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Abstract 



Molecular Dynamics (MD) simulations are widely used to predict the behavior of molecular

systems over time. However, one of the great challenges of MD simulations is how to treat the

thousands  of  configurations  obtained  from  calculations,  since  the  number  of  the  quantum

calculations (QM) required for evaluating electronic parameters is  too high and,  sometimes,

computationally impracticable. Thus, an efficient and accurate sampling protocol is essential for

combining  classical  MD  and  QM  calculations.  In  this  article,  based  on  the  OWSCA

methodology, 93 wavelet signals were analyzed in order to further refine the methodology and

identify the best wavelet family for [Fe(H2O)6]2+  and [Mn(H2O)6]2+ complexes in solution. Our

results point out that the bior1.3 was the best wavelet, values closest to the experimental data

were obtained for both studied systems. 
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1.0- Introduction

Molecular  dynamics  (MD)  calculations  are  used  to  predict  the  physical

movements of atoms and molecules and it is one of the most versatile computational

techniques  for  the  study  of  biological  macromolecules  1–4.  In  fact,  in  the  rational

structure-based drug design, MD simulations have exhaustively contributed to various

stages of the process1,5. In fact, MD simulations have evolved into a mature technique

that  can  be  used  effectively  to  understand  macromolecular  structure-to-function

relationships 1,6,7. 

By using MD simulations,  it  is  possible to study the solvent  effect employing

explicit  molecules to obtain time-averaged properties of the system, such as density,

conductivity,  and  dipolar  moment,  as  well  as  different  thermodynamic  parameters,

including interactions energies and entropies 2,8. 

MD  calculations  generally  provide  thousands  of  conformations  throughout  of

simulation, therefore, one of the biggest challenges is how to select these conformations

for  QM  calculations  required,  for  example,  calculations  of  Gibbs  free  energy

calculations,  spectroscopic properties, such as NMR or EPR9,10.

Currently there are several methods for selecting MD structures, as the method of

statistical  inefficiency  11–13,  Clustering14–16,  PCA  (Principal  component  analysis)17,18,

random method (selection of 50 out of 50 structures, for example)19 and recently our

research group developed the OWSCA9 method. It is important to mention that each

method has its particularities and must be used carefully, in order not to compromise the

results.

 Recently,  the  use  of  the  Wavelet  transform has  demonstrated  to  be  a  very

promising in the selection of structures9. In this method, OWSCA, the signal of a MD



simulation is compressed without damaging the main characteristics of the original MD

simulation  data  and,  representative  conformations  are  selected.  It  is  noteworthy,

however, that the number of selected conformations can be dependent of the wavelet

family  used  in  the  compression  procedure.  In  this  perspective,  to  investigate  MD

simulations  by  different  wavelet  families  may  give  rise  to  a  new,  efficient  and

inexpensive computational protocol for improving the OWSCA methodology. 

It should be kept in mind that the Wavelet transform is a mathematical procedure

that can convert the signal into a different form20–22. This conversion reveals the main

features hidden within the sign and shows the original sign in a more succinct way. The

wavelet transform using the Haar function has been shown to be very promising in the

study of the selection of MD conformations 9. 

With the selection of MD structures,  several  calculations  can be performed to

study the properties of the systems. A property that has been extensively explored by

our research group, is the hyperfine coupling constant (Aiso)23–27. The hyperfine coupling

constant is the most sensitive parameter for determining the values of relaxation rates,

longitudinal (R1 = 1/T1) or transverse (R2 = 1/T2). The T1 and T2 values are very useful

for  predicting  the  efficiency  of  a  contrast  agent  (CA),  which  are  paramagnetic

compounds used in Magnetic Resonance Imaging (RMI). MRI uses the NMR signal of

water protons present in the body, whose contrast among different tissues is related to

T1 and  T2 relaxation  rates.  In  most  cases,  only  the  natural  relaxation  rate  of  water

protons is not sufficient for providing good visualization of tissue images, therefore it is

necessary the use of contrast agents28,29.

In the present work, we explored a new methodology for the selection of MD

structures.  This  methodology  is  based  on  the  OWSCA30 already  described  and

successfully  applied,  however,  in  this  work  the  aim  is  to  further  optimize  the



methodology.  Thus,  for  this  purpose  several  families  of  wavelets  were  studied  and

validated  with  experimental  results  of  Aiso of  the  [Fe(H2O)6]2+  and  [Mn(H2O)6]2+

complexes. 

2.0- Computational methods

2.1- Geometries construction, optimization and Molecular dynamics simulations

The geometries construction of the compounds [Fe(H2O)6]2+ and [Mn(H2O)6]2+

were performed in the  GaussView program, thus,  after  construction,  the  geometries

were fully optimized in the Gaussian 09 program31 with the functional B3LYP and the

basis  set  Lanl2dz  for  the  Fe2+,  Mn2+ atoms  and  6-311g++ (d,  p)  for  hydrogen  and

oxygen atoms.

From the  optimized  geometries,  molecular  dynamics  (MD) simulations  were

performed using the REAXFF program, which was developed and validated by van

Duin and coworkers32  (REAX-FF), for the simulations we used the FEOCH33 force

field for [Fe(H2O)6]2+ and NiCH for the compound [Mn(H2O)6]2+.  The MD simulations

were performed at 310.65 K (physiological  temperature).  In fact, this  temperature is

suitable to simulate the behavior of compounds in biological systems. As usual, periodic

boundary conditions (PBC) and a cutoff distance of 10.0 Å have been applied.  The

system consists of 300 water molecules in a cubic cell with a side of 20 Å. The volume

of  the  cube  was  determined  by  the  density  of  liquid  water

(ρ =  0.996  g  cm-3).  The  constant  atom  number,  temperature  and  volume  (NVT)

ensemble, known as the canonical ensemble, was applied for both systems. First, the

initial  configuration  was  minimized  using  the  steepest  descente  and  the  conjugate

gradient algorithm until an energy gradient of 0.01 kcal mol−1  Å−1 was reached. The

simulations,  with  water  molecules,  consisting  of  a  thermalization  phase  of  500  ps,

followed by an additional period of 2.0 ns, was employed.



2.2- Wavelet transform

The  Wavelet  Transform  is  a  signal  processing  technique  widely  used  in  the

analysis  of  irregular  and  non-periodic  waveforms.  Such  a  method  provides  signal

information in the time and frequency domains simultaneously,  being able to signal

denoising, hidden features revealing or to represent the original signal in an compactly

way 12.

Mathematically, the Continuous Wavelet Transform (CWT) of a signal x(t) can be

obtained according to Equation (1), which represents the internal product of the signal

with a base function φ τ , s(t) given by Equation (2), where τ is a translation factor, s is a

scale factor and φ is the mother wavelet or reference wavelet, which is the transforming

function itself 20,21.

CWT x
φ

(τ , s )=∫
−∞

∞

x (t ) . φτ ,s(t )dt ,                                                                               (1)

φ τ , s (t )=
1
√s

.φ( t−τ
s ).                                                                                                     (2)

In general, during the wavelet transformation, the function  φ τ , s ( t ) is displaced

along with the signal x(t) at different time instants, according to the translation factor τ,

and the CWT is calculated for different compression/expansion values of the mother

wavelet,  according  to  the  s scale  factor.  Several  wavelet  families  can  be  used  to

transform/decompose the signal, with the Haar, Daubechies, Bior, and Symlets wavelets

being the most common types employed in the literature 21,34.



Computationally, the wavelet analysis is performed by the CWT discretization.

In  this  way,  the  Discrete  Wavelet  Transform  (DWT)  constitutes  an  algorithm  that

quickly and efficiently calculates the wavelet transform using digital filtering techniques

based  on  low-pass  and  high-pass  filters,  which  are  synthesized  according  to  the

characteristics of the desired mother wavelet.

Figure 1 illustrates the DWT procedure, consisting of systematic low-pass and

high-pass  filtering  of  the  x(t) signal,  with  subsequent  sub-sampling  by 2,  in  such a

manner the original signal is decomposed into several frequency ranges, with different

resolutions.  The  resulted  coefficients  at  each  filtering/decomposition  level,  called

approximation coefficients (cA) and detail coefficients (cD), for the low-pass and high-

pass filters, respectively, represent the signal information in different frequency ranges.

Figure 1

2.3- Signal Compression

When  applied  in  conjunction  with  an  optimization  strategy  for  selecting  a

truncation point for the coefficients cA and cD, the DWT enables signal compression.

This  procedure  was  called  Optimal  Wavelet  Signal  Compression  (OWSC),  being

proposed in30 to reduce the number of structures for calculating DM. In this work, only

the Haar wavelet was analyzed, enabling an efficient MD conformation compression.

Nevertheless, as different mother wavelets result in different coefficients in the DWT

procedure, and consequently, indistinct reconstructed/compressed signals (through the

inverse transform application),  several  wavelets  families  will  be investigated  in  this

work in the application of OWSCA, aiming to find the most appropriate mother wavelet

to MD conformation compression.



To  briefly  summarise,  the  OWSCA  techinique  for  signal  compression  is

performed according to the following steps. For more details, see30:

i) DWT  application  in  the  signal  decomposition,  i.e.,  in  the  MD

conformation data decomposition;

ii) Optimization problem solution to determine a threshold value (δj) for the

coefficients cA and cD, being j the jth-level of the DWT decomposition.

Such a step is performed employing a genetic algorithm, which searches

for the optimal values of δ in order to minimize the difference between

the original signal  x(t) and the compressed signal  y(t), i.e., to minimize

‖x ( t )− y (t)‖;

iii) Signal compression, canceling the cA and cD indexes whose values are

less than the founded optimal threshold (δ j
¿), i.e., cA j (k )=0 if cA j (k )≤δ j

¿,

where k is the kth-index of the jth cA coeficient;

iv) Application of the inverse wavelet transform to obtain the compressed

signal y (t).

3.0-Results and discussion

3.1- Study of the different families of wavalets

In the present work, we study several families of waveles (table 1) in order to

determine  an  efficient  and  accurate  protocol  for  selection  structures  from  MD

simulations. For the analysis, it was used the absolute Pearson’s correlation coeficiente

(r) to compare the compressed and the original signals, obtained as  Equation 3, where n

is the sample size and x and y are the statistical mean of the original and compressed

signals,  respectively.  In  this  way, the closer  r to  1,  the more efficient  is  the signal

compression since its waveform is more similar to the original case. Thus, it is possible



to  determine  which  wavelets  families  are  more  suitable  for  the  selection  of  DM

structures.

r=
∑
i=1

n

(x i−x )( y i− y )

√∑
i=1

n

(xi−x)2√∑
i=1

n

( y i− y )
2

(3)                               

In the OWSCA methodology, 12 levels of decomposition of the wavelet signal

were used. The amplitude of the coefficients can be viewed on the vertical axis, while

the horizontal axis shows the number of points. The lowest wavelet levels contain high

frequency data, while the highest wavelet levels contain low frequency data, thus, each

level must have a different limit. Figure 2 shows the 12 levels for the fk8 wavelet, the

coefficients that had a greater contribution were 1, 2, 3, 9 and 10, the other coefficients

lead to a small contribution to the sign. 

         Figure 2

Table 1

Table 1 shows the values of the correlation coefficients for the [Fe(H2O)6]2+  35

and  [Mn(H2O)6]2+ complexes,  thus,  the  best  ten  wavelets  were  selected,  then  aiso

calculation and methodology validation were carried out.  Table 2 shows the selected

wavelets,  the  best  wavelets  were  the  Biorthogonal  (bior1.1,  bior1.3  and  bior1.5),

Reverse  Biorthogonal  (rbior1.1  and  rbior1.3),  Daubechies  (db1  and db26),  Discrete



Meyer (dmey) and Fejer-Korovkin (fk18 and fk22), it is important to note that bior1.3

and  rbior  3.1  wavalets  reached  the  best  correlation  coeficiente,  because  for  these

wavelets, we have the values of r equal to  r = 0.6969 and 0.6589  for [Fe(H2O)6]2+ and r

=  0.6395  and  0.7469  for  the  compound  [Mn(H2O)6]2+  for  the  bior1.3  and  rbior3.1,

respectively. Figure 1 shows the energy form MD conformations ([Fe(H2O)6]2+) at each

time for the  selected wavelets (blue is the original signal and red is the compressed

signal). In that way, we can highlight the rbio 3.1 wavelet, in this wavelet it is possible

to observe that practically all DM structures were selected. Therefore, we can discard

this  wavelet  because  the  large  number  of  structures  makes  the  A iso calculations

unfeasible.

Table 2

Figure 3

In DM simulations, it was considered for the analysis  the period between 40,000

and 10,000 fs was observed that the period of energy decrease (dynamic period) was

between 0 and 40,000 fs.   It was observed that the period of energy decrease (dynamic

period) was between 0 and 40,000 fs. In view of this, such period was excluded from

the analysis and the compression was performed only in the stationary phase, where the

energy oscillates periodically. It can be observed that the original data set x(t) presents a

high oscillatory (noisy) profile while the compressed data set y(t), with ny equals to 50,

presents a smoother profile not equidistantly spaced. Notice that the trajectory of both

curves is similar, meaning that y(t) captures the main features of x(t). 



Table 2 shows the numbers of the structures selected for the group of the best

wavelets, it is possible to observe that the rbior1.3 wavelet is not found in this table 2, in

figure 3, it is possible to observe that practically all the conformations for the wavelet

rbior 3.1 are important, so it is impracticable to perform the calculations all the points

and thus we exclude this wavelets due to the great number of conformations, as already

mentioned. Another important point is that the numbers of selected structures were very

close for both compounds ([Fe(H2O)6]2+ and [Mn(H2O)6]2+), this shows that the OWSCA

method can be used in a similar way for different compounds.

Table 3

3.2- Validating theoretical strategies by Aiso calculations

Paramagnetic compounds, which have unpaired electrons, currently have a great

interest, mainly, in the understanding of biological systems, for example, contrast agents

for magnetic  resonance imaging (MRI)  36,37.  Contrast  agents (CAs) have a minimum

requirement  to  be  paramagnetic  compounds,  thus,  through  EPR  spectroscopy  it  is

possible to study these compounds, having the hyperfine coupling constant (Aiso) as a

parameter to assess these properties30.

From Aiso calculations, it is possible to predict longitudinal (T1) and transverse

(T2) relaxation times for water molecules, the equations 4 and 5 represent the relaxation

time T1 and T2 induced by paramagnetic ions in aqueous solution, from this equation, it

is possible to highlight the Aiso parameter, which is the most sensitive parameter in

solution. In other words, any small variation in the system directly influences the values

of Aiso and consequently the values of T1 and T2.



R1=
1
T1
≅
1
15

S ( S+1 ) ge
2 β ² g ²N β ²N
ħ ² r6

+¿R 1=
1
T1
≅
1
15

S ( S+1 ) ge
2 β ² g ²N β ²N
ħ ² r6

+¿

R1=
1
T 1

≅
1
15

S (S+1 ) ge ² β ² g ²N β ²N
ħ ² r6

+¿                             (4)

R2=
1
T 2

≅
1
15

S (S+1 ) ge
2 β2gN

2 βN
2

h2r 6
+¿             (5)

Analyzing  equations  2  and 3,  the  relaxation  time T1  and  T2 depends  on  the

electron spin (S), the electronic and proton g factors (ge and gN, respectively), the Bohr

magneton (β), the nuclear magneton (βN), the hyperfine coupling constant (A), the ion-

nucleus distance (r), and the Larmor frequencies for the proton and electron spins (ωI  

and ωS , respectively) 38 . The correlation times τ c andτ e  are characteristic of

the rate  of  change of the  interactions  between the metallic  species  and neighboring

protons. Each of the relaxation rates is a sum of two terms. The first term comes from

the dipolar coupling and the second term from the scalar coupling.  Hence, there is a

dependence of the relaxation time on the τ and  hyperfine coupling constants  values.

This dependence is valid for all types of collisions, which leads to an expression for the

relaxation time (Equations 1 and 2) 39. The paramagnetic ions most commonly found T1

and T2 depend on the correlation times τ c and τ e and hyperfine coupling constants 40. 

Thus, Aiso values were studied for two complexes [Fe(H2O)6]2+ and [Mn(H2O)6]2+,

both  coordinated  with  water  molecules.  Figure  4  shows  the  structures  for  the

[Fe(H2O)6]2+ complexafter  the DM calculations  with the first  layer  of solvation,  this

approach  is  important  to  reduce  the  computational  cost  of  the  system,  this  same



methodology has already been used for several systems without losing the important

statistical information 10,41.

Figure 4

In order to validate our methodology and check which wavelet is best for the

selection of DM configuratoins, theoretical Aiso calculations were performed. Table 2

shows the Aiso  values for both compounds in different wavelets, thus, initially, we will

analyze the [Fe(H2O)6]2+ complex. For the [Fe(H2O)6]2+ complex, the experimental the

Aiso values of the Fe2+ atom is equal to 0.500 MHz and the wavelets that came closest to

that value was the bior 1.1 with the value of 0.496 MHz. Indeed, there is a very small

difference  between the  theoretical  and experimental  values,  this  difference  is  0.004

MHz. The wavelet that had a value more distant from the experimental was the Dmey

with a value of 0.454 MHz, a difference of 0.046 MHz between the theoretical and

experimental values.  In fact, for the Dmey wavelet,  there are very few structures to

represent the entire thermal effect of the system. The fk18 wavelet, which had only 12

structures selected, shows also a Aiso value (0.459MHz) far from the experimental value,

a difference of 0.041 MHz between the theoretical and experimental values is observed.

These two wavalets were the worst models for the [Fe(H2O)6]2+ complex. This result

puts in evidence that the behavior of the wavelet directly influences the system and that

few  selected  structures  cannot  realistically  describe  the  system.  In  fact,  important

configurations can be left out and this factor depends on the type of wavelet that will be

used.

Turning now to the [Mn(H2O)6]2+ complex, it is possible to observe that the best

wavelet was again bior1.3, being that the experimental Aiso values for this complex is

0.860 and 5.400MHz for the atoms of  1H and  17O, respectively. Thus, the theoretical



values for the bior1.3 wavetet were 0.853 and 5,382 MHz for the  1H and  17O atoms,

respectively,  a  difference  between  the  theoretical  and experimental  values  of  0.007

MHz for the atom of  1H and 0.018 MHz for the atom of 17O. It is also observed that the

wavelet  that  had the most  distant  result  from the experimental  was the dmey,  with

theoretical values of 0.818 and 4,923 MHz for the atoms of 1H and 17O, respectively, a

difference of 0.049 MHz for 1H and 0.295 MHz for 17O was obtained.

Table 4

From the  Aiso results,  it  was  noticed  that  the wavelet  that  best  describes  the

behavior of our system is the dmey, the fact, the theoretical values are very close to the

experimental values for this wavelet.  

There is a variety of wavelet  families21,   as mentioned. The difference of the

wavelet families varies according to some criteria such as: the length of the support of

the  mother  wavelet,  the  number  of  disappearance  moments,  the  symmetry  or  the

regularity.  Another  criterion  that  is  also  important  and  worth  considering  is  the

existence of a corresponding scale function and the orthogonality or bi-orthogonality of

the  resulting  analysis.  When  the  mother  wavelet  produces  through  translation  and

scaling  all  the  wavelet  functions  used  in  the  transformation,  thus,  it  is  possible  to

determine the characteristics of the resulting Wavelet Transform. With this in mind, it is

important that the details of a particular application must be taken into account and the

appropriate mother wavelet must be chosen to use the wavelet transform effectively to

get satisfactory results  for the analysis  in question.  In the case of the present work,

wavelets  have  been  used  for  selecting  representative  conformations  of  molecular

dynamics simulations. Thus, the wavelet that had a better result was the bior1.3 34.  

The superior performance of biortogonal wavelets  can be related to its  linear



phase property, which is fundamental for signal reconstruction since the symmetry of

the filters coefficients is guaranteed 34. 

4- Conclusions

Based on our findings, the bior 1.3 wavelet showed the best A iso value, compared

to experimental values, of the studied compounds ([Fe(H2O)6]2+ and [Mn(H2O)6]2+). For

the bior 1.3 wavelet, we obtain the average values of 0.496 MHz (experimental value

0.500 MHz) for the Fe2+ atom of compound  [Fe(H2O)6]2+ and  0.853 and 5.382 MHz

values  for  the  atoms  of  1H  and  17O,  respectively  (experimental  values  0.860  and

5.400MHz42), for [Mn(H2O)6]2+ compound. In  this  sense,

this article was intended to refine the methodology already developed (OWSCA). Thus,

for  this  purpose,  93 wavelets  were analyzed being 6 families  (bior,  rbior,  db,  sym,

dmey, fk, coif). Thereby, wavelet bior 1.3 can be successfully used for the selection of

DM structures for coordination compounds containing transition metals. For other types

of systems a thorough analysis must be carried out in order to verify which is the best

wavelet  for  each  system (in the near  future we will  analyze  the  wavelets  for  other

systems). In this way, the use of the OWSCA

methodology is able to drastically reduce the number of conformations without losing

important  information,  introducing  thermal  and solvent  effects  in  spectroscopic  and

thermodynamic  theoretical  calculations  with  reasonable  trade-off  between  cost  and

accuracy. 
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Table 1. Correlation Coefficient Values for the studied compounds

[Fe(H2O)6]2+ [Mn(H2O)6]2+

Wavalet Correlation coefficient Correlation coefficient
1 bior1.1 0.5989 0.5268
2 bior1.3 0.6969 0.6395
3 bior1.5 0.5071 0.5307
4 bior2.2 0.0341 0.1345
5 bior2.6 0.1378 0.3110
6 bior2.8 0.0644 0.3579
7 bior3.1 0.5111 0.0095
8 bior3.3 0.2299 0.4155
9 bior3.5 0.2321 0.3437
10 bior3.7 0.0816 0.4356
11 bior3.9 0.1379 0.3710
12 bior4.4 0.1370 0.4761
13 bior5.5 0.0172 0.4745
14 bior6.8 0.1986 0.3282
15 rbio1.1 0.5807 0.5268
16 rbio1.3 0.1622 0.4680
17 rbio1.5 0.1929 0.4587
18 rbio2.2 0.0102 0.2112
19 rbio2.4 0.0785 0.4327
20 rbio2.6 0.0280 0.4769
21 rbio2.8 0.0509 0.4831
22 rbio3.1 0.6589 0.7469
23 rbio3.3 0.3896 0.3434
24 rbio3.5 0.2294 0.3127
25 rbio3.7 0.3078 0.3706



26 rbio3.9 0.2825 0.4694
27 rbio4.4 0.0936 0.4409
28 rbio5.5 0.0195 0.3381
29 rbio6.8 0.0420 0.3972
30 db1 (haar) 0.5655 0.5001
31 db2 0.0374 0.2359
32 db3 0.0615 0.4139
33 db4 0.0576 0.4244
34 db5 0.1099 0.4924
35 db6 0.0108 0.4370
36 db7 0.2540 0.4129
37 db8 0.1056 0.4403
38 db9 0.1324 0.4839
39 db10 0.1104 0.5130
40 db11 0.2414 0.4926
41 db12 0.1262 0.5520
42 db13 0.2166 0.5273
43 db14 0.0084 0.5244
44 db15 0.1051 0.4915
45 db16 0.2166 0.4871
46 db17 0.0656 0.4773
47 db18 0.0125 0.4088
48 db19 0.0744 0.5137
49 db20 0.1171 0.4925
50 db21 0.1814 0.5233
51 db22 0.0121 0.4501
52 db23 0.0818 0.4965
53 db24 0.1005 0.5309
54 db25 0.0350 0.4873
55 db26 0.2749 0.4809
56 db27 0.0417 0.4827
57 db28 0.1109 0.5608
58 db29 0.0513 0.5235
59 db30 0.2277 0.4908
60 db31 0.0019 0.4836
61 db32 0.0186 0.4458
62 db33 0.0420 0.5581
63 db34 0.1422 0.5152
64 db35 0.0560 0.5198
65 db36 0.0971 0.4982
66 db37 0.1711 0.4898
67 db38 0.0211 0.4257
68 db39 0.2473 0.4800
69 db40 0.1840 0.5189
70 db41 0.0348 0.4545
71 db42 0.1661 0.4335
72 db43 0.0523 0.4724
73 db44 0.0561 0.4774



74 db45 0.1518 0.4755
75 sym2 0.0374 0.2359
76 sym3 0.0615 0.4139
77 sym4 0.0285 0.2972
78 sym5 0.0099 0.4043
79 sym6 0.2481 0.4004
80 sym7 0.0590 0.4906
81 sym8 0.2301 0.3504
82 dmey 0.4373 0.5949
83 fk4 0.3230 0.4917
84 fk6 0.0499 0.3728
85 fk8 0.1277 0.5296
86 fk14 0.1013 0.4629
87 fk18 0.4288 0.5766
88 fk22 0.4867 0.6161
89 coif1 0.0523 0.2568
90 coif2 0.1532 0.3600
91 coif3 0.2874 0.3438
92 coif4 0.0194 0.3445
93 coif5 0.0139 0.3620



Table 2.  10 best wavelet models

[Fe(H2O)6]2+ [Mn(H2O)6]2+

Wavalet Correlation coefficient Correlation coefficient
bior1.1 0.5870 0.5268
bior1.3 0.6969 0.6395
bior1.5 0.5071 0.5307
rbio1.1 0.5807 0.5268
rbio3.1 0.6589 0.7469

db1 (haar) 0.5655 0.5001
db26 0.2749 0.4809
Dmey 0.4373 0.5949
fk18 0.4288 0.5766
fk22 0.4867 0.6161



Table 3.  Number of structures selected from each wavelet 

[Fe(H2O)6]2+ [Mn(H2O)6]2+

Wavalet Número de estruturas
selecionadas 

Número de estruturas
selecionadas

bior1.1 46 42
bior1.3 34 35
bior1.5 49 47
rbio1.1 43 44

db1 (haar) 47 45
db26 16 23
dmey 14 18
fk18 12 14
fk22 22 21



Table 4. Aiso values for different Wavelets

[Fe(H2O)6]2+ [Mn(H2O)6]2+

Wavalet Aiso (MHz) Aiso (MHz)
Fe2+ 1H 17O

bior1.1 0.473 0.823 5.175
bior1.3 0.496 0.853 5.382
bior1.5 0.491 0.831 5.375
rbio1.1 0.482 0.821 5.112

db1 (haar) 0.488 0.915 5.275
db26 0.460 0.824 5.021
dmey 0.454 0.811 5.105
fk18 0.459 0.815 4.923
fk22 0.519 0.825 5.435

Experimental 0.500   0.86042 5.40042



Figure Captions:

Figure 1: Filter bank for DWT signal decomposition.

Figure 2: Optimal thresholds δj* (vertical axis: threshold value; horizontal axis: 

individual threshold), [Fe(H2O)6]2+ of fk8 wavelet.

Figure 3: Energy of MD [Fe(H2O)6]2+ conformations (original and compressed) at each 

time (fs) for the ten selected wavelets.

Figure 4: Structure of the [Fe(H2O)6]2+ complex.   
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