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Scent of a killer: How killer yeast boost

its dispersal?

 Abstract

Vector-borne parasites often manipulate hosts to attract uninfected vectors. For 

example, parasites causing malaria alter host odor to attract mosquitoes. Here we 

discuss the ecology and evolution of fruit-colonizing yeast in a tripartite symbiosis – 

the so-called “killer yeast” system. “Killer yeast” consists of Saccharomyces 

cerevisiae yeast hosting two double stranded RNA viruses (M satellite dsRNAs, L-A 

dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast 

converts to lethal toxin-producing “killer yeast” phenotype that kills uninfected yeasts.

Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the 

viruses have no extracellular stage, they depend on the same insect vectors as 

yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes 

yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast 

strains. We tested whether insect vectors are more attracted to killer yeasts than to 

non-killer yeasts. In our field experiment, we found that killer yeasts were more 

attractive to Drosophila than non-killer yeasts. This suggests that vectors foraging on

yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to

colonize those uninfected yeast strains that engage in sexual reproduction with the 

killer yeast. Beyond insights into the basic ecology of the killer yeast system, our 

results suggest that viruses could increase transmission success by manipulating the

insect vectors of their host.
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Concise cover letter:

Our manuscript discusses new insights into ecology and evolution of the conditional 

mutualistic interaction of viruses and yeasts with insect vectors. We discuss the possibility of
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yeast manipulation of viruses and consequences to population structure.

Introduction 

Non-motile microorganisms, such as the yeast Saccharomyces cerevisiae, actively 

attract vectors to disperse between spent and fresh ephemeral fruits. Interaction 

between common yeasts and the fruit flies has been used as an example of niche 

construction and can be beneficial for both species involved (Buser et al., 2014; 

Christiaens et al., 2014). Yeast attracts Drosophila flies to volatile compounds that it 

produces dispersing with the flies to new fruits (Becher et al., 2012; Begon, 1982; 

Buser et al., 2014). Some S. cerevisiae strains are known to be more attractive to 

Drosophila than others (Buser et al., 2014). Although mechanisms behind this 

variation remains unknown (Günther et al., 2019), attractiveness does not seem to 

be linked to phylogenetic relatedness as both attractive and repulsive yeasts are 

found in different clades (Arguello et al., 2013; Becher et al., 2018; Buser et al., 

2014, Gayevskiy et al., 2017, Peter et al., 2019). 

Viruses are typically viewed as pathogens, but beneficial virus-host interactions have

been described in many insects, plants, bacteria and fungi (reviewed in Roossinck, 

2011). Two S. cerevisiae viruses, the M satellite dsRNAs and the corresponding L-A 

dsRNA helper virus, are seen as conditional mutualists to its host, as in combination 

they turn the infected yeast cells into lethal toxin-producing “killer yeast” (Roossinck, 

2011; Wickner, 1996). It is the M satellite dsRNA coding for a single protein that is 

responsible for toxin production (Zhu et al., 1993). The synthesized toxins are lethal 

to other yeast strains, and thus provide a competitive advantage to the virus-hosting 

“killer” strain. Crucially, the satellite virus renders the “killer” strain immune to the 

toxin that is produced in the cell. In this context, Boynton (2019) asked what 

additional benefits there might be for yeasts of hosting killer toxin producing viruses 

beyond interference competition. We suggest that an additional benefit might be that 

these viruses promote yeast dispersal by attracting more vectors to killer yeast 

infected fruits.
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In nature, no evidence for extracellular transmission of dsRNA viruses infecting 

yeasts has been found. Therefore, these viruses strongly depend on the well-being 

of the yeasts. Non-motile yeasts need to disperse to leave spent and colonize new 

ephemeral fruits, and thus enhance their reproductive success. Virus dispersal 

success thus depends completely on the success of the yeast in attracting insect 

vectors. In order to increase dispersal to new habitats, both viruses therefore could 

benefit if the yeast host is more attractive to vectors. 

Dispersal also helps viruses to colonize new yeast strains. Viruses infect new host 

genotypes when germinated yeast spores fuse. Although S. cerevisiae has a strong 

tendency to inbreed (Goddard et al., 2010), an increased probability to outbreed 

(Reuter et al., 2007), spore release (Coluccio et al., 2008) and inter-strain mating 

(Stefanini et al., 2016) seem to be promoted in insect intestines. 

Parasites have been found to increase transmission and spread by altering host 

behavior in a broad variety of systems (Moore, 2002; Thomas et al., 2010). There 

are many different ways parasites are reported to manipulate host phenotype to 

increase transmission (Holmes & Bethel, 1972; reviewed in Hurd, 2003; Koella et al.,

1998, Lefevre & Thomas, 2008; Thomas et al., 2002). These can include 

manipulation of their present host to be more attractive to prospective vectors 

(Busula et al., 2017; Cornet et al., 2013; De Moraes et al., 2014). As viruses have 

limited mobility, many depend on vectors for their dispersal and/or transmission. 

Most examples are found in plant-virus systems where insects function as vectors 

(Whitfield et al., 2015). For example, cucumber mosaic virus attracts aphid vectors 

by inducing higher volatile release by the host plant (Mauck et al., 2010).

Here we propose a novel hypothesis for this specific tripartite symbiosis. We suggest

that viruses could manipulate attractiveness of killer yeasts to vectors to increase 

their own transmission to new hosts. In addition to verbal arguments, we use a field 

experiment to investigate general attractiveness of killer and non-killer yeast to 

Drosophila vectors. We then discuss our observations as a starting point for further 

studies on whether enhanced attraction is due to virus manipulation.
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Materials and methods:

We tested the attraction of six S. cerevisiae strains with and without killer phenotype 

towards Drosophilidae. We used three distinct killer yeast strains and three different 

non-killer strains of S. cerevisiae (killer yeast strains: K28 from MS300b family, 

YJM4541b (K1), CLIB294_1b (K1); non-killer yeast strains: I14_1b, UC1_1b, 

NCYC_2743, Liti et al., 2009;Peter et al., 2018; Pieczynska et al., 2013, Table S1) 

each replicated six times. We inoculated 10  yeast cells of each strain into 50 ml ⁴

grape juice (homogenized and autoclaved Urpress Weiss from Rimuss). After 24 h of

inoculation at 28°C we distributed the fermenting juice samples to Drosophila traps 

(DrosalⓇ Pro, Andermatt Biogarten) and randomly placed the 36 traps in a vineyard 

(Schipf: 47.291925, 8.601796; see supplementary Figure S1). Three traps of plain 

grape juice served as controls. After 72h we collected the 39 traps and counted the 

total number of Drosophilidae and determined the species and sex of trapped flies. 

Statistical analysis 

A total of 6361 insects were caught in the traps. Almost all (n= 6315) belonged to the

family Drosophilidae. Four Drosophila species were trapped (D. melanogaster, D. 

simulans, D. subobscura and D. suzukii), but D. simulans (n= 3598) and D. suzukii 

(n= 2378) dominated the species composition in the traps. Therefore, we included 

only these two dominating species in the statistical analysis. We used a generalized 

linear mixed model with counts as dependent variable assuming Poisson distribution 

and applying Log link function. Yeast treatment (no yeast, non-killer yeast, killer 

yeast), Drosophila species and sex of the flies were used as fixed factors. Trap 

identity was included as a random factor in the model. Trap identity was chosen as a

random effect after testing for alternative random effect structures (see Table S2 and

Figure S2 in the supplement). The goal of choosing the random effect was to remove

as much of the variance as possible that was due to yeast strain, killer virus strain 

and physical location of the trap in the field. As each trap was baited with a single 

yeast x virus combination, this single random effect counts for as much of the 

ecological variation and genetic variation as we can achieve without a rigorous 

experiment designed to control (or study) ecological and genetic effects. Therefore, 

we believe that by using trap identity as a random effect we present a fair test of the 
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fixed effects, namely presence of Killer phenotype, and contrasting the two 

Drosophila species. All analyses were done with IBM SPSS Statistics 25.

Results:

We found a significant three-way interaction between yeast treatment, Drosophila 

species and fly sex (F= 7.69, df1 =4, df2= 144, p< 0.001, Fig. 1, Table 1). Both, D. 

simulans and D. suzukii were more attracted by S. cerevisiae compared to plain 

grape juice (Fig.1). D. suzukii did not show increased attraction towards killer yeasts 

(Fig. 1). In Europe, D. suzukii is an invasive species, laying its eggs in ripening fruits,

while other Drosophila species prefer rotting fruits (Atallah et al., 2014). Here, we will

focus discussion on results for D. simulans, which, contrary to D. suzukii, has 

previously been shown to be associated with S. cerevisiae in vineyards (Buser et al. 

2014). S. cerevisiae has been found in the gut and on the surface of wild Drosophila 

(Buser et al. 2014; Chandler et al. 2012). In D. simulans both males and females 

were more attracted to killer yeast than non-killer yeast (Fig. 1). The pattern of 

attraction to yeast was much more pronounced in female D. simulans than in males 

(Fig.1). 

Figure 1: Results of a field experiment where traps containing no yeast (serve as 

control), and yeast without or with killer phenotype were placed for 72h in the 

vineyard. Panels show overall counts of attracted Drosophila simulans (left panel) 

and D. suzukii (right panel) males (red) and females (blue). Symbols show 

generalized linear mixed model (see methods) estimated means and ∓ 1SE. Note 

that standard errors are asymmetric because they are back transformed from the 

model that uses log link function. Triangle plots show results of pairwise 
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comparisons of treatments for female and male D. simulans and D. suzukii. 

Treatments connected by line are statistically significant (p<0.05) after adjusting for 

multiple testing. Pairwise testing was conducted using pairwise contrast option in 

Generalized Linear Mixed Model application available in SPSS 25.

Table 1: Results of generalized linear model with counts as dependent variable 

assuming Poisson distribution and applying Log link function.

Fixed effects

Source F df1 df2 Sig.

Corrected Model 125.860 11 144 0.000

Yeast treatment 12.729 2 41 0.000

Drosophila species 0.343 1 144 0.559

Drosophila sex 74.152 1 144 0.000

Species*yeast treatment 33.360 2 144 0.000

Species* sex 55.012 1 144 0.000

Species*sex*yeast treatment 7.694 4 144 0.000

Random Effect Covariance Estimate Std. Error Z Sig. Lower 95% CI Upper 95% CI

Trapnumber 0.280 0.070 4.030 0.000 0.172 0.456

 Discussion

We found that D. simulans were most attracted by the grape juice inoculated with 

yeast hosting the M satellite dsRNAs and the corresponding L-A dsRNA helper virus.

We are confident that this enhanced attraction is due to the killer phenotype, as we 

corrected for ecological and genetic variance as well. We also know from literature 

that neither killer-phenotype nor yeast attraction seem to correlate with the 

taxonomic position (Arguello et al., 2013; Becher et al., 2018; Buser et al., 2014; 

Piezcynska et al., 2013). How the viruses contribute to attraction of the yeast or even

manipulate their host to be more attractive requires further investigation. As 

increased attraction can be a win-win situation for both the yeast and the virus strain,

disentangling whether effects are general (all yeast strains infected by the same 

virus strain induce attractiveness) or specific (level of attractiveness depends on 

yeast-virus strain combination) requires detailed and complex experiments. Here, 

results of our field experiment encourage us to discuss how viruses could be 

manipulating yeast host attractivity and how general this discovery could be.
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Assuming increased attraction is active host manipulation, what is the benefit to 

viruses? The viruses benefit from dispersing to the new habitat patches with their 

yeasts, which is important for population growth and persistence in the temporary 

habitat mosaic of rotting fruit. But viruses also have additional interests in host 

dispersal. Viruses depend on S. cerevisiae engaging in sexual reproduction for 

transmission to uninfected yeast strains. Viruses transmit to new host genotypes 

when germinated yeast spores fuse, for example in the gut of insects (reviewed in 

Meriggi et al., 2020; Reuter et al., 2007; Stefanini et al., 2012, 2016). Unlike the 

vegetative yeast cells, the sexual yeast spores survive passage through the gut of 

insects (Reuter et al., 2007). Therefore, one alternative hypothesis for explaining 

killer yeast strains being more attractive to Drosophila could be that attractive yeast 

strains (independent of killer status) benefit from higher recombination when 

passaging the Drosophila gut. Chances to mate with a killer yeast spore are hence 

higher for attractive yeast, as passage through the insect gut is known to increase 

the likelihood of outbreeding in S. cerevisiae (Reuter et al., 2007; Stefanini et al., 

2012, 2016). It would be informative to test this hypothesis by conducting attraction 

experiments with the same yeast genotypes that only differ concerning killer 

phenotype. This could be achieved by curing yeast cells from viruses (Fink & Styles, 

1972; Wickner, 1974), and/or transfection of viruses into uninfected hosts 

(Pieczynska et al., 2017).

What mechanisms are behind host manipulation to attract vectors? Earlier studies 

have revealed substantial genetic diversity within S. cerevisiae (Gayevskiy & 

Goddard, 2012; Knight & Goddard, 2015; Peter et al., 2018) and connectivity among 

populations (Hyma & Fay, 2013; Knight & Goddard, 2015). Drosophila may be 

central in connecting the yeast populations (Goddard et al., 2010). Yeast volatiles 

have been shown to be involved in insect attraction and repulsion (summarized in 

Table 1, Günther & Goddard, 2019). Volatiles have hence been suggested to be 

important components promoting mutualism between yeast and Drosophila (Buser et

al., 2014; Christiaens et al., 2014). Drosophila locates and evaluates food source 

and quality based on olfactory cues. Yeast volatiles, not fruit volatiles, mediate 

Drosophila fitness by promoting adult attraction, oviposition and larval development 

(Becher et al. 2012). Both yeasts and flowers share volatile signals that are attractive
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to Drosophila (Becher et al., 2018) and to which the flies respond via olfactory 

sensory neurons (Knaden et al., 2012)   

A possible route for viruses to manipulate attraction would be through alteration of 

volatile composition released by the yeasts. Ferments with high killer activity differ 

for example in fermentation speed and volatile acidity (Maqueda et al., 2012). Acetic 

acid, one of the volatiles responsible for higher volatile acidity and produced by S. 

cerevisiae during fermentation, attracts D. melanogaster (Knaden et al., 2012). 

Although it is during this fermentation process when volatiles to attract Drosophila 

vectors are produced, the exact mechanism through which the toxin could interfere 

with volatile production remains speculation and needs further investigation. 

In general, it is not uncommon that parasites manipulate chemosensory traits to 

increase transmission through insect-vectored pathogens, as insects use volatiles to 

locate their host. For example, host plants infected with viruses are more attractive to

insect vectors due to elevated volatile emission (Mauck et al., 2010) or through 

differences in volatile composition (Eigenbrode et al. 2002). Changes in the smell of 

infected hosts leading to higher attraction of the mosquito vector has for example 

been shown for hosts infected with malaria-pathogens (De Moraes et al., 2014) and 

Leishmania (O’Shea et al., 2002). Fungal pathogens have been shown to induce 

attraction of its insect vector through the up-regulation of volatiles of the host trees 

(McLeod et al., 2005), or through inducing mimicry of typical floral odors of host 

plants (Raguso & Roy, 1998). All these examples demonstrate the plausibility of 

higher vector attraction due to manipulation of volatile composition and/or emission 

level in the killer yeast system. 

Outlook

Viruses can disperse in two different ways depending on the mode of reproduction of

S. cerevisiae. Both transmission routes are promoted due to a close association with

insects. First, viruses can spread within the yeast genotype they inhabit through 

yeast dispersal when the vegetative cells are attached to the vector’s body 

(Christiaens et al., 2014). Viruses thus disperse as their host genotype is dispersing. 

This transmission route can be studied in detail by mapping the distribution and 
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colonization dynamics of particular yeast genotypes. With respect to killer 

phenotype, the interesting question here is whether higher attraction to vectors 

allows killer yeasts to spread faster and wider than non-killer strains. Second, viruses

disperse within yeast spores, which survive passage through insect guts and are 

very frequent in insect feces (Reuter et al., 2007). This dispersal mode through 

sexual reproduction of yeast enhances virus transmission into new host genotypes 

because of higher outcrossing possibility. Indeed, Reuter et al. (2007) suggest that 

yeast spores, and not vegetative cells, are the primary dispersal stage for S. 

cerevisiae species. This invites the possibility that viruses trigger sexual reproduction

in their host yeast. Sporulation efficiency varies across different S. cerevisiae 

isolates (Gerke et al., 2006). Induced sexual spore production in the host is an 

interesting study question for future studies. If virus induces host sex, then the 

frequency of spore production should be higher in killer yeasts when probability of 

transmission by the vector is high. 

One of the great research challenges in this context is that the importance of virus 

dispersal through vegetative yeast cells as well as virus transmission into new host 

genotypes by sexual reproduction still needs to be shown in natural populations. 

Under suitable environmental conditions, the virus-yeast interaction selects for 

monoclonal yeast populations in one local patch (low alpha diversity). At the same 

time, if killer yeasts are sexually active, they can spread the virus to uninfected yeast

strains (increasing beta diversity). Effectively, this creates scenarios where 

monoclonal killer yeast populations maintain yeast diversity at the metapopulation 

level. Testing this hypothesis requires careful field surveys documenting both alpha 

and beta diversity of yeast metapopulations with and without viruses underlying the 

killer phenotype.

Data Accessibility Statement:

Original data will be deposit on Dryad after acceptance
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