REFERENCES
Baer, C.S. & Marquis, R.J. (2020). Between predators and parasitoids:
complex interactions among shelter traits, predation and parasitism in a
shelter‐building caterpillar community. Functional Ecology , 34,
2186-2198.
Barton, B.T & Schmitz, O.J. (2009). Experimental warming transforms
multiple predator effects in a grassland food web. Ecology
Letters , 12, 1317-1325.
Bathiany, S., Dakos, V., Scheffer, M. &Lenton, T.M. (2018). Climate
models predict increasing temperature variability in poor countries.Science Advances , 4, eaar5809.
Breheny, P. & and Burchett, W. (2017). Visualization of regression
models using visreg. The R Journal , 9, 56-71.
Brose, U., Dunne, J.A., Montoya, J.M., Petchey, O.L., Schneider, F.D. &
Jacob, U. (2012). Climate change in size-structured ecosystems.Philosophical Transactions of the Royal Society B , 367,
2903—2912.
Caillon, R., Suppo, C., Casas, J., Woods, H.A. & Pincebourde, S.
(2014). Warming decreases thermal heterogeneity of leaf surfaces:
implications for behavioural thermoregulation by arthropods.Functional Ecology , 28, 1449-1458.
Clark, J.S., Scher, C.L. & Swift, M. (2020). The emergent interactions
that govern biodiversity change. PNAS , 117, 17074-17083.
Colinet, H., Sinclair, B.J., Vernon, P. & Renault, D. (2015). Insects
in fluctuating thermal environments. Annual Review of Entomology ,
60, 123-140.
Cornelissen, T., Cintra, F. & Santos, J.C. (2015). Shelter-building
insects and their role as ecosystem engineers. Neotrop. Entomol .,
45, 1-12.
Daufresne, M., Lengfellner, K. & Sommer, U. (2009). Global warming
benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci.
USA , 106, 12788–12793.
de Omena, P.M. & Romero, G.Q. (2010). Using visual cues of microhabitat
traits to find home: the case study of a bromeliad-living jumping spider
(Salticidae). Behavioral Ecology , 21, 690–695.
Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher,
N. (2016). More extreme precipitation in the world’s dry and wet
regions. Nat. Clim. Change , 6, 508–513.
Edney, E.B. (2012). Water balance in land arthropods. Springer-Verlag,
Berlin.
Essl, F., Dullinger, S., Genovesi, P. … Bacher, S. (2019). A
Conceptual Framework for range-expanding species that track
human-induced environmental change. BioScience , 69, 908–919.
Fick, S. E. & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial
resolution climate surfaces for global land areas. Int. J.
Climatol ., 37, 4302–4315.
Fitzgerald, T.D., Clark, K.L., Vanderpool, R. & Phillips, C. (1991).
Leaf shelter-building caterpillars harness forces generated by axial
retraction of stretched and wetted silk. Journal of Insect
Behavior , 4, 21–32.
Fukui, A. (2001). Indirect interactions mediated by leaf shelters in
animal–plant communities. Population Ecology , 43, 31-40.
García-Robledo, C., Erin K. Kuprewicz, E.,K., Staines, C.L., Erwin, T.L.
& Kress, W.J. (2016). Limited tolerance by insects to high temperatures
across tropical elevational gradients and the implications of global
warming for extinction. PNAS , 113, 680-685.
Gurevitch, J. (2013). Meta-analysis of results from multisite studies.
In Koricheva, J., Gurevitch, J. & Mengersen, K. (eds.). Handbook of
meta-analysis in ecology and evolution. Princeton University Press,
Princeton and Oxford.
Gusmão, R.A.F., Hernandes, F.A., Vancine, M.H., Naka, L.N., Doña, J.,
Gonçalves‐Souza, T. (2020). Host diversity outperforms climate as a
global driver of symbiont diversity in the bird‐feather mite system.
Diversity and Distributions https://doi.org/10.1111/ddi.13201
Hadi, A.S. & Ling, R.F. (1998). Some cautionary notes on the use of
Principal Components Regression. The American Statistician , 52,
15-19.
Hastings, A., Byers, J. E., Crooks, J. A., Cuddington, K., Jones, C. G.,
Lambrinos, J. G., Talley, T. S. & Wilson, W.G. (2007). Ecosystem
engineers in space and time. Ecology Letters , 10, 153-164.
He, Q., Bertness, M.D, Altieri, A.H. (2013). Global shifts towards
positive species interactions with increasing environmental stress.Ecology Letters , 16, 695-706.
Hódar, J.A. (1996). The use of regression equations for estimation of
arthropod biomass in ecological studies. Acta Oecologica , 17,
421-433.
Horne, C.R., Hirst, A.G. & Atkinson, D. (2017). Seasonal body size
reductions with warming covary with major body size gradients in
arthropod species. Proc. R. Soc. B. , 284, 20170238.
IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team,
Pachauri, R. K. & Meyer, L. A.).
Jones, C.G., Lawton, J.H., Shachak, M. (1997). Positive and negative
effects of organisms as physical ecosystem engineers. Ecology,78, 1946-1957.
Kemp, M.U., van Loon, E.E., Shamoun‐Baranes, J. & Bouten, W. (2012).
RNCEP: global weather and climate data at your fingertips. Methods
in Ecology and Evolution , 3, 65-70. (2012).
Kühsel, S., Brückner, A., Schmelzle, S., Heethoff, M. & Blüthgen, N.
(2017). Surface area–volume ratios in insects. Insect Science ,
24, 829-841.
LaManna, J. A. et al. (2017). Plant diversity increases with the
strength of negative density dependence at the global scale.Science , 356, 1389–1392.
Lefcheck, J. S. (2016). piecewiseSEM: piecewise structural equation
modelling in R for ecology, evolution, and systematics. Methods
Ecol. Evol ., 7, 573–579.
Lill, J.T., Marquis, R.J. (2007). Microhabitat manipulation: ecosystem
engineering by shelter-building insects. In: K. M. D. Cuddington, J. E.
Byers, A. Hastings, and W. G. Wilson (eds.), Ecosystem engineers:
concepts, theory, and applications in ecology, pp. 107- 138, Elsevier
Press. San Diego, CA.
Petchey, O.L., McPhearson, P.T., Casey, T.M. & Morin, P.J. (1999).
Environmental warming alters food-web structure and ecosystem function.Nature , 402, 69–72.
Pincebourde, S. & Casas, J. (2019). Narrow safety margin in the
phyllosphere during thermal extremes. PNAS , 116, 5588-5596.
Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team. (2020). nlme:
Linear and Nonlinear Mixed Effects Models. R package version 3.1-148.
Pinsky, M.L., Eikeset, A.M., McCauley, D.J., Payne, J.L. & Sunday, J.M.
(2019). Greater vulnerability to warming of marine versus terrestrial
ectotherms. Nature , 569, 108–111.
Priest, G.V., Cameroata, F., Powell, S., Vasconcelos, H.L., Marquis,
R.J. (2021). Ecosystem engineering in the arboreal realm: Heterogeneity
of wood-boring beetle cavities and their use by cavity-nesting ants.
Oecologia (in press).
R Development Core Team (2019). R: A Language and Environment for
Statistical Computing (R Foundation for Statistical Computing).
Romero, G.Q. & Koricheva, J. (2011). Contrasting cascade effects of
carnivores on plant fitness: a meta-analysis. J. Anim. Ecol ., 80,
696-704.
Romero, G.Q., Gonçalves-Souza, T., Kratina, P., Marino, N.A.C, Petry,
W.K., Sobral-Souza, T. & Roslin, T. (2018). Global predation pressure
redistribution under future climate change. Nature Climate
Change , 8, 1087–1091.
Romero, G.Q., Goncalves-Souza, T., Vieira, C., Koricheva, J. (2015).
Ecosystem engineering effects on species diversity across ecosystems: a
meta-analysis. Biological Reviews , 90, 877-890.
Rosenberg, M.S., Rothstein, H.R. & Gurevitch, J. (2013). Effect sizes:
conventional choices and calculations. In Koricheva, J., Gurevitch, J.
& Mengersen, K. (eds.). Handbook of meta-analysis in ecology and
evolution. Princeton University Press, Princeton and Oxford.
Rosenblatt, A. E. & Schmitz, O. J. (2016). Climate change, nutrition,
and bottom-up and top-down food web processes. Trends Ecol.
Evol ., 31, 965–975.
Roslin, T. et al. (2017). Higher predation risk for insect prey at low
latitudes and elevations. Science , 356, 742–744.
Rubalcaba, J.G., Gouveia, S.F., Olalla‐Tárraga, M.A. (2019). A
mechanistic model to scale up biophysical processes into geographical
size gradients in ectotherms. Global Ecology and Biogeography ,
28, 793-803.
Scheffers, B.R. Edwards, D.P., Diesmos, A., Williams, A.E & Evans, T.A.
(2014). Microhabitats reduce animal’s exposure to climate extremes.Global Change Biology , 20, 495-503.
Schemske, D. W. et al. (2009). Is there a latitudinal gradient in the
importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst .,
40, 245–269.
Stireman III, J.O., L.A. Dyer, D.H. Janzen, M.S. Singer, J.T. Lill, R.J.
Marquis, R.E. Ricklefs, G.L. Gentry, W. Hallwachs, P.D. Coley, J.A.
Barone, H.F. Greeney, H. Connahs, P. Barbosa, H.C. Morais, and I.R.
Diniz. (2005). Climatic unpredictability and parasitism of caterpillars:
Implications of global warming. PNAS , 102, 17384-17387.
Suggitt, A.J., Wilson, R.J., Isaac, N.J.B. et al. (2018). Extinction
risk from climate change is reduced by microclimatic buffering.Nature Clim Change , 8, 713–717.
Tallavaara, M., Eronen, J.T. & Luoto, M. (2018). Productivity,
biodiversity, and pathogens influence the global hunter-gatherer
population density. Proc Natl Acad Sci USA , 115, 1232-1237.
Title, P. O. & Bemmels, J. B. (2017). ENVIREM: an expanded set of
bioclimatic and topographic variables increases flexibility and improves
performance of ecological niche modeling. Ecography , 41,
291–307.
Trisos, C.H., Merow, C. & Pigot, A.L. (2020). The projected timing of
abrupt ecological disruption from climate change. Nature , 580,
496-501.
Tvardikova, K. & Novotny, V. (2012). Predation on exposed and
leaf-rolling artificial caterpillars in tropical forests of Papua New
Guinea. Journal of Tropical Ecology , 28, 331-341.
van Klink, R., Bowler, D.E., Gongalsky, K.B., … Chase, J.M. (2020).
Meta-analysis reveals declines in terrestrial but increases in
freshwater insect abundances. Science , 368, 417-420.
Vasseur, D. A. et al. (2014). Increased temperature variation poses a
greater risk to species than climate warming. Proc. R. Soc. B ,
281, 20132612.
Vázquez, D.P., Gianoli, E., Morris, W.F., & Bozinovic, F. (2017).
Ecological and evolutionary impacts of changing climatic variability.Biological Reviews , 92, 22-42.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor
package. Journal of Statistical Software , 36, 1-48.
Vieira, C. & Romero, G.Q. (2013). Ecosystem engineers on plants:
indirect facilitation of arthropod communities by leaf‐rollers at
different scales. Ecology , 94, 1510-1518.
Voigt W., Perner J., Davis A.J., Eggers T., Schumacher, J., Bährmann R.,
Fabian B., Heinrich W., Köhler G., Lichter D., Marstaller R. & Sander
F.W. (2003). Trophic levels are differentially sensitive to climate.Ecology , 84, 2444-2453.
Wagner, D.L. (2020). Insect declines in the Anthropocene. Annual
Review of Entomology , 65, 457-480.
Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R., Stopak, D.
(2021). Insect decline in the Anthropocene: Death by a thousand cuts.PNAS 118 e2023989118.
Wang, H.G. Marquis, R.J., Baer, C.S. (2012). Both host plant and
ecosystem engineer identity influence leaf‐tie impacts on the arthropod
community of Quercus. Ecology , 93, 2186-2197.
Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J.
(2018). The projected effect on insects, vertebrates, and plants of
limiting global warming to 1.5 °C rather than 2 °C. Science , 360,
791–795.
Wetzel, W.C., Screen, R.M., Li, I. … & Yang, L.H. (2016). Ecosystem
engineering by a gall‐forming wasp indirectly suppresses diversity and
density of herbivores on oak trees. Ecology , 97, 427-438.
Wickham, H. (2016). ggplot2: elegant graphics for data analysis.
Springer-Verlag New York.
Zuur, A.F., Ieno, E.N., Elphick, C.S. (2010). A protocol for data
exploration to avoid common statistical problems. Methods in
Ecology and Evolution , 1, 3–14.