References:
Ahti, T., Hämet-Ahti, L. & Jalas, J. (1968). Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici , 5, 169–211.
Altermatt, F. (2010). Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B: Biological Sciences , 277, 1281–1287.
Amano, T., Freckleton, R.P., Queenborough, S.A., Doxford, S.W., Smithers, R.J., Sparks, T.H., et al. (2014). Links between plant species’ spatial and temporal responses to a warming climate.Proc. R. Soc. B. , 281, 20133017.
Anderson, J.T. (2016). Plant fitness in a rapidly changing world.New Phytol , 210, 81–87.
Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury, J.J. & Chunco, A.J. (2011). Do species’ traits predict recent shifts at expanding range edges? Ecology Letters , 14, 677–689.
Arietta, A.Z.A., Freidenburg, L.K., Urban, M.C., Rodrigues, S.B., Rubinstein, A. & Skelly, D.K. (n.d.). Phenological delay despite warming in wood frog Rana sylvatica reproductive timing: a 20-year study. Ecography , n/a.
Betzholtz, P.-E., Pettersson, L.B., Ryrholm, N. & Franzén, M. (2013). With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet.Proceedings of the Royal Society B: Biological Sciences , 280, 20122305.
Boogart, J., Van Strien, A. & Pannekoek, J. (2020). rtrim: Trends and Indices for Monitoring Data. R package version 2.1.1.
Brommer, J.E. (2004). The range margins of northern birds shift polewards. Annales Zoologici Fennici , 41, 391–397.
Chen, I.-C., Hill, J.K., Ohlemuller, R., Roy, D.B. & Thomas, C.D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science , 333, 1024–1026.
Chuine, I. (2010). Why does phenology drive species distribution?Phil. Trans. R. Soc. B , 365, 3149–3160.
Cleland, E., Chuine, I., Menzel, A., Mooney, H. & Schwartz, M. (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution , 22, 357–365.
Cooper, N., Freckleton, R.P. & Jetz, W. (2011). Phylogenetic conservatism of environmental niches in mammals. Proceedings of the Royal Society B: Biological Sciences , 278, 2384–2391.
Coulthard, E., Norrey, J., Shortall, C. & Harris, W.E. (2019). Ecological traits predict population changes in moths. Biological Conservation , 233, 213–219.
Crossley, M.S., Meier, A.R., Baldwin, E.M., Berry, L.L., Crenshaw, L.C., Hartman, G.L., et al. (2020). No net insect abundance and diversity declines across US Long Term Ecological Research sites.Nature Ecology & Evolution , 4, 1368–1376.
Davies, T.J., Wolkovich, E.M., Kraft, N.J.B., Salamin, N., Allen, J.M., Ault, T.R., et al. (2013). Phylogenetic conservatism in plant phenology. Journal of Ecology , 101, 1520–1530.
Davis, M.B. & Shaw, R.G. (2001). Range Shifts and Adaptive Responses to Quaternary Climate Change. Science , 292, 673–679.
Davis, M.B., Shaw, R.G. & Etterson, J.R. (2005). Evolutionary Responses to Changing Climate. Ecology , 86, 1704–1714.
Dennis, E.B., Freeman, S.N., Brereton, T. & Roy, D.B. (2013). Indexing butterfly abundance whilst accounting for missing counts and variability in seasonal pattern. Methods in Ecology and Evolution , 4, 637–645.
Dennis, E.B., Morgan, B.J.T., Freeman, S.N., Brereton, T.M. & Roy, D.B. (2016). A generalized abundance index for seasonal invertebrates.Biometrics , 72, 1305–1314.
Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J., et al. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change , 2, 121–124.
Diamond, S.E., Frame, A.M., Martin, R.A. & Buckley, L.B. (2011). Species’ traits predict phenological responses to climate change in butterflies. Ecology , 92, 1005–1012.
Díaz, S., Settele, J., Brondízio, E., Ngo, H.T., Guèze, M., Agard, J.,et al. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 44.
Donoghue, M.J. (2008). A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences , 105, 11549–11555.
Ekroos, J., Heliölä, J. & Kuussaari, M. (2010). Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. Journal of Applied Ecology , 47, 459–467.
European Commision. (2020). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS EU Biodiversity Strategy for 2030 Bringing nature back into our lives COM/2020/380 final .
Fei, S., Desprez, J.M., Potter, K.M., Jo, I., Knott, J.A. & Oswalt, C.M. (2017). Divergence of species responses to climate change.Science Advances , 3, e1603055.
Franks, S.E., Pearce‐Higgins, J.W., Atkinson, S., Bell, J.R., Botham, M.S., Brereton, T.M., et al. (2018). The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Glob Change Biol , 24, 957–971.
Freckleton, R.P., Harvey, P.H., Pagel, M. & Losos, A.E.J.B. (2002). Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence. The American Naturalist , 160, 712–726.
Fric, Z.F., Rindoš, M. & Konvička, M. (2020). Phenology responses of temperate butterflies to latitude depend on ecological traits.Ecology Letters , 23, 172–180.
Glorvigen, P., Gundersen, G., Andreassen, H.P. & Ims, R.A. (2013). The role of colonization in the dynamics of patchy populations of a cyclic vole species. Oecologia , 173, 161–167.
Hällfors, M.H., Antão, L.H., Itter, M., Lehikoinen, A., Lindholm, T., Roslin, T., et al. (2020). Shifts in timing and duration of breeding for 73 boreal bird species over four decades. PNAS , 117, 18557–18565.
Hanski, I. & Ovaskainen, O. (2003). Metapopulation theory for fragmented landscapes. Theoretical Population Biology , 64, 119–127.
Hanski, I., Pöyry, J., Pakkala, T. & Kuussaari, M. (1995). Multiple equilibria in metapopulation dynamics. Nature , 377, 618–621.
Helama, S., Tolvanen, A., Karhu, J., Poikolainen, J. & Kubin, E. (2020). Finnish National Phenological Network 1997–2017: from observations to trend detection. Int J Biometeorol , 64, 1783–1793.
Hodgson, J.A., Thomas, C.D., Oliver, T.H., Anderson, B.J., Brereton, T.M. & Crone, E.E. (2011). Predicting insect phenology across space and time. Global Change Biology , 17, 1289–1300.
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland,.
Ives, A.R. & Zhu, J. (2006). Statistics For Correlated Data: Phylogenies, Space, And Time. Ecological Applications , 16, 20–32.
Jylhä, K., Tuomenvirta, H., Ruosteenoja, K., Niemi-Hugaerts, H., Keisu, K. & Karhu, J.A. (2010). Observed and Projected Future Shifts of Climatic Zones in Europe and Their Use to Visualize Climate Change Information. Wea. Climate Soc. , 2, 148–167.
Kharouba, H.M., Algar, A.C. & Kerr, J.T. (2009). Historically calibrated predictions of butterfly species’ range shift using global change as a pseudo-experiment. Ecology , 90, 2213–2222.
Klink, R. van, Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A. & Chase, J.M. (2020). Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science , 368, 417–420.
Konvicka, M., Maradova, M., Benes, J., Fric, Z. & Kepka, P. (2003). Uphill Shifts in Distribution of Butterflies in the Czech Republic: Effects of Changing Climate Detected on a Regional Scale. Global Ecology and Biogeography , 12, 403–410.
Kuussaari, M., Heliölä, J., Pöyry, J. & Saarinen, K. (2007). Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J Insect Conserv , 11, 351–366.
Lehikoinen, A., Lindén, A., Karlsson, M., Andersson, A., Crewe, T.L., Dunn, E.H., et al. (2019). Phenology of the avian spring migratory passage in Europe and North America: Asymmetric advancement in time and increase in duration. Ecological Indicators , 101, 985–991.
Leinonen, R., Pöyry, J., Söderman, G. & Tuominen-Roto, L. (2016).Suomen yöperhosseuranta (Nocturna) 1993–2012 . Suomen ympäristökeskus.
Leinonen, R., Pöyry, J., Söderman, G. & Tuominen-Roto, L. (2017). Suomen yöperhosyhteisöt muutoksessa – valtakunnallisen yöperhosseurannan keskeisiä tuloksia 1993–2012. Baptria, 42, 74– 92.Baptria , 42, 74–92.
Luoto, M., Heikkinen, R.K., Pöyry, J. & Saarinen, K. (2006). Determinants of the biogeographical distribution of butterflies in boreal regions. Journal of Biogeography , 33, 1764–1778.
Mair, L., Hill, J.K., Fox, R., Botham, M., Brereton, T. & Thomas, C.D. (2014). Abundance changes and habitat availability drive species’ responses to climate change. Nature Climate Change , 4, 127–131.
Mason, S.C., Palmer, G., Fox, R., Gillings, S., Hill, J.K., Thomas, C.D., et al. (2015). Geographical range margins of many taxonomic groups continue to shift polewards. Biological Journal of the Linnean Society , 115, 586–597.
Menzel, A. & Fabian, P. (1999). Growing season extended in Europe.Nature , 397, 659–659.
Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R.,et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biol , 12, 1969–1976.
Mikkonen, S., Laine, M., Mäkelä, H.M., Gregow, H., Tuomenvirta, H., Lahtinen, M., et al. (2014). Trends in the average temperature in Finland, 1847–2013. Stochastic Environmental Research and Risk Assessment , 29, 1521–1529.
Møller, A.P., Rubolini, D. & Lehikoinen, E. (2008). Populations of migratory bird species that did not show a phenological response to climate change are declining. PNAS , 105, 16195–16200.
Orme, D. (2020). The caper package: comparative analysis of phylogenetics and evolution in R, 36.
Pannekoek, J. & Van Strien, A. (2005). TRIM 3 Manual (Trends & Indices for Monitoring data) . Statistics Netherlands, JM Voorburg, The Netherlands.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming.Nature , 399, 579–583.
Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature , 421, 37–42.
Pärn, H., Ringsby, T.H., Jensen, H. & Sæther, B.-E. (2012). Spatial heterogeneity in the effects of climate and density-dependence on dispersal in a house sparrow metapopulation. Proceedings of the Royal Society B: Biological Sciences , 279, 144–152.
Pilotto, F., Kühn, I., Adrian, R., Alber, R., Alignier, A., Andrews, C.,et al. (2020). Meta-analysis of multidecadal biodiversity trends in Europe. Nature Communications , 11, 3486.
Platts, P.J., Mason, S.C., Palmer, G., Hill, J.K., Oliver, T.H., Powney, G.D., et al. (2019). Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups.Scientific Reports , 9, 15039.
Pöyry, J., Carvalheiro, L.G., Heikkinen, R.K., Kühn, I., Kuussaari, M., Schweiger, O., et al. (2017). The effects of soil eutrophication propagate to higher trophic levels: Effects of soil eutrophication on herbivores. Global Ecol. Biogeogr. , 26, 18–30.
Pöyry, J., Leinonen, R., Söderman, G., Nieminen, M., Heikkinen, R.K. & Carter, T.R. (2011). Climate-induced increase of moth multivoltinism in boreal regions. Global Ecology and Biogeography , 20, 289–298.
Pöyry, J., Luoto, M., Heikkinen, R.K., Kuussaari, M. & Saarinen, K. (2009). Species traits explain recent range shifts of Finnish butterflies. Global Change Biology , 15, 732–743.
Pöyry, J., Heikkinen, R. K., Heliölä, J., Kuussaari, M., & Saarinen, K. (2018). Scaling distributional patterns of butterflies across multiple scales: Impact of range history and habitat type. Diversity and Distributions, 24 , 1453-1463.
R Core Team. (2019). R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria.
Radchuk, V., Reed, T., Teplitsky, C., van de Pol, M., Charmantier, A., Hassall, C., et al. (2019). Adaptive responses of animals to climate change are most likely insufficient. Nat Commun , 10, 3109.
Renner, S.S. & Zohner, C.M. (2018). Climate Change and Phenological Mismatch in Trophic Interactions Among Plants, Insects, and Vertebrates.Annual Review of Ecology, Evolution, and Systematics , 49, 165–182.
Revell, L.J. (2010). Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution , 1, 319–329.
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. & Pounds, J.A. (2003). Fingerprints of global warming on wild animals and plants. Nature , 421, 57–60.
Roy, D.B. & Sparks, T.H. (2000). Phenology of British butterflies and climate change. Global Change Biology , 6, 407–416.
Rummukainen, M. (2012). Changes in climate and weather extremes in the 21st century. WIREs Climate Change , 3, 115–129.
Saarinen, K., Lahti, T. & Marttila, O. (2003). Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000. Biodiversity and Conservation , 12, 2147–2159.
Saino, N., Ambrosini, R., Rubolini, D., von Hardenberg, J., Provenzale, A., Hüppop, K., et al. (2011). Climate warming, ecological mismatch at arrival and population decline in migratory birds.Proceedings of the Royal Society B: Biological Sciences , 278, 835–842.
Schmucki, R., Harrower, C.A. & Dennis, E.B. (2020). rbms: Computing generalised abundance indices for butterfly monitoring count data. R package version 1.0.0.
Schmucki, R., Pe’er, G., Roy, D.B., Stefanescu, C., Swaay, C.A.M.V., Oliver, T.H., et al. (2016). A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. Journal of Applied Ecology , 53, 501–510.
Socolar, J.B., Epanchin, P.N., Beissinger, S.R. & Tingley, M.W. (2017). Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc Natl Acad Sci USA , 114, 12976–12981.
Spence, A.R. & Tingley, M.W. (2020). The challenge of novel abiotic conditions for species undergoing climate-induced range shifts.Ecography , 43, 1571–1590.
Stefanescu, C., Peñuelas, J. & Filella, I. (2003). Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biology , 9, 1494–1506.
Symonds, M.R.E. & Blomberg, S.P. (2014). A Primer on Phylogenetic Generalised Least Squares. In: Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L.Z.). Springer, Berlin, Heidelberg, pp. 105–130.
Teder, T. (2020). Phenological responses to climate warming in temperate moths and butterflies: species traits predict future changes in voltinism. Oikos , 129, 1051–1060.
Thomas, C.D. & Lennon, J.J. (1999). Birds extend their ranges northwards. Nature , 399, 213–213.
Urban, M.C. (2015). Accelerating extinction risk from climate change.Science , 348, 571–573.
Valtonen, A., Leinonen, R., Pöyry, J., Roininen, H., Tuomela, J. & Ayres, M.P. (2014). Is climate warming more consequential towards poles? The phenology of Lepidoptera in Finland. Glob Change Biol , 20, 16–27.
Vasseur, D.A., DeLong, J.P., Gilbert, B., Greig, H.S., Harley, C.D.G., McCann, K.S., et al. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences , 281, 20132612.
Virtanen, T. & Neuvonen, S. (1999). Climate change and macrolepidopteran biodiversity in Finland. Chemosphere - Global Change Science , 1, 439–448.
WallisDeVries, M.F. (2014). Linking species assemblages to environmental change: Moving beyond the specialist-generalist dichotomy. Basic and Applied Ecology , 15, 279–287.
Willis, C.G., Ruhfel, B.R., Primack, R.B., Miller-Rushing, A.J., Losos, J.B. & Davis, C.C. (2010). Favorable Climate Change Response Explains Non-Native Species’ Success in Thoreau’s Woods. PLOS ONE , 5, e8878.
Wilson, R.J., Gutiérrez, D., Gutiérrez, J., Martínez, D., Agudo, R. & Monserrat, V.J. (2005). Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters , 8, 1138–1146.