REFERENCES
Baer, C.S. & Marquis, R.J. (2020). Between predators and parasitoids: complex interactions among shelter traits, predation and parasitism in a shelter‐building caterpillar community. Functional Ecology , 34, 2186-2198.
Barton, B.T & Schmitz, O.J. (2009). Experimental warming transforms multiple predator effects in a grassland food web. Ecology Letters , 12, 1317-1325.
Bathiany, S., Dakos, V., Scheffer, M. &Lenton, T.M. (2018). Climate models predict increasing temperature variability in poor countries.Science Advances , 4, eaar5809.
Breheny, P. & and Burchett, W. (2017). Visualization of regression models using visreg. The R Journal , 9, 56-71.
Brose, U., Dunne, J.A., Montoya, J.M., Petchey, O.L., Schneider, F.D. & Jacob, U. (2012). Climate change in size-structured ecosystems.Philosophical Transactions of the Royal Society B , 367, 2903—2912.
Caillon, R., Suppo, C., Casas, J., Woods, H.A. & Pincebourde, S. (2014). Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods.Functional Ecology , 28, 1449-1458.
Clark, J.S., Scher, C.L. & Swift, M. (2020). The emergent interactions that govern biodiversity change. PNAS , 117, 17074-17083.
Colinet, H., Sinclair, B.J., Vernon, P. & Renault, D. (2015). Insects in fluctuating thermal environments. Annual Review of Entomology , 60, 123-140.
Cornelissen, T., Cintra, F. & Santos, J.C. (2015). Shelter-building insects and their role as ecosystem engineers. Neotrop. Entomol ., 45, 1-12.
Daufresne, M., Lengfellner, K. & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA , 106, 12788–12793.
de Omena, P.M. & Romero, G.Q. (2010). Using visual cues of microhabitat traits to find home: the case study of a bromeliad-living jumping spider (Salticidae). Behavioral Ecology , 21, 690–695.
Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. (2016). More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change , 6, 508–513.
Edney, E.B. (2012). Water balance in land arthropods. Springer-Verlag, Berlin.
Essl, F., Dullinger, S., Genovesi, P. … Bacher, S. (2019). A Conceptual Framework for range-expanding species that track human-induced environmental change. BioScience , 69, 908–919.
Fick, S. E. & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol ., 37, 4302–4315.
Fitzgerald, T.D., Clark, K.L., Vanderpool, R. & Phillips, C. (1991). Leaf shelter-building caterpillars harness forces generated by axial retraction of stretched and wetted silk. Journal of Insect Behavior , 4, 21–32.
Fukui, A. (2001). Indirect interactions mediated by leaf shelters in animal–plant communities. Population Ecology , 43, 31-40.
García-Robledo, C., Erin K. Kuprewicz, E.,K., Staines, C.L., Erwin, T.L. & Kress, W.J. (2016). Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. PNAS , 113, 680-685.
Gurevitch, J. (2013). Meta-analysis of results from multisite studies. In Koricheva, J., Gurevitch, J. & Mengersen, K. (eds.). Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton and Oxford.
Gusmão, R.A.F., Hernandes, F.A., Vancine, M.H., Naka, L.N., Doña, J., Gonçalves‐Souza, T. (2020). Host diversity outperforms climate as a global driver of symbiont diversity in the bird‐feather mite system. Diversity and Distributions https://doi.org/10.1111/ddi.13201
Hadi, A.S. & Ling, R.F. (1998). Some cautionary notes on the use of Principal Components Regression. The American Statistician , 52, 15-19.
Hastings, A., Byers, J. E., Crooks, J. A., Cuddington, K., Jones, C. G., Lambrinos, J. G., Talley, T. S. & Wilson, W.G. (2007). Ecosystem engineers in space and time. Ecology Letters , 10, 153-164.
He, Q., Bertness, M.D, Altieri, A.H. (2013). Global shifts towards positive species interactions with increasing environmental stress.Ecology Letters , 16, 695-706.
Hódar, J.A. (1996). The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecologica , 17, 421-433.
Horne, C.R., Hirst, A.G. & Atkinson, D. (2017). Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proc. R. Soc. B. , 284, 20170238.
IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.).
Jones, C.G., Lawton, J.H., Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology,78, 1946-1957.
Kemp, M.U., van Loon, E.E., Shamoun‐Baranes, J. & Bouten, W. (2012). RNCEP: global weather and climate data at your fingertips. Methods in Ecology and Evolution , 3, 65-70. (2012).
Kühsel, S., Brückner, A., Schmelzle, S., Heethoff, M. & Blüthgen, N. (2017). Surface area–volume ratios in insects. Insect Science , 24, 829-841.
LaManna, J. A. et al. (2017). Plant diversity increases with the strength of negative density dependence at the global scale.Science , 356, 1389–1392.
Lefcheck, J. S. (2016). piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol ., 7, 573–579.
Lill, J.T., Marquis, R.J. (2007). Microhabitat manipulation: ecosystem engineering by shelter-building insects. In: K. M. D. Cuddington, J. E. Byers, A. Hastings, and W. G. Wilson (eds.), Ecosystem engineers: concepts, theory, and applications in ecology, pp. 107- 138, Elsevier Press. San Diego, CA.
Petchey, O.L., McPhearson, P.T., Casey, T.M. & Morin, P.J. (1999). Environmental warming alters food-web structure and ecosystem function.Nature , 402, 69–72.
Pincebourde, S. & Casas, J. (2019). Narrow safety margin in the phyllosphere during thermal extremes. PNAS , 116, 5588-5596.
Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team. (2020). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-148.
Pinsky, M.L., Eikeset, A.M., McCauley, D.J., Payne, J.L. & Sunday, J.M. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature , 569, 108–111.
Priest, G.V., Cameroata, F., Powell, S., Vasconcelos, H.L., Marquis, R.J. (2021). Ecosystem engineering in the arboreal realm: Heterogeneity of wood-boring beetle cavities and their use by cavity-nesting ants. Oecologia (in press).
R Development Core Team (2019). R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing).
Romero, G.Q. & Koricheva, J. (2011). Contrasting cascade effects of carnivores on plant fitness: a meta-analysis. J. Anim. Ecol ., 80, 696-704.
Romero, G.Q., Gonçalves-Souza, T., Kratina, P., Marino, N.A.C, Petry, W.K., Sobral-Souza, T. & Roslin, T. (2018). Global predation pressure redistribution under future climate change. Nature Climate Change , 8, 1087–1091.
Romero, G.Q., Goncalves-Souza, T., Vieira, C., Koricheva, J. (2015). Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis. Biological Reviews , 90, 877-890.
Rosenberg, M.S., Rothstein, H.R. & Gurevitch, J. (2013). Effect sizes: conventional choices and calculations. In Koricheva, J., Gurevitch, J. & Mengersen, K. (eds.). Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton and Oxford.
Rosenblatt, A. E. & Schmitz, O. J. (2016). Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol ., 31, 965–975.
Roslin, T. et al. (2017). Higher predation risk for insect prey at low latitudes and elevations. Science , 356, 742–744.
Rubalcaba, J.G., Gouveia, S.F., Olalla‐Tárraga, M.A. (2019). A mechanistic model to scale up biophysical processes into geographical size gradients in ectotherms. Global Ecology and Biogeography , 28, 793-803.
Scheffers, B.R. Edwards, D.P., Diesmos, A., Williams, A.E & Evans, T.A. (2014). Microhabitats reduce animal’s exposure to climate extremes.Global Change Biology , 20, 495-503.
Schemske, D. W. et al. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst ., 40, 245–269.
Stireman III, J.O., L.A. Dyer, D.H. Janzen, M.S. Singer, J.T. Lill, R.J. Marquis, R.E. Ricklefs, G.L. Gentry, W. Hallwachs, P.D. Coley, J.A. Barone, H.F. Greeney, H. Connahs, P. Barbosa, H.C. Morais, and I.R. Diniz. (2005). Climatic unpredictability and parasitism of caterpillars: Implications of global warming. PNAS , 102, 17384-17387.
Suggitt, A.J., Wilson, R.J., Isaac, N.J.B. et al. (2018). Extinction risk from climate change is reduced by microclimatic buffering.Nature Clim Change , 8, 713–717.
Tallavaara, M., Eronen, J.T. & Luoto, M. (2018). Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc Natl Acad Sci USA , 115, 1232-1237.
Title, P. O. & Bemmels, J. B. (2017). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography , 41, 291–307.
Trisos, C.H., Merow, C. & Pigot, A.L. (2020). The projected timing of abrupt ecological disruption from climate change. Nature , 580, 496-501.
Tvardikova, K. & Novotny, V. (2012). Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua New Guinea. Journal of Tropical Ecology , 28, 331-341.
van Klink, R., Bowler, D.E., Gongalsky, K.B., … Chase, J.M. (2020). Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science , 368, 417-420.
Vasseur, D. A. et al. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B , 281, 20132612.
Vázquez, D.P., Gianoli, E., Morris, W.F., & Bozinovic, F. (2017). Ecological and evolutionary impacts of changing climatic variability.Biological Reviews , 92, 22-42.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software , 36, 1-48.
Vieira, C. & Romero, G.Q. (2013). Ecosystem engineers on plants: indirect facilitation of arthropod communities by leaf‐rollers at different scales. Ecology , 94, 1510-1518.
Voigt W., Perner J., Davis A.J., Eggers T., Schumacher, J., Bährmann R., Fabian B., Heinrich W., Köhler G., Lichter D., Marstaller R. & Sander F.W. (2003). Trophic levels are differentially sensitive to climate.Ecology , 84, 2444-2453.
Wagner, D.L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology , 65, 457-480.
Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R., Stopak, D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts.PNAS 118 e2023989118.
Wang, H.G. Marquis, R.J., Baer, C.S. (2012). Both host plant and ecosystem engineer identity influence leaf‐tie impacts on the arthropod community of Quercus. Ecology , 93, 2186-2197.
Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. (2018). The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science , 360, 791–795.
Wetzel, W.C., Screen, R.M., Li, I. … & Yang, L.H. (2016). Ecosystem engineering by a gall‐forming wasp indirectly suppresses diversity and density of herbivores on oak trees. Ecology , 97, 427-438.
Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer-Verlag New York.
Zuur, A.F., Ieno, E.N., Elphick, C.S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution , 1, 3–14.