Antti Eloranta

and 2 more

Current ecological research and ecosystem management call for improved understanding of the abiotic drivers of community dynamics, including temperature effects on species interactions and biomass accumulation. Allometric trophic network (ATN) models provide an attractive framework to study consumer-resource interactions from organisms to ecosystems, but they rarely consider changes in some key abiotic drivers that affect e.g. consumer metabolism and producer growth. Here we investigate how seasonal changes in carrying capacity and light-dependent growth rate of producers and temperature-dependent mass-specific metabolic rate of consumers affect ATN model dynamics, namely seasonal biomass accumulation, productivity and standing stock biomass of different trophic guilds, including age-structured fish communities. Our simulations of the complex Lake Constance (LC) food web indicated marked effects of seasonal abiotic drivers on seasonal biomass accumulation of different guild groups, particularly among the lowest trophic levels (autotrophs and invertebrates). While the adjustment of irradiance level had minor effect, increasing metabolic rate associated with 1–2˚C temperature increase lead to a marked decline of larval (0-year age) fish biomass, but to a substantial biomass increase of 2- and 3-year-old fish that were not predated by ≥4-year-old perch. A gradual temperature increase of 0.037˚C year–1 observed in LC increased the productivity of highest trophic levels (i.e., juvenile and adult fish) by ca. 40–50% over the 100-year simulation period. However, when looking at biomass distribution and transfer between trophic guilds in the LC food web, inclusion of seasonal abiotic drivers caused only minor changes in average standing stock biomasses and productivity of different trophic guild groups. Our results demonstrate the potential of introducing seasonal variation in abiotic ATN model parameters to simulate within-year fluctuations in community dynamics, as well as to assess potential future community-level responses to ongoing environmental changes.

Etsuko Nonaka

and 1 more

1. Almost all organisms grow in size during their lifetime and switch diets, trophic positions, and interacting partners as they grow. Such ontogenetic development introduces life-history stages and flows of biomass between the stages through growth and reproduction. However, current research on complex food webs rarely considers life-history stages. The few previously proposed methods do not take full advantage of the existing food web structural models that can produce realistic food web topologies. 2. We extended the niche model by Williams & Martinez (2000) to generate food webs that included trophic species with a life-history stage structure. Our method aggregated trophic species based on niche overlap to form a life-history structured population; therefore, it largely preserved the topological structure of food webs generated by the niche model. We applied the theory of allometric predator-prey body mass ratio and parameterized an allometric bioenergetic model augmented with biomass flow between stages via growth and reproduction to study the effects of a stage structure on the stability of food webs. 3. When life-history stages were linked via growth and reproduction, fewer food webs persisted while persisting food webs tended to retain more trophic species. Topological differences between persisting linked and unlinked food webs were small to modest. Temporal variability of biomass dynamics and slopes of biomass spectra were lower in the linked food webs than the unlinked ones, suggesting that a life-history stage structure enhanced stability of complex food webs. 4. Our results suggest a positive relationship between the complexity and stability of complex food webs. A life-history stage structure in food webs may play important roles in dynamics of and diversity in food webs.