecology and Biogeography , 12, 403–410.
Kuussaari, M., Heliölä, J., Pöyry, J. & Saarinen, K. (2007).
Contrasting trends of butterfly species preferring semi-natural
grasslands, field margins and forest edges in northern Europe. J
Insect Conserv , 11, 351–366.
Lehikoinen, A., Lindén, A., Karlsson, M., Andersson, A., Crewe, T.L.,
Dunn, E.H., et al. (2019). Phenology of the avian spring
migratory passage in Europe and North America: Asymmetric advancement in
time and increase in duration. Ecological Indicators , 101,
985–991.
Leinonen, R., Pöyry, J., Söderman, G. & Tuominen-Roto, L. (2016).Suomen yöperhosseuranta (Nocturna) 1993–2012 . Suomen
ympäristökeskus.
Leinonen, R., Pöyry, J., Söderman, G. & Tuominen-Roto, L. (2017).
Suomen yöperhosyhteisöt muutoksessa – valtakunnallisen
yöperhosseurannan keskeisiä tuloksia 1993–2012. Baptria, 42, 74– 92.Baptria , 42, 74–92.
Luoto, M., Heikkinen, R.K., Pöyry, J. & Saarinen, K. (2006).
Determinants of the biogeographical distribution of butterflies in
boreal regions. Journal of Biogeography , 33, 1764–1778.
Mair, L., Hill, J.K., Fox, R., Botham, M., Brereton, T. & Thomas, C.D.
(2014). Abundance changes and habitat availability drive species’
responses to climate change. Nature Climate Change , 4, 127–131.
Mason, S.C., Palmer, G., Fox, R., Gillings, S., Hill, J.K., Thomas,
C.D., et al. (2015). Geographical range margins of many taxonomic
groups continue to shift polewards. Biological Journal of the
Linnean Society , 115, 586–597.
Menzel, A. & Fabian, P. (1999). Growing season extended in Europe.Nature , 397, 659–659.
Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R.,et al. (2006). European phenological response to climate change
matches the warming pattern. Global Change Biol , 12, 1969–1976.
Mikkonen, S., Laine, M., Mäkelä, H.M., Gregow, H., Tuomenvirta, H.,
Lahtinen, M., et al. (2014). Trends in the average temperature in
Finland, 1847–2013. Stochastic Environmental Research and Risk
Assessment , 29, 1521–1529.
Møller, A.P., Rubolini, D. & Lehikoinen, E. (2008). Populations of
migratory bird species that did not show a phenological response to
climate change are declining. PNAS , 105, 16195–16200.
Orme, D. (2020). The caper package: comparative analysis of
phylogenetics and evolution in R, 36.
Pannekoek, J. & Van Strien, A. (2005). TRIM 3 Manual (Trends &
Indices for Monitoring data) . Statistics Netherlands, JM Voorburg, The
Netherlands.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D.,
Descimon, H., et al. (1999). Poleward shifts in geographical
ranges of butterfly species associated with regional warming.Nature , 399, 579–583.
Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of
climate change impacts across natural systems. Nature , 421,
37–42.
Pärn, H., Ringsby, T.H., Jensen, H. & Sæther, B.-E. (2012). Spatial
heterogeneity in the effects of climate and density-dependence on
dispersal in a house sparrow metapopulation. Proceedings of the
Royal Society B: Biological Sciences , 279, 144–152.
Pilotto, F., Kühn, I., Adrian, R., Alber, R., Alignier, A., Andrews, C.,et al. (2020). Meta-analysis of multidecadal biodiversity trends
in Europe. Nature Communications , 11, 3486.
Platts, P.J., Mason, S.C., Palmer, G., Hill, J.K., Oliver, T.H., Powney,
G.D., et al. (2019). Habitat availability explains variation in
climate-driven range shifts across multiple taxonomic groups.Scientific Reports , 9, 15039.
Pöyry, J., Carvalheiro, L.G., Heikkinen, R.K., Kühn, I., Kuussaari, M.,
Schweiger, O., et al. (2017). The effects of soil eutrophication
propagate to higher trophic levels: Effects of soil eutrophication on
herbivores. Global Ecol. Biogeogr. , 26, 18–30.
Pöyry, J., Leinonen, R., Söderman, G., Nieminen, M., Heikkinen, R.K. &
Carter, T.R. (2011). Climate-induced increase of moth multivoltinism in
boreal regions. Global Ecology and Biogeography , 20, 289–298.
Pöyry, J., Luoto, M., Heikkinen, R.K., Kuussaari, M. & Saarinen, K.
(2009). Species traits explain recent range shifts of Finnish
butterflies. Global Change Biology , 15, 732–743.
Pöyry, J., Heikkinen, R. K., Heliölä, J., Kuussaari, M., & Saarinen, K.
(2018). Scaling distributional patterns of butterflies across multiple
scales: Impact of range history and habitat type. Diversity and
Distributions, 24 , 1453-1463.
R Core Team. (2019). R: A Language and Environment for Statistical
Computing . R Foundation for Statistical Computing, Vienna, Austria.
Radchuk, V., Reed, T., Teplitsky, C., van de Pol, M., Charmantier, A.,
Hassall, C., et al. (2019). Adaptive responses of animals to
climate change are most likely insufficient. Nat Commun , 10,
3109.
Renner, S.S. & Zohner, C.M. (2018). Climate Change and Phenological
Mismatch in Trophic Interactions Among Plants, Insects, and Vertebrates.Annual Review of Ecology, Evolution, and Systematics , 49,
165–182.
Revell, L.J. (2010). Phylogenetic signal and linear regression on
species data. Methods in Ecology and Evolution , 1, 319–329.
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. &
Pounds, J.A. (2003). Fingerprints of global warming on wild animals and
plants. Nature , 421, 57–60.
Roy, D.B. & Sparks, T.H. (2000). Phenology of British butterflies and
climate change. Global Change Biology , 6, 407–416.
Rummukainen, M. (2012). Changes in climate and weather extremes in the
21st century. WIREs Climate Change , 3, 115–129.
Saarinen, K., Lahti, T. & Marttila, O. (2003). Population trends of
Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in
1991–2000. Biodiversity and Conservation , 12, 2147–2159.
Saino, N., Ambrosini, R., Rubolini, D., von Hardenberg, J., Provenzale,
A., Hüppop, K., et al. (2011). Climate warming, ecological
mismatch at arrival and population decline in migratory birds.Proceedings of the Royal Society B: Biological Sciences , 278,
835–842.
Schmucki, R., Harrower, C.A. & Dennis, E.B. (2020). rbms: Computing
generalised abundance indices for butterfly monitoring count data. R
package version 1.0.0.
Schmucki, R., Pe’er, G., Roy, D.B., Stefanescu, C., Swaay, C.A.M.V.,
Oliver, T.H., et al. (2016). A regionally informed abundance
index for supporting integrative analyses across butterfly monitoring
schemes. Journal of Applied Ecology , 53, 501–510.
Socolar, J.B., Epanchin, P.N., Beissinger, S.R. & Tingley, M.W. (2017).
Phenological shifts conserve thermal niches in North American birds and
reshape expectations for climate-driven range shifts. Proc Natl
Acad Sci USA , 114, 12976–12981.
Spence, A.R. & Tingley, M.W. (2020). The challenge of novel abiotic
conditions for species undergoing climate-induced range shifts.Ecography , 43, 1571–1590.
Stefanescu, C., Peñuelas, J. & Filella, I. (2003). Effects of climatic
change on the phenology of butterflies in the northwest Mediterranean
Basin. Global Change Biology , 9, 1494–1506.
Symonds, M.R.E. & Blomberg, S.P. (2014). A Primer on Phylogenetic
Generalised Least Squares. In: Modern Phylogenetic Comparative
Methods and Their Application in Evolutionary Biology: Concepts and
Practice (ed. Garamszegi, L.Z.). Springer, Berlin, Heidelberg, pp.
105–130.
Teder, T. (2020). Phenological responses to climate warming in temperate
moths and butterflies: species traits predict future changes in
voltinism. Oikos , 129, 1051–1060.
Thomas, C.D. & Lennon, J.J. (1999). Birds extend their ranges
northwards. Nature , 399, 213–213.
Urban, M.C. (2015). Accelerating extinction risk from climate change.Science , 348, 571–573.
Valtonen, A., Leinonen, R., Pöyry, J., Roininen, H., Tuomela, J. &
Ayres, M.P. (2014). Is climate warming more consequential towards poles?
The phenology of Lepidoptera in Finland. Glob Change Biol , 20,
16–27.
Vasseur, D.A., DeLong, J.P., Gilbert, B., Greig, H.S., Harley, C.D.G.,
McCann, K.S., et al. (2014). Increased temperature variation
poses a greater risk to species than climate warming. Proceedings
of the Royal Society B: Biological Sciences , 281, 20132612.
Virtanen, T. & Neuvonen, S. (1999). Climate change and
macrolepidopteran biodiversity in Finland. Chemosphere - Global
Change Science , 1, 439–448.
WallisDeVries, M.F. (2014). Linking species assemblages to environmental
change: Moving beyond the specialist-generalist dichotomy. Basic
and Applied Ecology , 15, 279–287.
Willis, C.G., Ruhfel, B.R., Primack, R.B., Miller-Rushing, A.J., Losos,
J.B. & Davis, C.C. (2010). Favorable Climate Change Response Explains
Non-Native Species’ Success in Thoreau’s Woods. PLOS ONE , 5,
e8878.
Wilson, R.J., Gutiérrez, D., Gutiérrez, J., Martínez, D., Agudo, R. &
Monserrat, V.J. (2005). Changes to the elevational limits and extent of
species ranges associated with climate change. Ecology Letters ,
8, 1138–1146.