Figure 3: Suggested framework for
incorporating contact structure (abundance and density data) into
infectious disease models in ecologically informed ways. Whilst the
framework is based on our particular bat–virus system, it should be
broadly applicable, with minor modifications, to other systems.
Suggestions for transmission structure are in grey. Continue the length
of the decision tree for the full suggestion on transmission
specification (i.e. to get combined scale and parameter choice). This
framework is not exhaustive but instead aims to highlight the types of
ecological questions that may be relevant for specifying contact
structure within models. This framework assumes transmission is through
direct contact. Note that this framework focusses on contact structure
only as a driver of transmission, but other heterogeneities in the
transmission process could exist (e.g. viral load and the probability of
an individual becoming infected given an infective dose, see Lunnet al. (2019) and McCallum et al. (2017)).
References
Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M. &
Rohani, P. (2006) Seasonality and the dynamics of infectious diseases.Ecology Letters, 9, 467-484.
Antonovics, J., Iwasa, Y. & Hassell, M.P. (1995) A generalized model of
parasitoid, venereal, and vector-based transmission processes. The
American Naturalist, 145, 661-675.
Baddeley, A. (2010) Analysing spatial point patterns in R. pp. 1-232.
CSIRO.
Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S. & Turner,
J. (2002) A clarification of transmission terms in host-microparasite
models: numbers, densities and areas. Epidemiology and Infection,129, 147-153.
Borremans, B., Reijniers, J., Hens, N. & Leirs, H. (2017) The shape of
the contact–density function matters when modelling parasite
transmission in fluctuating populations. Royal Society open
science, 4, 171308.
Brandell, E.E., Becker, D.J., Sampson, L. & Forbes, K.M. (2020) The
rise of disease ecology. bioRxiv .
Burnham, K.P. & Anderson, D.R. (2002) Model Selection and
Multimodel Inference: a Practical Information-Theoretic Approach .
Springer Science & Business Media, Fort Collins.
Clancy, T. & Einoder, L. (2004) Estimates of size of grey-headed
flying-fox camp sites – evaluation of point transect using distance
techniques. Arthur Rylah Institute for Environmental Research,
Heidelberg, Victoria.
Colombi, D., Serra-Cobo, J., Métras, R., Apolloni, A., Poletto, C.,
López-Roig, M., Bourhy, H. & Colizza, V. (2019) Mechanisms for
lyssavirus persistence in non-synanthropic bats in Europe: insights from
a modeling study. Scientific Reports, 9, 1-11.
Cross, P.C., Caillaud, D. & Heisey, D.M. (2013) Underestimating the
effects of spatial heterogeneity due to individual movement and spatial
scale: infectious disease as an example. Landscape Ecology,28, 247-257.
Cross, P.C., Creech, T.G., Ebinger, M.R., Manlove, K., Irvine, K.,
Henningsen, J., Rogerson, J., Scurlock, B.M. & Creel, S. (2013) Female
elk contacts are neither frequency nor density dependent.Ecology, 94, 2076-2086.
De Jong, M. (1995) Depend on Population Size? Epidemic models:
their structure and relation to data (ed. D. Mollison), pp. 84.
Cambridge University Press, Cambridge, United Kingdom.
De Jong, M.C.M. (2002) Modelling transmission: mass action and beyond -
Response from McCallum, Barlow and Hone. Trends in Ecology &
Evolution, 17, 64-65.
De Koeijer, A., Diekmann, O. & Reijnders, P. (1998) Modelling the
spread of phocine distemper virus among harbour seals. Bulletin of
Mathematical Biology, 60, 585-596.
Diggle, P. (1985) A kernel method for smoothing point process data.Journal of the Royal Statistical Society: Series C (Applied
Statistics), 34, 138-147.
Epstein, J.H., Anthony, S.J., Islam, A., Kilpatrick, A.M., Ali Khan, S.,
Balkey, M.D., Ross, N., Smith, I., Zambrana-Torrelio, C., Tao, Y.,
Islam, A., Quan, P.L., Olival, K.J., Khan, M.S.U., Gurley, E.S.,
Hossein, M.J., Field, H.E., Fielder, M.D., Briese, T., Rahman, M.,
Broder, C.C., Crameri, G., Wang, L.-F., Luby, S.P., Lipkin, W.I. &
Daszak, P. (2020) Nipah virus dynamics in bats and implications for
spillover to humans. Proceedings of the National Academy of
Sciences , 202000429.
Ferrari, M.J., Perkins, S.E., Pomeroy, L.W. & Bjørnstad, O.N. (2011)
Pathogens, social networks, and the paradox of transmission scaling.Interdisciplinary perspectives on infectious diseases,2011 .
Field, H., Young, P., Yob, J.M., Mills, J., Hall, L. & Mackenzie, J.
(2001) The natural history of Hendra and Nipah viruses. Microbes
and infection, 3, 307-314.
George, D.B., Webb, C.T., Farnsworth, M.L., O’Shea, T.J., Bowen, R.A.,
Smith, D.L., Stanley, T.R., Ellison, L.E. & Rupprecht, C.E. (2011) Host
and viral ecology determine bat rabies seasonality and maintenance.Proceedings of the National Academy of Sciences, 108,10208-10213.
Giles, J.R., Plowright, R.K., Eby, P., Peel, A.J. & McCallum, H. (2016)
Models of Eucalypt phenology predict bat population flux. Ecology
and Evolution, 6, 7230-7245.
Goldspink, L.K., Edson, D.W., Vidgen, M.E., Bingham, J., Field, H.E. &
Smith, C.S. (2015) Natural Hendra virus infection in flying-foxes-tissue
tropism and risk factors. PLoS ONE, 10, e0128835.
Halpin, K., Young, P., Field, H. & Mackenzie, J. (2000) Isolation of
Hendra virus from pteropid bats: a natural reservoir of Hendra virus.Journal of General Virology, 81, 1927-1932.
Hayman, D.T. (2015) Biannual birth pulses allow filoviruses to persist
in bat populations. Proceedings of the Royal Society B: Biological
Sciences, 282, 20142591.
Hopkins, S.R., Fleming‐Davies, A.E., Belden, L.K. & Wojdak, J.M. (2020)
Systematic review of modeling assumptions and empirical evidence: does
parasite transmission increase nonlinearly with host density?Methods in Ecology and Evolution, 00, 1-11.
Jeong, J., Smith, C., Peel, A.J., Plowright, R.K., Kerlin, D., McBroom,
J. & McCallum, H. (2017) Persistent infections support maintenance of a
coronavirus in a population of Australian bats (Myotis macropus ).Epidemiology and Infection, 145, 2053-2061.
Jong, M., Diekmann, O. & Heesterbeek, H. (1995) How does transmission
of infection depend on population size? Epidemic models.Publication of the Newton Institute , 84-94.
Kerth, G. (2008) Causes and consequences of sociality in bats.Bioscience, 58, 737-746.
Klose, S.M., Welbergen, J.A., Goldizen, A.W. & Kalko, E.K. (2009)
Spatio-temporal vigilance architecture of an Australian flying-fox
colony. Behavioral Ecology and Sociobiology, 63,371-380.
Krebs, C.J. (1999) Ecological Methodology . Educational
Publishers, Inc.
Laurinec, P. (2017) Doing magic and analyzing seasonal time series with
GAM (Generalized Additive Model) in R. Time series data mining in
R . Bratislava, Slovakia.
Lewis, S.E. (1995) Roost fidelity of bats: a review. Journal of
Mammalogy, 76, 481-496.
Lloyd-Smith, J.O., Cross, P.C., Briggs, C.J., Daugherty, M., Getz, W.M.,
Latto, J., Sanchez, M.S., Smith, A.B. & Swei, A. (2005) Should we
expect population thresholds for wildlife disease? Trends in
Ecology and Evolution, 20, 511-519.
Lunn, T., Eby, P., Brooks, R., McCallum, H., Plowright, R., Kessler, M.
& Peel, A. (2021) Conventional wisdom on roosting behaviour of
Australian flying foxes–a critical review, and evaluation using new
data. Authorea Preprints .
Lunn, T.J., Restif, O., Peel, A.J., Munster, V.J., De Wit, E., Sokolow,
S., Van Doremalen, N., Hudson, P. & McCallum, H. (2019) Dose–response
and transmission: the nexus between reservoir hosts, environment and
recipient hosts. Philosophical Transactions of the Royal Society
B, 374, 20190016.
Markus, N. (2002) Behaviour of the black flying fox Pteropus
alecto : 2. Territoriality and courtship. Acta Chiropterologica,4, 153-166.
Markus, N. & Blackshaw, J.K. (2002) Behaviour of the black flying fox
Pteropus alecto: 1. An ethogram of behaviour, and preliminary
characterisation of mother-infant interactions. Acta
Chiropterologica, 4, 137-152.
McCallum, H., Barlow, N. & Hone, J. (2001) How should pathogen
transmission be modelled? Trends in Ecology and Evolution,16, 295-300.
McCallum, H., Fenton, A., Hudson, P.J., Lee, B., Levick, B., Norman, R.,
Perkins, S.E., Viney, M., Wilson, A.J. & Lello, J. (2017) Breaking
beta: deconstructing the parasite transmission function.Philosophical Transactions of the Royal Society of London. Series
B, Biological Sciences, 372 .
National Flying-Fox Monitoring Program (2017) National flying-fox
monitoring viewer. Monitoring flying-fox populations .
Nelson, J.E. (1965) Behaviour of Australian Pteropodidae
(Megacheroptera). Animal Behaviour, 13, 544-557.
Orlofske, S.A., Flaxman, S.M., Joseph, M.B., Fenton, A., Melbourne, B.A.
& Johnson, P.T. (2017) Experimental investigation of alternative
transmission functions: quantitative evidence for the importance of
non‐linear transmission dynamics in host‐parasite systems. Journal
of Animal Ecology .
Páez, D., Giles, J., McCallum, H., Field, H., Jordan, D., Peel, A. &
Plowright, R. (2017) Conditions affecting the timing and magnitude of
Hendra virus shedding across pteropodid bat populations in Australia.Epidemiology and Infection , 1-11.
Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D.,
Bryden, W.L., Middleton, D., Reid, P.A., McFarlane, R.A., Martin, G.,
Tabor, G.M., Skerratt, L.F., Anderson, D.L., Crameri, G., Quammen, D.,
Jordan, D., Freeman, P., Wang, L.F., Epstein, J.H., Marsh, G.A., Kung,
N.Y. & McCallum, H. (2015) Ecological dynamics of emerging bat virus
spillover. Proceedings of the Royal Society B-Biological
Sciences, 282, 9.
Plowright, R.K., Foley, P., Field, H.E., Dobson, A.P., Foley, J.E., Eby,
P. & Daszak, P. (2011) Urban habituation, ecological connectivity and
epidemic dampening: the emergence of Hendra virus from flying foxes
(Pteropus spp.). Proceedings of the Royal Society of London
B: Biological Sciences, 278, 3703-3712.
Restif, O., Hayman, D.T.S., Pulliam, J.R.C., Plowright, R.K., George,
D.B., Luis, A.D., Cunningham, A.A., Bowen, R.A., Fooks, A.R., O’Shea,
T.J., Wood, J.L.N. & Webb, C.T. (2012) Model-guided fieldwork:
practical guidelines for multidisciplinary research on wildlife
ecological and epidemiological dynamics. Ecology Letters .
Rhodes, M. (2007) Roost fidelity and fission–fusion dynamics of
white-striped free-tailed bats (Tadarida australis ).Journal of Mammalogy, 88, 1252-1260.
Ryder, J.J., Miller, M.R., White, A., Knell, R.J. & Boots, M. (2007)
Host-Parasite Population Dynamics under Combined Frequency- and
Density-Dependent Transmission. pp. 2017. Blackwell Publishing.
Ryder, J.J., Webberley, K.M., Boots, M. & Knell, R.J. (2005) Measuring
the Transmission Dynamics of a Sexually Transmitted Disease. pp. 15140.
National Academy of Sciences.
Serra-Cobo, J., Lopez-Roig, M., Segui, M., Sanchez, L.P., Nadal, J.,
Borras, M., Lavenir, R. & Bourhy, H. (2013) Ecological factors
associated with European bat Lyssavirus seroprevalence in Spanish bats.PLoS ONE, 8 .
Smith, M.J., Telfer, S., Kallio, E.R., Burthe, S., Cook, A.R., Lambin,
X. & Begon, M. (2009) Host–pathogen time series data in wildlife
support a transmission function between density and frequency
dependence. Proceedings of the National Academy of Sciences,106, 7905-7909.
Verma, N.K., Lamb, D.W., Reid, N. & Wilson, B. (2014) An allometric
model for estimating DBH of isolated and clustered Eucalyptus trees from
measurements of crown projection area. Forest Ecology and
Management, 326, 125-132.
Veterinary Practitioners Board of New South Wales (2021) NSW DPI Update:
Variant Hendra virus strain. (ed. S. Britton). New South Wales.
Wang, H.-H., Kung, N.Y., Grant, W.E., Scanlan, J.C. & Field, H.E.
(2013) Recrudescent infection supports Hendra virus persistence in
Australian flying-fox populations. PLoS ONE, 8, 1-11.
Welbergen, J.A. (2005) The social organisation of the grey-headed
flying-fox, Pteropus poliocephalus . Doctor of Philosophy,
University of Cambridge.
Welbergen, J.A., Meade, J., Field, H.E., Edson, D., McMichael, L., Shoo,
L.P., Praszczalek, J., Smith, C. & Martin, J.M. (2020) Extreme mobility
of the world’s largest flying mammals creates key challenges for
management and conservation. BMC biology, 18, 1-13.
Westcott, D.A., McKeown, A., Murphy, H.T. & Fletcher, C.S. (2011) A
monitoring method for the grey-headed flying-fox, Pteropus
poliocephalus . CSIRO, Queensland, Australia.
Wood, S.N. (2017) Generalized additive models: an introduction
with R . CRC press.
Wood, S.W., Prior, L.D., Stephens, H.C. & Bowman, D.M.J.S. (2015)
Macroecology of Australian tall eucalypt forests: baseline data from a
continental-scale permanent plot network. PLoS ONE, 10,e0137811.
Yang, L., Qin, G., Zhao, N., Wang, C. & Song, G. (2012) Using a
generalized additive model with autoregressive terms to study the
effects of daily temperature on mortality. BMC Medical Research
Methodology, 12, 165.