References
1. Ottaviani E, Malagoli D, Franceschi C. The evolution of the adipose
tissue: A neglected enigma. General and Comparative Endocrinology.
2011;174(1):1-4.
2. Scheja L, Heeren J. The endocrine function of adipose tissues in
health and cardiometabolic disease. Nature Reviews Endocrinology.
2019;15(9):507-24.
3. Khan S, Chan YT, Revelo XS, Winer DA. The Immune Landscape of
Visceral Adipose Tissue During Obesity and Aging. Frontiers in
endocrinology. 2020;11:267-.
4. Singh GM, Danaei G, Farzadfar F, Stevens GA, Woodward M, Wormser D,
et al. The age-specific quantitative effects of metabolic risk factors
on cardiovascular diseases and diabetes: a pooled analysis. PloS one.
2013;8(7):e65174.
5. Collins KH, Lenz KL, Pollitt EN, Ferguson D, Hutson I, Springer LE,
et al. Adipose tissue is a critical regulator of osteoarthritis. Proc
Natl Acad Sci U S A. 2021;118(1).
6. Leung DYM, Berdyshev E, Goleva E. Cutaneous barrier dysfunction in
allergic diseases. Journal of Allergy and Clinical Immunology.
2020;145(6):1485-97.
7. Nyberg ST, Batty GD, Pentti J, Virtanen M, Alfredsson L, Fransson EI,
et al. Obesity and loss of disease-free years owing to major
non-communicable diseases: a multicohort study. The Lancet Public
Health. 2018;3(10):e490-e7.
8. Campanella G, Gunter MJ, Polidoro S, Krogh V, Palli D, Panico S, et
al. Epigenome-wide association study of adiposity and future risk of
obesity-related diseases. International Journal of Obesity.
2018;42(12):2022-35.
9. Jensen P, Skov L. Psoriasis and Obesity. Dermatology.
2016;232(6):633-9.
10. Coimbra S, Oliveira H, Reis F, Belo L, Rocha S, Quintanilha A, et
al. Circulating levels of adiponectin, oxidized LDL and C-reactive
protein in Portuguese patients with psoriasis vulgaris, according to
body mass index, severity and duration of the disease. J Dermatol Sci.
2009;55(3):202-4.
11. Kromann CB, Ibler KS, Kristiansen VB, Jemec GB. The influence of
body weight on the prevalence and severity of hidradenitis suppurativa.
Acta Derm Venereol. 2014;94(5):553-7.
12. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and
functional differences. Obes Rev. 2010;11(1):11-8.
13. Chen SX, Zhang L-J, Gallo RL. Dermal White Adipose Tissue: A Newly
Recognized Layer of Skin Innate Defense. Journal of Investigative
Dermatology. 2019;139(5):1002-9.
14. Zhang Z, Shao M, Hepler C, Zi Z, Zhao S, An YA, et al. Dermal
adipose tissue has high plasticity and undergoes reversible
dedifferentiation in mice. The Journal of Clinical Investigation.
2019;129(12):5327-42.
15. Driskell RR, Jahoda CAB, Chuong C-M, Watt FM, Horsley V. Defining
dermal adipose tissue. Experimental dermatology. 2014;23(9):629-31.
16. Jung SM, Sanchez-Gurmaches J, Guertin DA. Brown Adipose Tissue
Development and Metabolism. Handb Exp Pharmacol. 2019;251:3-36.
17. Whitehead A, Krause FN, Moran A, MacCannell ADV, Scragg JL, McNally
BD, et al. Brown and beige adipose tissue regulate systemic metabolism
through a metabolite interorgan signaling axis. Nature Communications.
2021;12(1):1905.
18. Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic
adipocytes that control energy and glucose homeostasis. J Clin Invest.
2015;125(2):478-86.
19. Cai X, Lin Y, Hauschka PV, Grottkau BE. Adipose stem cells originate
from perivascular cells. Biol Cell. 2011;103(9):435-47.
20. Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y. Adipose-derived
stem cells: Sources, potency, and implications for regenerative
therapies. Biomedicine & Pharmacotherapy. 2019;114:108765.
21. Andersen E, Ingerslev LR, Fabre O, Donkin I, Altıntaş A, Versteyhe
S, et al. Preadipocytes from obese humans with type 2 diabetes are
epigenetically reprogrammed at genes controlling adipose tissue
function. International Journal of Obesity. 2019;43(2):306-18.
22. Sengenès C, Lolmède K, Zakaroff-Girard A, Busse R, Bouloumié A.
Preadipocytes in the human subcutaneous adipose tissue display distinct
features from the adult mesenchymal and hematopoietic stem cells.
Journal of Cellular Physiology. 2005;205(1):114-22.
23. Rodeheffer MS, Birsoy K, Friedman JM. Identification of white
adipocyte progenitor cells in vivo. Cell. 2008;135(2):240-9.
24. Zhang R, Gao Y, Zhao X, Gao M, Wu Y, Han Y, et al. FSP1-positive
fibroblasts are adipogenic niche and regulate adipose homeostasis. PLoS
Biol. 2018;16(8):e2001493.
25. Anderson EK, Gutierrez DA, Hasty AH. Adipose tissue recruitment of
leukocytes. Curr Opin Lipidol. 2010;21(3):172-7.
26. Brüggen MC, Strobl J, Koszik F, Naito R, Vierhapper M, Li N, et al.
Subcutaneous White Adipose Tissue of Healthy Young Individuals Harbors a
Leukocyte Compartment Distinct from Skin and Blood. J Invest Dermatol.
2019;139(9):2052-5.e7.
27. Li Y, Yun K, Mu R. A review on the biology and properties of adipose
tissue macrophages involved in adipose tissue physiological and
pathophysiological processes. Lipids in Health and Disease.
2020;19(1):164.
28. Bolus WR, Hasty AH. Contributions of innate type 2 inflammation to
adipose function. Journal of Lipid Research. 2019;60(10):1698-709.
29. Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in
health and disease. Cell. 2015;161(1):146-60.
30. Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV,
Gallo RL. Innate immunity. Dermal adipocytes protect against invasive
Staphylococcus aureus skin infection. Science (New York, NY).
2015;347(6217):67-71.
31. Nguyen AV, Soulika AM. The Dynamics of the Skin’s Immune System.
International journal of molecular sciences. 2019;20(8):1811.
32. Shook BA, Wasko RR, Mano O, Rutenberg-Schoenberg M, Rudolph MC,
Zirak B, et al. Dermal Adipocyte Lipolysis and Myofibroblast Conversion
Are Required for Efficient Skin Repair. Cell Stem Cell.
2020;26(6):880-95.e6.
33. Shook B, Xiao E, Kumamoto Y, Iwasaki A, Horsley V. CD301b+
Macrophages Are Essential for Effective Skin Wound Healing. J Invest
Dermatol. 2016;136(9):1885-91.
34. Zhang L-j, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV,
Gallo RL. Innate immunity. Dermal adipocytes protect against invasive
Staphylococcus aureus skin infection. Science (New York, NY).
2015;347(6217):67-71.
35. Wong Y, Nakamizo S, Tan KJ, Kabashima K. An Update on the Role of
Adipose Tissues in Psoriasis. Frontiers in Immunology. 2019;10:1507.
36. Raud B, McGuire PJ, Jones RG, Sparwasser T, Berod L. Fatty acid
metabolism in CD8+ T cell memory: Challenging current concepts.
Immunological reviews. 2018;283(1):213-31.
37. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A
Cellular Perspective. Physiological Reviews. 2018;99(1):665-706.
38. Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived
stem cells secretome: soluble factors and their roles in regenerative
medicine. Curr Stem Cell Res Ther. 2010;5(2):103-10.
39. López JF, Sarkanen JR, Huttala O, Kaartinen IS, Kuokkanen HO,
Ylikomi T. Adipose tissue extract shows potential for wound healing: in
vitro proliferation and migration of cell types contributing to wound
healing in the presence of adipose tissue preparation and platelet rich
plasma. Cytotechnology. 2018;70(4):1193-204.
40. Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived
stem cells suppress mixed lymphocyte reaction by secretion of
prostaglandin E2. Tissue Eng. 2007;13(6):1185-95.
41. Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR. Human
progenitor cells from bone marrow or adipose tissue produce VEGF, HGF,
and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. American
Journal of Physiology-Regulatory, Integrative and Comparative
Physiology. 2006;291(4):R880-R4.
42. Merrick D, Seale P. Skinny Fat Cells Stimulate Wound Healing. Cell
Stem Cell. 2020;26(6):801-3.
43. Raghuram AC, Yu RP, Lo AY, Sung CJ, Bircan M, Thompson HJ, Wong AK.
Role of stem cell therapies in treating chronic wounds: A systematic
review. World J Stem Cells. 2020;12(7):659-75.
44. Fujiwara O, Prasai A, Perez-Bello D, El Ayadi A, Petrov IY,
Esenaliev RO, et al. Adipose-derived stem cells improve grafted burn
wound healing by promoting wound bed blood flow. Burns & Trauma.
2020;8.
45. Kuo Y-R, Wang C-T, Cheng J-T, Kao G-S, Chiang Y-C, Wang C-J.
Adipose-Derived Stem Cells Accelerate Diabetic Wound Healing through the
Induction of Autocrine and Paracrine Effects. Cell Transplantation.
2016;25(1):71-81.
46. Kokai LE, Marra K, Rubin JP. Adipose stem cells: biology and
clinical applications for tissue repair and regeneration. Translational
Research. 2014;163(4):399-408.
47. Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical
translation of cell-based therapies using adipose tissue-derived cells.
Stem Cell Res Ther. 2010;1(2):19.
48. An Y, Lin S, Tan X, Zhu S, Nie F, Zhen Y, et al. Exosomes from
adipose-derived stem cells and application to skin wound healing. Cell
Prolif. 2021;54(3):e12993.
49. Golchin A, Hosseinzadeh S, Ardeshirylajimi A. The exosomes released
from different cell types and their effects in wound healing. Journal of
Cellular Biochemistry. 2018;119(7):5043-52.
50. Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted
vesicles provide novel opportunities in (stem) cell-free therapy.
Frontiers in physiology. 2012;3:359.
51. Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, et al. Exosomes derived
from human adipose mensenchymal stem cells accelerates cutaneous wound
healing via optimizing the characteristics of fibroblasts. Scientific
Reports. 2016;6(1):32993.
52. Wang L, Hu L, Zhou X, Xiong Z, Zhang C, Shehada HMA, et al. Exosomes
secreted by human adipose mesenchymal stem cells promote scarless
cutaneous repair by regulating extracellular matrix remodelling.
Scientific Reports. 2017;7(1):13321.
53. Mahlakõiv T, Flamar AL, Johnston LK, Moriyama S, Putzel GG, Bryce
PJ, Artis D. Stromal cells maintain immune cell homeostasis in adipose
tissue via production of interleukin-33. Sci Immunol. 2019;4(35).
54. Ronti T, Lupattelli G, Mannarino E. The endocrine function of
adipose tissue: an update. Clinical Endocrinology. 2006;64(4):355-65.
55. Rajesh Y, Sarkar D. Association of Adipose Tissue and Adipokines
with Development of Obesity-Induced Liver Cancer. International Journal
of Molecular Sciences. 2021;22(4).
56. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, et al.
STAT3 signalling is required for leptin regulation of energy balance but
not reproduction. Nature. 2003;421(6925):856-9.
57. Procaccini C, Jirillo E, Matarese G. Leptin as an immunomodulator.
Molecular Aspects of Medicine. 2012;33(1):35-45.
58. Klein J, Perwitz N, Kraus D, Fasshauer M. Adipose tissue as source
and target for novel therapies. Trends in Endocrinology & Metabolism.
2006;17(1):26-32.
59. Mancuso P, Gottschalk A, Phare SM, Peters-Golden M, Lukacs NW,
Huffnagle GB. Leptin-deficient mice exhibit impaired host defense in
Gram-negative pneumonia. J Immunol. 2002;168(8):4018-24.
60. Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin Functions in
Infectious Diseases. Frontiers in Immunology. 2018;9(2741).
61. Milner JJ, Beck MA. The impact of obesity on the immune response to
infection. Proceedings of the Nutrition Society. 2012;71(2):298-306.
62. Terán-Cabanillas E, Hernández J. Role of Leptin and SOCS3 in
Inhibiting the Type I Interferon Response During Obesity. Inflammation.
2017;40(1):58-67.
63. Schaab M, Kratzsch J. The soluble leptin receptor. Best Pract Res
Clin Endocrinol Metab. 2015;29(5):661-70.
64. Singanayagam A, Glanville N, Cuthbertson L, Bartlett NW, Finney LJ,
Turek E, et al. Inhaled corticosteroid suppression of cathelicidin
drives dysbiosis and bacterial infection in chronic obstructive
pulmonary disease. Science Translational Medicine.
2019;11(507):eaav3879.
65. Boman HG. Antibacterial peptides: basic facts and emerging concepts.
J Intern Med. 2003;254(3):197-215.
66. Han SJ, Glatman Zaretsky A, Andrade-Oliveira V, Collins N, Dzutsev
A, Shaik J, et al. White Adipose Tissue Is a Reservoir for Memory T
Cells and Promotes Protective Memory Responses to Infection. Immunity.
2017;47(6):1154-68.e6.
67. Reina-Campos M, Scharping NE, Goldrath AW. CD8+ T cell metabolism in
infection and cancer. Nature Reviews Immunology. 2021.
68. O’Shea D, Corrigan M, Dunne MR, Jackson R, Woods C, Gaoatswe G, et
al. Changes in human dendritic cell number and function in severe
obesity may contribute to increased susceptibility to viral infection.
International Journal of Obesity. 2013;37(11):1510-3.
69. Smith AG, Sheridan PA, Tseng RJ, Sheridan JF, Beck MA. Selective
impairment in dendritic cell function and altered antigen-specific CD8+
T-cell responses in diet-induced obese mice infected with influenza
virus. Immunology. 2009;126(2):268-79.
70. Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, et al.
Adipose tissue invariant NKT cells protect against diet-induced obesity
and metabolic disorder through regulatory cytokine production. Immunity.
2012;37(3):574-87.
71. Viel S, Besson L, Charrier E, Marçais A, Disse E, Bienvenu J, et al.
Alteration of Natural Killer cell phenotype and function in obese
individuals. Clin Immunol. 2017;177:12-7.
72. Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K, et al.
Metabolic reprogramming of natural killer cells in obesity limits
antitumor responses. Nat Immunol. 2018;19(12):1330-40.
73. O’Shea D, Hogan AE. Dysregulation of Natural Killer Cells in
Obesity. Cancers (Basel). 2019;11(4).
74. Smith AG, Sheridan PA, Tseng RJ, Sheridan JF, Beck MA. Selective
impairment in dendritic cell function and altered antigen-specific CD8+
T-cell responses in diet-induced obese mice infected with influenza
virus. Immunology. 2009;126(2):268-79.
75. Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat
Immunol. 2012;13(8):707-12.
76. Misumi I, Starmer J, Uchimura T, Beck MA, Magnuson T, Whitmire JK.
Obesity Expands a Distinct Population of T Cells in Adipose Tissue and
Increases Vulnerability to Infection. Cell Reports.
2019;27(2):514-24.e5.
77. Dhurandhar NV. Infections and body weight: an emerging relationship?
International Journal of Obesity. 2002;26(6):745-6.
78. Pasarica M, Shin AC, Yu M, Ou Yang HM, Rathod M, Jen KL, et al.
Human adenovirus 36 induces adiposity, increases insulin sensitivity,
and alters hypothalamic monoamines in rats. Obesity (Silver Spring).
2006;14(11):1905-13.
79. Dhurandhar NV, Whigham LD, Abbott DH, Schultz-Darken NJ, Israel BA,
Bradley SM, et al. Human adenovirus Ad-36 promotes weight gain in male
rhesus and marmoset monkeys. J Nutr. 2002;132(10):3155-60.
80. Rudrapatna S, Bhatt M, Wang KW, Bierbrier R, Wang PW, Banfield L, et
al. Obesity and muscle-macrophage crosstalk in humans and mice: A
systematic review. Obes Rev. 2019;20(11):1572-96.
81. Bray GA, Kim KK, Wilding JPH, on behalf of the World Obesity F.
Obesity: a chronic relapsing progressive disease process. A position
statement of the World Obesity Federation. Obesity Reviews.
2017;18(7):715-23.
82. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to
insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-6.
83. Klingberg E, Bilberg A, Björkman S, Hedberg M, Jacobsson L,
Forsblad-d’Elia H, et al. Weight loss improves disease activity in
patients with psoriatic arthritis and obesity: an interventional study.
Arthritis Research & Therapy. 2019;21(1):17.
84. Vlietstra L, Stebbings S, Meredith-Jones K, Abbott JH, Treharne GJ,
Waters DL. Sarcopenia in osteoarthritis and rheumatoid arthritis: The
association with self-reported fatigue, physical function and obesity.
PLOS ONE. 2019;14(6):e0217462.
85. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z,
Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism.
2019;92:71-81.
86. Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease:
revisiting an old relationship. Metabolism. 2019;92:98-107.
87. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer
risk: Emerging biological mechanisms and perspectives. Metabolism.
2019;92:121-35.
88. Stone TW, McPherson M, Gail Darlington L. Obesity and Cancer:
Existing and New Hypotheses for a Causal Connection. EBioMedicine.
2018;30:14-28.
89. Stinkens R, Goossens GH, Jocken JW, Blaak EE. Targeting fatty acid
metabolism to improve glucose metabolism. Obes Rev. 2015;16(9):715-57.
90. van der Kolk BW, Kalafati M, Adriaens M, van Greevenbroek MMJ,
Vogelzangs N, Saris WHM, et al. Subcutaneous Adipose Tissue and Systemic
Inflammation Are Associated With Peripheral but Not Hepatic Insulin
Resistance in Humans. Diabetes. 2019;68(12):2247-58.
91. Keophiphath M, Achard V, Henegar C, Rouault C, Clément K, Lacasa D.
Macrophage-secreted factors promote a profibrotic phenotype in human
preadipocytes. Mol Endocrinol. 2009;23(1):11-24.
92. Tanaka M, Ikeda K, Suganami T, Komiya C, Ochi K, Shirakawa I, et al.
Macrophage-inducible C-type lectin underlies obesity-induced adipose
tissue fibrosis. Nature Communications. 2014;5(1):4982.
93. Wang H, Shen L, Sun X, Liu F, Feng W, Jiang C, et al. Adipose group
1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in
obesity. Nature Communications. 2019;10(1):3254.
94. Voss K, Hong HS, Bader JE, Sugiura A, Lyssiotis CA, Rathmell JC. A
guide to interrogating immunometabolism. Nature Reviews Immunology.
2021.
95. Makowski L, Chaib M, Rathmell JC. Immunometabolism: From basic
mechanisms to translation. Immunological Reviews. 2020;295(1):5-14.
96. Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G,
Catalán V. Adipokine dysregulation and adipose tissue inflammation in
human obesity. European Journal of Clinical Investigation.
2018;48(9):e12997.
97. Jung UJ, Choi MS. Obesity and its metabolic complications: the role
of adipokines and the relationship between obesity, inflammation,
insulin resistance, dyslipidemia and nonalcoholic fatty liver disease.
Int J Mol Sci. 2014;15(4):6184-223.
98. Procaccini C, Jirillo E, Matarese G. Leptin as an immunomodulator.
Mol Aspects Med. 2012;33(1):35-45.
99. Travers RL, Motta AC, Betts JA, Bouloumié A, Thompson D. The impact
of adiposity on adipose tissue-resident lymphocyte activation in humans.
International Journal of Obesity. 2015;39(5):762-9.
100. Strissel KJ, DeFuria J, Shaul ME, Bennett G, Greenberg AS, Obin MS.
T-Cell Recruitment and Th1 Polarization in Adipose Tissue During
Diet-Induced Obesity in C57BL/6 Mice. Obesity. 2010;18(10):1918-25.
101. Wang Q, Wu H. T Cells in Adipose Tissue: Critical Players in
Immunometabolism. Frontiers in immunology. 2018;9:2509-.
102. Vitseva OI, Tanriverdi K, Tchkonia TT, Kirkland JL, McDonnell ME,
Apovian CM, et al. Inducible Toll-like receptor and NF-kappaB regulatory
pathway expression in human adipose tissue. Obesity (Silver Spring).
2008;16(5):932-7.
103. Schäffler A, Schölmerich J. Innate immunity and adipose tissue
biology. Trends in Immunology. 2010;31(6):228-35.
104. Kopp A, Gross P, Falk W, Bala M, Weigert J, Buechler C, et al.
Fatty acids as metabolic mediators in innate immunity. Eur J Clin
Invest. 2009;39(10):924-33.
105. Schaeffler A, Gross P, Buettner R, Bollheimer C, Buechler C,
Neumeier M, et al. Fatty acid-induced induction of Toll-like
receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional
signalling with innate immunity. Immunology. 2009;126(2):233-45.
106. Cullberg KB, Larsen JØ, Pedersen SB, Richelsen B. Effects of LPS
and dietary free fatty acids on MCP-1 in 3T3-L1 adipocytes and
macrophages in vitro. Nutr Diabetes. 2014;4(3):e113-e.
107. Russo L, Lumeng CN. Properties and functions of adipose tissue
macrophages in obesity. Immunology. 2018;155(4):407-17.
108. Sharma VM, Puri V. Mechanism of TNF-α-induced lipolysis in human
adipocytes uncovered. Obesity. 2016;24(5):990-.
109. Sethi JK, Hotamisligil GS. Metabolic Messengers: tumour necrosis
factor. Nature Metabolism. 2021;3(10):1302-12.
110. Du X, Liu M, Tai W, Yu H, Hao X, Loor JJ, et al. Tumor necrosis
factor-α promotes lipolysis and reduces insulin sensitivity by
activating nuclear factor kappa B and c-Jun N-terminal kinase in primary
bovine adipocytes. Journal of Dairy Science. 2022;105(10):8426-38.
111. Xia W, Veeragandham P, Cao Y, Xu Y, Rhyne TE, Qian J, et al.
Obesity causes mitochondrial fragmentation and dysfunction in white
adipocytes due to RalA activation. Nature Metabolism. 2024.
112. Heinonen S, Buzkova J, Muniandy M, Kaksonen R, Ollikainen M, Ismail
K, et al. Impaired Mitochondrial Biogenesis in Adipose Tissue in
Acquired Obesity. Diabetes. 2015;64(9):3135-45.
113. Chavakis T, Alexaki VI, Ferrante AW. Macrophage function in adipose
tissue homeostasis and metabolic inflammation. Nature Immunology.
2023;24(5):757-66.
114. Becker M, Dirschl SM, Scherm MG, Serr I, Daniel C. Niche-specific
control of tissue function by regulatory T cells—Current challenges
and perspectives for targeting metabolic disease. Cell Metabolism. 2024.
115. Becker M, Levings MK, Daniel C. Adipose-tissue regulatory T cells:
Critical players in adipose-immune crosstalk. European Journal of
Immunology. 2017;47(11):1867-74.
116. Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI,
Martín-Rodríguez A, Martínez-Guardado I, Navarro-Jiménez E, et al. The
Role of Adipokines in Health and Disease. Biomedicines. 2023;11(5):1290.
117. Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M.
Adipokines and Obesity. Potential Link to Metabolic Disorders and
Chronic Complications. Int J Mol Sci. 2020;21(10).
118. Barral DC, Brenner MB. CD1 antigen presentation: how it works. Nat
Rev Immunol. 2007;7(12):929-41.
119. de Jong A, Peña-Cruz V, Cheng T-Y, Clark RA, Van Rhijn I, Moody DB.
CD1a-autoreactive T cells are a normal component of the human αβ T cell
repertoire. Nature immunology. 2010;11(12):1102-9.
120. Frasca D, Diaz A, Romero M, Garcia D, Jayram D, Thaller S, et al.
Identification and Characterization of Adipose Tissue-Derived Human
Antibodies With ”Anti-self” Specificity. Frontiers in immunology.
2020;11:392-.
121. Cotton RN, Wegrecki M, Cheng T-Y, Chen Y-L, Veerapen N, Le Nours J,
et al. CD1a selectively captures endogenous cellular lipids that broadly
block T cell response. Journal of Experimental Medicine. 2021;218(7).
122. Gapin L. CD1a autoreactivity: When size does matter. Journal of
Experimental Medicine. 2021;218(7).
123. Guo Z, Yang Y, Liao Y, Shi Y, Zhang LJ. Emerging Roles of Adipose
Tissue in the Pathogenesis of Psoriasis and Atopic Dermatitis in
Obesity. JID Innov. 2022;2(1):100064.
124. Hossler E, Wood G, Still C, Mowad C, Maroon M. The effect of weight
loss surgery on the severity of psoriasis. The British journal of
dermatology. 2013;168(3):660.
125. Gisondi P, Del Giglio M, Di Francesco V, Zamboni M, Girolomoni G.
Weight loss improves the response of obese patients with
moderate-to-severe chronic plaque psoriasis to low-dose cyclosporine
therapy: a randomized, controlled, investigator-blinded clinical trial.
The American journal of clinical nutrition. 2008;88(5):1242-7.
126. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin,
an adipokine with potent proinflammatory properties. The Journal of
Immunology. 2005;174(9):5789-95.
127. Shibata S, Saeki H, Tada Y, Karakawa M, Komine M, Tamaki K. Serum
high molecular weight adiponectin levels are decreased in psoriasis
patients. Journal of dermatological science. 2009;55(1):62-3.
128. Nakamizo S, Honda T, Adachi A, Nagatake T, Kunisawa J, Kitoh A, et
al. High fat diet exacerbates murine psoriatic dermatitis by increasing
the number of IL-17-producing γδ T cells. Scientific reports.
2017;7(1):1-13.
129. Zhang Y, Li Q, Rao E, Sun Y, Grossmann ME, Morris RJ, et al.
Epidermal fatty acid binding protein promotes skin inflammation induced
by high-fat diet. Immunity. 2015;42(5):953-64.
130. Varga J, Marangoni RG. Dermal white adipose tissue implicated in
SSc pathogenesis. Nature Reviews Rheumatology. 2017;13(2):71-2.
131. Varga J, Marangoni RG. Systemic sclerosis in 2016: Dermal white
adipose tissue implicated in SSc pathogenesis. Nat Rev Rheumatol.
2017;13(2):71-2.
132. Vossen ARJV, van der Zee HH, Prens EP. Hidradenitis Suppurativa: A
Systematic Review Integrating Inflammatory Pathways Into a Cohesive
Pathogenic Model. Frontiers in Immunology. 2018;9(2965).
133. Sabat R, Jemec GBE, Matusiak Ł, Kimball AB, Prens E, Wolk K.
Hidradenitis suppurativa. Nature Reviews Disease Primers. 2020;6(1):18.
134. Segura S, Requena L. Anatomy and Histology of Normal Subcutaneous
Fat, Necrosis of Adipocytes, and Classification of the Panniculitides.
Dermatologic Clinics. 2008;26(4):419-24.
135. Requena L, Sánchez Yus E. Panniculitis. Part II. Mostly lobular
panniculitis. J Am Acad Dermatol. 2001;45(3):325-61; quiz 62-4.
136. Diaz Cascajo C, Borghi S, Weyers W. Panniculitis: definition of
terms and diagnostic strategy. Am J Dermatopathol. 2000;22(6):530-49.
137. Blake T, Manahan M, Rodins K. Erythema nodosum - a review of an
uncommon panniculitis. Dermatol Online J. 2014;20(4):22376.
138. Mokhtari F, Abtahi-Naeini B, Pourazizi M. Erythema nodosum migrans
successfully treated with indomethacin: A rare entity. Adv Biomed Res.
2014;3:264.
139. Anzengruber F, Mergenthaler C, Murer C, Dummer R. Potassium Iodide
for Cutaneous Inflammatory Disorders: A Monocentric, Retrospective
Study. Dermatology. 2019;235(2):137-43.
140. Lehman CW. Control of chronic erythema nodosum with naproxen.
Cutis. 1980;26(1):66-7.
141. Hayashi S, Ishikawa S, Ishii E, Koike M, Kaminaga T, Hamasaki Y, et
al. Anti-Inflammatory Effects of Potassium Iodide on SDS-Induced Murine
Skin Inflammation. J Invest Dermatol. 2020;140(10):2001-8.
142. Szczęch J, Matławska M, Rutka M, Reich A. Clinical presentation of
erythema nodosum. Post N Med. 2018;31(1A):25-8.
143. Pérez-Garza DM, Chavez-Alvarez S, Ocampo-Candiani J, Gomez-Flores
M. Erythema Nodosum: A Practical Approach and Diagnostic Algorithm.
American Journal of Clinical Dermatology. 2021;22(3):367-78.
144. Requena L, Sánchez Yus E. Erythema nodosum. Semin Cutan Med Surg.
2007;26(2):114-25.
145. Jones JV, Cumming RH, Asplin CM. Evidence for circulating immune
complexes in erythema nodosum and early sarcoidosis. Ann N Y Acad Sci.
1976;278:212-9.
146. Maliniemi P, Hahtola S, Ovaska K, Jeskanen L, Väkevä L, Jäntti K,
et al. Molecular characterization of subcutaneous panniculitis-like
T-cell lymphoma reveals upregulation of immunosuppression- and
autoimmunity-associated genes. Orphanet J Rare Dis. 2014;9:160-.
147. Kunz M, Beutel S, Bröcker E. Leucocyte activation in erythema
nodosum. Clin Exp Dermatol. 1999;24(5):396-401.
148. De Simone C, Caldarola G, Scaldaferri F, Petito V, Perino F, Arena
V, et al. Clinical, histopathological, and immunological evaluation of a
series of patients with erythema nodosum. Int J Dermatol.
2016;55(5):e289-94.
149. Schneider JW, Jordaan HF. The Histopathologic Spectrum of Erythema
Induratum of Bazin. The American Journal of Dermatopathology.
1997;19(4).
150. Mascaró JM, Baselga E. Erythema Induratum of Bazin. Dermatologic
Clinics. 2008;26(4):439-45.
151. Wu X, Subtil A, Craiglow B, Watsky K, Marks A, Ko C. The
coexistence of lupus erythematosus panniculitis and subcutaneous
panniculitis-like T-cell lymphoma in the same patient. JAAD Case Rep.
2018;4(2):179-84.
152. Burrows NP, Walport MJ, Hammond AH, Davey N, Jones RR. Lupus
erythematosus profundus with partial C4 deficiency responding to
thalidomide. Br J Dermatol. 1991;125(1):62-7.
153. Bolognia JL. Dermatology. 3rd ed. edited by Jean L. Bolognia …
[et al.] ed. Edinburgh: Elsevier Saunders; 2012.
154. Lee ATJ, Thway K, Huang PH, Jones RL. Clinical and Molecular
Spectrum of Liposarcoma. J Clin Oncol. 2018;36(2):151-9.
155. Mentzel T. Cutaneous lipomatous neoplasms. Semin Diagn Pathol.
2001;18(4):250-7.
156. Willemze R, Cerroni L, Kempf W, Berti E, Facchetti F, Swerdlow SH,
Jaffe ES. The 2018 update of the WHO-EORTC classification for primary
cutaneous lymphomas. Blood. 2019;133(16):1703-14.
157. Parveen Z, Thompson K. Subcutaneous panniculitis-like T-cell
lymphoma: redefinition of diagnostic criteria in the recent World Health
Organization-European Organization for Research and Treatment of Cancer
classification for cutaneous lymphomas. Arch Pathol Lab Med.
2009;133(2):303-8.
158. Fink-Puches R, Zenahlik P, Bäck B, Smolle J, Kerl H, Cerroni L.
Primary cutaneous lymphomas: applicability of current classification
schemes (European Organization for Research and Treatment of Cancer,
World Health Organization) based on clinicopathologic features observed
in a large group of patients. Blood. 2002;99(3):800-5.
159. Bauer WM, Aichelburg MC, Griss J, Skrabs C, Simonitsch-Klupp I,
Schiefer AI, et al. Molecular classification of tumour cells in a
patient with intravascular large B-cell lymphoma. Br J Dermatol.
2018;178(1):215-21.
160. Gonzalez CL, Medeiros LJ, Braziel RM, Jaffe ES. T-cell lymphoma
involving subcutaneous tissue. A clinicopathologic entity commonly
associated with hemophagocytic syndrome. Am J Surg Pathol.
1991;15(1):17-27.
161. Herbst KL. Rare adipose disorders (RADs) masquerading as obesity.
Acta Pharmacol Sin. 2012;33(2):155-72.
162. Szolnoky G, Ifeoluwa A, Tuczai M, Varga E, Varga M, Dosa-Racz E,
Kemeny L. Measurement of capillary fragility: a useful tool to
differentiate lipedema from obesity? Lymphology. 2017;50(4):203-9.
163. Al-Ghadban S, L. Herbst K, A. Bunnell B. Lipedema: A Painful
Adipose Tissue Disorder. Adipose Tissue - An Update2019.
164. Torre YS-Dl, Wadeea R, Rosas V, Herbst KL. Lipedema: friend and
foe. Horm Mol Biol Clin Investig.
2018;33(1):/j/hmbci.2018.33.issue-1/hmbci-7-0076/hmbci-2017-0076.xml.
165. Kruppa P, Georgiou I, Biermann N, Prantl L, Klein-Weigel P, Ghods
M. Lipedema-Pathogenesis, Diagnosis, and Treatment Options. Dtsch
Arztebl Int. 2020;117(22-23):396-403.
166. Forner-Cordero I, Szolnoky G, Forner-Cordero A, Kemény L. Lipedema:
an overview of its clinical manifestations, diagnosis and treatment of
the disproportional fatty deposition syndrome - systematic review. Clin
Obes. 2012;2(3-4):86-95.
167. Felmerer G, Stylianaki A, Hollmén M, Ströbel P, Stepniewski A, Wang
A, et al. Increased levels of VEGF-C and macrophage infiltration in
lipedema patients without changes in lymphatic vascular morphology.
Scientific Reports. 2020;10(1):10947.
168. Suga H, Araki J, Aoi N, Kato H, Higashino T, Yoshimura K. Adipose
tissue remodeling in lipedema: adipocyte death and concurrent
regeneration. J Cutan Pathol. 2009;36(12):1293-8.
169. Al-Ghadban S, Diaz ZT, Singer HJ, Mert KB, Bunnell BA. Increase in
Leptin and PPAR-γ Gene Expression in Lipedema Adipocytes Differentiated
in vitro from Adipose-Derived Stem Cells. Cells. 2020;9(2).
170. Al-Ghadban S, Pursell IA, Diaz ZT, Herbst KL, Bunnell BA. 3D
Spheroids Derived from Human Lipedema ASCs Demonstrated Similar
Adipogenic Differentiation Potential and ECM Remodeling to Non-Lipedema
ASCs In Vitro. International journal of molecular sciences.
2020;21(21):8350.
171. Mann JP, Savage DB. What lipodystrophies teach us about the
metabolic syndrome. The Journal of Clinical Investigation.
2019;129(10):4009-21.
172. Melvin A, Stears A, Savage DB. Recent developments in
lipodystrophy. Curr Opin Lipidol. 2019;30(4):284-90.
173. Blaszczak AM, Wright VP, Anandani K, Liu J, Jalilvand A, Bergin S,
et al. Loss of Antigen Presentation in Adipose Tissue Macrophages or in
Adipocytes, but Not Both, Improves Glucose Metabolism. The Journal of
Immunology. 2019;202(8):2451.
174. Weyer C, Foley J, Bogardus C, Tataranni P, Pratley R. Enlarged
subcutaneous abdominal adipocyte size, but not obesity itself, predicts
type II diabetes independent of insulin resistance. Diabetologia.
2000;43(12):1498-506.
175. Xiao L, Yang X, Lin Y, Li S, Jiang J, Qian S, et al. Large
adipocytes function as antigen-presenting cells to activate CD4+ T cells
via upregulating MHCII in obesity. International Journal of Obesity.
2016;40(1):112-20.
176. Deng T, Lyon CJ, Minze LJ, Lin J, Zou J, Liu JZ, et al. Class II
major histocompatibility complex plays an essential role in
obesity-induced adipose inflammation. Cell metabolism.
2013;17(3):411-22.
177. Wong Y, Nakamizo S, Tan KJ, Kabashima K. An Update on the Role of
Adipose Tissues in Psoriasis. Frontiers in Immunology. 2019;10(1507).
178. Lengyel E, Makowski L, DiGiovanni J, Kolonin MG. Cancer as a Matter
of Fat: The Crosstalk between Adipose Tissue and Tumors. Trends Cancer.
2018;4(5):374-84.
179. Cozzo AJ, Fuller AM, Makowski L. Contribution of Adipose Tissue to
Development of Cancer. Compr Physiol. 2017;8(1):237-82.
180. López-Lerma I, Peñate Y, Gallardo F, Martí RM, Mitxelena J, Bielsa
I, et al. Subcutaneous panniculitis-like T-cell lymphoma: Clinical
features, therapeutic approach, and outcome in a case series of 16
patients. Journal of the American Academy of Dermatology.
2018;79(5):892-8.
181. Akdis CA. Does the epithelial barrier hypothesis explain the
increase in allergy, autoimmunity and other chronic conditions? Nat Rev
Immunol. 2021;21(11):739-51.
182. Ter Poorten MC, Thiers BH. Panniculitis. Dermatol Clin.
2002;20(3):421-33, vi.
183. Johnson EF, Tolkachjov SN, Gibson LE. Alpha-1 antitrypsin
deficiency panniculitis: clinical and pathologic characteristics of 10
cases. Int J Dermatol. 2018;57(8):952-8.
184. Morgan AJ, Schwartz RA. Cutaneous polyarteritis nodosa: a
comprehensive review. Int J Dermatol. 2010;49(7):750-6.
185. Bhat RM, Vaidya TP. What is New in the Pathogenesis and Management
of Erythema Nodosum Leprosum. Indian Dermatol Online J.
2020;11(4):482-92.
186. Crowson AN, Mihm MC, Jr., Magro CM. Cutaneous vasculitis: a review.
J Cutan Pathol. 2003;30(3):161-73.
187. Lee JT, Kalani MA. Treating superficial venous thrombophlebitis. J
Natl Compr Canc Netw. 2008;6(8):760-5.
188. LeBlanc RE, Tavallaee M, Kim YH, Kim J. Useful Parameters for
Distinguishing Subcutaneous Panniculitis-like T-Cell Lymphoma From Lupus
Erythematosus Panniculitis. Am J Surg Pathol. 2016;40(6):745-54.
189. Requena C, Sanmartín O, Requena L. Sclerosing panniculitis.
Dermatol Clin. 2008;26(4):501-4, vii.
190. Greenberg AS, Hasan A, Montalvo BM, Falabella A, Falanga V. Acute
lipodermatosclerosis is associated with venous insufficiency. J Am Acad
Dermatol. 1996;35(4):566-8.
191. Polcari IC, Stein SL. Panniculitis in childhood. Dermatol Ther.
2010;23(4):356-67.
192. Burden AD, Krafchik BR. Subcutaneous fat necrosis of the newborn: a
review of 11 cases. Pediatr Dermatol. 1999;16(5):384-7.
193. Dahl PR, Su WP, Cullimore KC, Dicken CH. Pancreatic panniculitis. J
Am Acad Dermatol. 1995;33(3):413-7.
194. Delgado-Jimenez Y, Fraga J, García-Díez A. Infective panniculitis.
Dermatol Clin. 2008;26(4):471-80, vi.
195. Moreno A, Marcoval J, Peyri J. Traumatic panniculitis. Dermatol
Clin. 2008;26(4):481-3, vii.
196. Quesada-Cortés A, Campos-Muñoz L, Díaz-Díaz RM, Casado-Jiménez M.
Cold panniculitis. Dermatol Clin. 2008;26(4):485-9, vii.
197. Pielasinski Ú, Machan S, Camacho D, Juárez Á, Cedeño M, Ruiz Maciá
JA, Requena L. Postirradiation Pseudosclerodermatous Panniculitis: Three
New Cases With Additional Histopathologic Features Supporting the
Radiotherapy Etiology. The American Journal of Dermatopathology.
2013;35(1):129-34.
198. Yanes AF, Owen JL, Colavincenzo ML. Factitial panniculitis as a
manifestation of self-imposed factitious disorder. Dermatol Online J.
2019;25(5).
199. Marcoval J, Moreno A, Mañá J, Peyri J. Subcutaneous sarcoidosis.
Dermatol Clin. 2008;26(4):553-6, ix.
200. Kwon EJ, Emanuel PO, Gribetz CH, Mudgil AV, Phelps RG. Poststeroid
panniculitis. J Cutan Pathol. 2007;34 Suppl 1:64-7.
201. López-Lerma I, Peñate Y, Gallardo F, Martí RM, Mitxelena J, Bielsa
I, et al. Subcutaneous panniculitis-like T-cell lymphoma: Clinical
features, therapeutic approach, and outcome in a case series of 16
patients. Journal of the American Academy of Dermatology.
2018;79(5):892-8.
202. Mascaró JM, Jr., Baselga E. Erythema induratum of bazin. Dermatol
Clin. 2008;26(4):439-45, v.
203. Tran TA, DuPree M, Carlson JA. Neutrophilic lobular (pustular)
panniculitis associated with rheumatoid arthritis: a case report and
review of the literature. Am J Dermatopathol. 1999;21(3):247-52.
204. Sutra-Loubet C, Carlotti A, Guillemette J, Wallach D. Neutrophilic
panniculitis. Journal of the American Academy of Dermatology.
2004;50(2):280-5.