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Abstract

Substantial progresses in protein structure prediction have been made by utilizing deep-learning and

residue-residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14

MULTICOM protein structure prediction system in three main aspects: (1) a new deep learning based

protein inter-residue distance predictor (DeepDist) to improve template-free (ab initio) tertiary structure

prediction, (2) an enhanced template-based tertiary structure prediction method, and (3) distance-based

model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment,

MULTICOM predictor was ranked 7th out of 146 predictors in protein tertiary structure prediction and

ranked 3rd out of 136 predictors in inter-domain structure predic-tion. The results of MULTICOM

demonstrate  that  the  template-free  modeling  based  on  deep  learning  and  residue-residue  distance

prediction  can  predict  the  correct  topology  for  almost  all  template-based  modeling  targets  and  a

majority of hard targets (template-free targets or targets whose templates cannot be recognized), which

is a significant improvement over the CASP13 MULTICOM predictor. The performance of template-

free tertiary structure prediction largely depends on the accuracy of distance pre-dictions that is closely

related to the quality of multiple sequence alignments. The structural model quality assessment works

reasonably well on targets for which a sufficient number of good models can be predicted, but may



perform poorly when only a few good models are predicted for a hard target and the distribution of

model quality scores is highly skewed.
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1. Introduction

Protein structure prediction is  to  computationally  predict  the three-dimensional  (3D) structure of a

protein from its one-dimensional (1D) amino acid sequence, which is much more efficient and cost-

effective  than  the  gold-standard  experimental  structure  determination  methods  such  as  X-ray

crystallography,  nuclear  magnetic  resonance  (NMR)  spectroscopy,  and  cryo-electron  microscopy

(cryo-EM). Computational structure prediction becomes more and more useful for elucidating protein

structures as its accuracy improves1. Two kinds of structure prediction methods have been developed:

template-based  modeling  and template-free  (ab  initio)  modeling.  Template-based  modeling  (TBM)

methods first identify protein homologs with known structures for a target protein and then use them as

templates to predict the target’s structure2,3. A common approach of identifying homologous templates

is based on Hidden Markov Models4. When no significant known template structures are identified,

template-free modeling (FM) is the only viable approach to build structures from protein sequences.

Tradi-tional FM methods, such as Rosetta5, attempt to build tertiary structure by assembling the mini-

structures of small sequence frag-ments into the conformation of the whole protein according to the

guidance of statistical energy functions. Other FM tools such as CONFOLD6 use inter-residue contact

predictions as distance restraints to guide protein folding. In the 13 th Critical Assessment of Protein

Structure Prediction (CASP13), AlphaFold7, a FM method based on deep learning distance prediction

achieved  the  highest  accuracy  on  both  TBM  targets  and  FM  targets.  Other  top  CASP13  tertiary

structure prediction methods such as Zhang Group8, MULTICOM9, and RaptorX10 were also driven by

deep learning and contact/distance predictions.



    Inspired by the advances, our CASP14 MULTICOM system is equipped with a new deep-learning

based  protein  inter-residue  distance  predictor  (DeepDist11)  to  generate  accurate  contact/distance

predictions,  which is  used by DFOLD (https://github.com/jianlin-cheng/DFOLD) and trRosetta12 to

construct template-free structural models.  Moreover, the template-based prediction in MULTICOM is

simplified and enhanced by removing redundant template-identification tools and using deeper multiple

sequence alignments (MSAs) in template search, while the template libraries and sequence databases

are updated continuously.  In addition,  11 new features  calculated  from predicted inter-residue dis-

tance/contact maps are used to predict the quality of protein models in conjunction with other features

in DeepRank9 to rank and select protein models. As a result of the improvements, MULTICOM was

ranked 7th in tertiary structure prediction and 3rd in inter-domain structure prediction in CASP14.

2 Materials and Methods

2.1 Overview of the MULTICOM system

The pipeline of MULTICOM human and automated server predictors can be roughly divided into six

parts: template-based modeling, template-free modeling, domain parsing, model preprocessing, model

ranking, and final model generation as depicted in Figure 1.

    When a target protein sequence is received, template-based modeling (Part A) and template-free

modeling (Part B) start to run in parallel. For the template-based modeling pipeline, MULTICOM first

builds  the  multiple  sequence  alignments  (MSA)  for  the  target  by  searching  it  against  sequence

databases,  which are used to generate sequence profiles.  Then, the sequences profiles or the target

sequence  are  searched  against  the  template  profile/sequence  library  by  various  alignment  tools

(BLAST13, HHSearch14, HHblits4, HMMER15, RaptorX16, I-TASSER/MUSTER17,18, SAM19, PRC20 and

so  on  to  identify  templates  and  generate  pairwise  target-template  alignments.  A combined  target-



template alignment file is generated by combining the pairwise alignments. Structural models are built

by feeding the combined alignment  file into Modeller21.  In CASP14, the MULTICOM system was

blindly tested as five automated servers. MULTICOM-CLUSTER and MULTICOM-CONSTRUCT

servers used the template-based prediction system described above, which was rather slow because it

needed to run multiple sequence alignment  tools. To speed up prediction,  MULTICOM-DEEP and

MULTICOM-HYBRID servers only used HHSearch and HHblits in the HHsuite package as well as

PSI-BLAST22 and HMMER to build sequence profiles and search for homologous templates, which are

much  faster than  MULTICOM-CLUSTER  and  MULTICOM-CONSTRUCT.  Considering  that  the

distance-based template-free modeling can often achieve high accuracy on template-based targets, we

also tested MULTICOM-DIST server predictor that completely skipped template-based modeling and

used only template-free modeling for all the CASP14 targets.

    In the newly developed distance-based template-free modeling (Part B), DeepMSA23 and DeepAln11

are used to generate two kinds of multiple sequence alignments, which are used to calculate residue-

residue coevolution features that are fed into different deep neural networks of DeepDist to predict the

distance map - a two-dimensional matrix representing the inter-residue distances for the target protein.

For some hard targets, the MSAs generated by HHblits on the Big Fantastic Database (BFD)24,25 are

also used to predict distance maps. The MSAs along with predicted distance maps are used to generate

ab  initio  models  with  two  different  ab  initio  modeling  tools  (e.g.,  DFOLD  and  trRosetta12).  In

MULTICOM-DEEP  and  MULTICOM-HYBRID,  distance  maps  and  alignments  generated  by

DeepMSA and DeepAln were also used to select templates for template-based modeling.

    Domain information (Part C) can be extracted from the target-template sequence alignments. If no

significant templates are found for a region of the sequence that is longer than 40 residues, the region is



treated as template-free (FM) domain, otherwise a template-based domain. And the sequences of the

domains are fed into the same pipeline above to build models for individual domains.

    For the human predictor (Part D), all the CASP server models automatically downloaded from the

CASP website and new models generated by MULTICOM servers if any are combined into one model

pool as the initial input. Highly similar models from the same groups are filtered out if their pairwise

global distance test score (GDT-TS) score is greater than 0.95. SCWRL26 is used to repack the side

chains for the models in the filtered model pool. If the target protein is predicted to have multiple

domains, the full-length models are split into domain models before model filtering.

    Different quality assessment (QA) methods are used in MULTICOM to evaluate the models (Part

E). For the server predictors in CASP14, the models were assessed by APOLLO27 in MULTICOM-

CLUSTER and MULTICOM-HYBRID, by DeepRank9 in MULTICOM-CONSTRUCT, by SBROD28

in MULTICOM-DIST, and by the average ranking score of APOLLO, SBROD and distance-based

rankings  in  MULTICOM-DEEP.  For  the  human  prediction,  two  newly  developed  QAs

(DeepRank3_Cluster and DeepRank_con) along with DeepRank used in CASP13 were used for model

selection.  DeepRank  uses  residue-residue  contacts  predicted  by  DNCON229 as  input  features,  but

DeepRank3_Cluster  uses  residue-residue  distances  predicted  by  DeepDist  as  input  features.

DeepRank_con shares the same deep network with DeepRank but replaces contact predictions from

DNCON2 with that from DeepDist.  The three QAs also use other features including 1D structural

features (e.g.,  predicted secondary structure,  solvent accessibility)  and the 3D model quality scores

generated by different QA tools (e.g., RWplus30, Voronota31, Dope32, and OPUS33).

    Once the QAs generate the model rankings, final models are built by model combination, domain

combination or model refinement (Part F) from top ranked models. For full-length targets, top five



ranked models are combined with other similar top ranked models (maximum 20 models) to generate

the consensus models. If a target has multiple domains, top five models are generated by combining

domain  models  using  Modeller21 or  AIDA34.  For  the  human  prediction,  if  the  combined  models

substantially  deviate  away  from  the  original  models,  refinement  tools  (e.g.,  i3DRefine35 and

ModRefiner36) will be used instead to refine the top-ranked models to generate the final top five models

for submission. 

    There are several additional differences between the human predictor and server predictors. First, the

inputs  for  the  human  predictor  are  the  server  models  from CASP  including  MULTICOM  server

models.  Additional  models generated by MULTICOM servers after  the server submission deadline

may be added into the model pool for some targets if any. Models filtering and side repacking are

applied  in  the  human  prediction  before  feeding  the  models  into  the  quality  assessment  methods.

Second, in the human predictor, predicted domain boundaries are adjusted based on the top ranked

models. Third, in the human prediction, the refinement tools are applied to improve the quality of top

ranked models.

2.2 Distance-guided template-free modeling

In the distance-guided free modeling, ab initio models are mostly generated from predicted residue-

residue distance with a customized trRosetta and DFOLD (Figure 2). At first, two kinds of MSAs are

generated. One is generated by searching a target against the Uniclust3037, UniRef9038 and Metaclust25

databases using DeepAln and DeepMSA. The other one is generated by using HHblits to search against

the BFD24,25 database.  Then,  a  combined MSA is built  by combining the two kinds of MSAs and

filtering out redundancy according to the sequence identity threshold of 95%. The three kinds of MSAs

are used for distance prediction and template-free modeling. For two server predictors - MULTICOM-



CONSTRUCT and MULTICOM-CLUSTER, the MSAs are then fed into trRosetta to predict the inter-

residue geometries and tertiary structures for the target protein.  For another three server predictors -

MULTICOM-HYBRID,  MULTICOM-DEEP,  MULTICOM-DIST,  the  distance  maps  predicted  by

DeepDist  from the  MSAs  are  used  to  substitute  the  default  distance  maps  predicted  by  the  deep

networks in trRosetta for model generation. About 50-100 models are built by trRosetta using different

probability thresholds on distance map predictions. Top 10 models selected by the ranking methods

(e.g., SBROD) are added into the template-free model pool. In these three servers, additional models

generated by DFOLD, which takes distance maps predicted from DeepDist as inputs, are also added

into the template-free model pool for another round of protein model ranking.

2.3 Protein model ranking

In  the  MULTICOM  human  predictor,  three  main  quality  assessment  (QA)  methods  (DeepRank,

DeepRank_con, DeepRank3_Cluster) are applied to model selection. The methods share the similar

features, including 1D features from predicted secondary structures and solvent accessibility and 3D

QA  scores  from  different  QA  tools  (i.e.,  SBROD,  RWplus30,  Voronota31,  Dope32,  and  OPUS33,

RF_CB_SRS_OD39,  DeepQA40, ProQ241,  ProQ342,  APOLLO, Pcons43 and ModFOLDcluster244), and

differ  mostly  in  2D  features  derived  from  predicted  contact  or  distance  maps.  DeepRank  and

DeepRank_con share the same neural network and are only different in the input contact map used to

generate  2D  features.  For  DeepRank,  the  input  contact  map  is  generated  from  DNCON2,  but

DeepRank_con takes an improved contact map from DeepDist as input. For DeepRank3_Cluster, the

predicted distance map by DeepDist and the distance map calculated from a 3D model are used to

calculate  several  distance  map  matching  scores  (i.e.,  SSIM  &  PSNR45,  GIST46,  RMSE,  Recall,

Precision, PHASH47, Pearson correlation, ORB48), which are combined with other 1D and 3D features



as inputs. All the quality assessment methods apply the same two-level network architecture. The first

level of the network includes 10 neural networks trained by 10-fold cross validation to predict  the

GDT-TS scores of input models. Then the output scores are combined with initial input features to

predict  the  final  scores  by  the  second  level  network.  DeepRank,  DeepRank_con  and

DeepRank3_Cluser were trained and tested on the models of previous CASP experiments before they

were blindly applied to the models of the CASP14 experiment.

2.4 Model Refinement and Combination

To  improve  the  quality  of  selected  top  models,  four  different  methods  (e.g.,  model  combination,

i3DRefine, ModRefiner, TM-score based combination) are applied under different circumstances in the

MULTICOM  human  predictor.  After  predicting  the  quality  scores  of  the  input  server  models,  a

standard protocol (Supplementary Figure  S1) is applied to generate  final top 5 models. Each top

ranked model is combined with other top ranked models (maximum 20) that are similar to the start

model (i.e., GDT-TS > 0.6) to generate a consensus candidate model. If GDT-TS score between the

consensus model and the start model is smaller than 0.9, the consensus model is discarded, and the

candidate  model  is  generated  by  using  i3Drefine  to  refine  the  start  model.  ModRefiner  is  used

alternatively  if  severe  structural  violations  (e.g.,  atom clashes)  exist  in  the  candidate  model  or  its

secondary structures need to be further improved.

    For some top model, if some of its good regions needed to be kept, but some bad regions needed to

be  replaced  by the  corresponding region  in  another  model,  a  TM-score  based  model  combination

method is applied. A superposed model is generated by aligning the two models using TMscore. A

preliminary model is generated by replacing the bad region of the top model in the superimposed model

with the corresponding region from the other model. The adjusted Ca atom trace of the top model is

then extracted from the preliminary model to generate a combined model. The coordinates of other



backbone atoms are added into the combined model using Pulchra49. The side chains of the combined

model are repacked by SCWRL according to the backbone structure. If needed, ModRefiner is applied

to refine the model. This method can also be used to perform domain replacement.

2.5 Model Refinement and Combination

In  the  MULTICOM  system,  a  domain  detection  algorithm  based  on  the  target-template  multiple

sequence alignment generated by HHsearch or HHblits is applied to identify domains for multi-domain

proteins. Template sequences in the alignment are filtered out by their E-value (> 1), sequence length

(<= 40), or alignment coverage (<= 0.5) for the target. If no template is left after filtering, the target is

identified as a single-domain template-free target. Otherwise, further analysis is applied to the filtered

alignment to identify domains. If a region of the target is not aligned with a template and has more than

40 residues, it is classified as a template-free domain. All the other regions are classified as template-

based domains.

    After  splitting a multi-domain target  into domains,  the sequence of each domain is  fed to the

prediction pipeline to generate structural models and top five models are selected. Modeller is used by

the default to combine the top domain models into full-length models. AIDA is used alternatively to

combine domain models when the full-length model generated by Modeller has severe clashes (i.e., the

distance between any two Ca atoms is  less than 1.9 Angstrom) or broken chain (i.e.,  the distance

between any two adjacent atoms is greater than 4.5 Angstrom). The domain-based combination models

may have good GDT-TS scores for individual domains, but low scores when they are compared with

the full-length native structures because they do not have inter-domain interaction information (e.g.,

relative position and orientation of domains). To address this problem, if a multi-domain target does

not have a significant template covering all its domains, domains are treated as independent modeling

units and domain-based combination models are used as top prediction. Otherwise, full-length models

generated without using domain information are selected based on the domain-based model evaluation



to maintain the domain-domain interactions.  In some cases, both kinds of models are selected and

added into the list of final top five predicted models.

3 Results

In  CASP14,  both  MULTICOM  human  and  server  predictors  participated  in  the  protein  tertiary

structure  prediction.  Among 92 CASP14 “all  groups” domains  for  tertiary  structure prediction,  54

domains are classified as template-based (TBM-easy or TBM-hard) domains that have some structural

templates in the Protein Data Bank (PDB) and 38 as FM or FM/TBM domains that have no templates

or whose templates cannot be recognized. MULTICOM human predictor was ranked 7th among all the

146 predictors on 92 “all group” domains (https://predictioncenter.org/casp14/zscores_final.cgi). The

performance of our human and server prediction methods is systematically analyzed in the following

sections using the official evaluation data downloaded from the CASP14’s website.

3.1 Performance of MULTICOM human predictor

Based on the official results on the CASP14 website, our MULTICOM human predictor was ranked 7 th

on all 92 domains overall, 4th on 54 TBM domains and 16th on 38 FM and FM/TBM domains in terms

of the sum of the positive Z-scores over the domains. The Z-score of a model predicted for a target is

the difference  between the GDT-TS score of the model  and the average GDT-TS score of all  the

models predicted for the target divided by the standard deviation of the GDT-TS scores of the models.

A positive Z-score indicates that the quality of the model is above the average model.  The default

CASP14 ranking uses the sum of positive Z-scores over the domains to rank predictors in order not to

penalize the new experimental methods that may predict bad models for some targets. Only 7 human

predictors  from  six  different  groups  (AlphaFold2,  BAKER,  FEIG-R2,  Zhang,  tFold_human,

MULTICOM) achieved higher performance than the best server predictor - QUARK (see Table 1 for

top 20 out 146 predictors and their total Z-score, average TM-score and average GDT-TS score). The



average TM-score of MULTICOM on the 92 “all-group” domains is 0.6989, substantially higher than

0.5  - a threshold for a correct fold prediction. If only the top one model per domain is considered,

MULTICOM predicts the correct fold for 76 out of 92 (82.6%) domains (i.e., 98% TBM domains and

60.5% FM and FM/TBM domains). If the best of the top five models for each domain is considered,

the success rate is increased to 84.8% (i.e., 98% TBM domains and 65.8% FM and FM/TBM domains).

    MULTICOM performed relatively  better  on TBM targets,  but  relatively  worse on FM targets

compared to some top predictors. The difference of the performance can be largely explained by the

performance of the quality assessment (QA) methods. Figure 3A shows the ranking loss of all quality

assessment  methods  or  individual  features,  including  three  DeepRank  method  variants,  three

clustering-based  methods,  six  contact  matching  scores  (long-range,  medium-range  and short-range

matching  scores),  11  distance  scores,  17  single-model  methods  used  by  MULTICOM on  61  “all

groups” full-length targets whose experimental structures have been released at CASP14 website. The

loss of a method is the absolute difference between the true GDT-TS scores of the best model for a

target and the no. 1 model selected by a quality assessment method/feature.  Figure 3B, 3C show the

ranking loss on 30 TBM-easy/TBM-hard targets and 31 FM/TBM or FM targets. The difficulty of a

multi-domain target is classified as the most difficult category of its individual domains. According to

the results, multi-model QA methods and DeepRank have 50% lower loss on TBM targets than FM and

FM/TBM targets.

3.2 Performance of MULTICOM in inter-domain structure prediction

In CASP14, MULTICOM was ranked 3rd in a new category - inter-domain structure prediction (https://

predictioncenter.org/casp14/zscores_interdomain.cgi)  to  assess  inter-domain  interactions  for  multi-

domain  targets.  The interactions  were assessed by Z-score based on F1 score + Z-score based on



Jaccard  score  +  Z-score  based  on best  of  contact  agreement  score.  10  multi-domain  targets  (e.g.,

T1030, T1038, T1052, T1053, T1058, T1061, T1085, T1086, T1094, T1101) were officially used in

evaluation after filtering out targets according to conformational  changes,  little  interaction between

domains, and oligomeric interactions. The performance of top 20 out of 136 CASP14 predictors is

reported in Table 2. MULTICOM’s good performance in this category demonstrates that its modeling

strategy for multi-domain targets works well.

3.3  Performance  of  MULTICOM-CLUSTER,  MULTICOM-CONSTRUCT,  MULTICOM-

HYBRID, MULTICOM-DEEP server predictors using both template-based and template-free

modeling

Figure 4 depicts the performance of the four server predictors on “all group” domains and server-only

domains, TBM domains, and FM or FM/TBM domains, respectively. For 92 “all group” and 4 “server

only”  domains,  the  average  TM-score  of  the  top  one  models  for  these  targets  predicted  by

MULTICOM-DEEP,  MULTICOM-HYBRID,  MULTICOM-CONSTRUCT,  and  MULTICOM-

CLUSTER is 0.643, 0.639, 0.640, 0.627, respectively. The average TM-score score of all the servers is

substantially higher than 0.5, indicating the MULTICOM servers made good structure prediction for

most domains on average. Specifically, if only top one model per domain is considered, MULTICOM-

DEEP predicts the correct topology for 75 out of 96 (78.1%) domains (i.e., 55 out of 58 (94.8%) TBM

domains  and 20 out  of  38 (52.6%) FM and FM/TBM domains.  Figure  5 illustrates  the  predicted

structures and distance maps for the 20 FM and FM/TBM domains. If the best of five models for each

domain is considered, the success rate is increased to 82.3% for all domains, 98.3% for TBM domains,

and 57.9% for FM and FM/TBM domains. Overall, MULTICOM-DEEP performed slightly better than

the other three predictors. Their performance of the predictors on the 58 TBM domain is very close,



demonstrating  that  using  only  HHSearch  and  HHblits  to  search  for  homologous  templates  in

MULTICOM-DEEP  and  MULTICOM-HYBRID  works  as  well  as  using  multiple  alignment  and

threading  tools  in  MULTICOM-CONSTRUCT  and  MULTICOM-CLUSTER  while  substantially

reducing  the  search  time.  Moreover,  MULTICOM-HYBRID  and  MULTICOM-DEEP  performs

slightly  better  on  FM  or  FM/TBM  targets  than  MULTICOM-CONSTRUCT  and  MULTICOM-

CLUSTER, suggesting that replacing the distance maps predicted by trRosetta with the ones predicted

by DeepDist may improve the performance of template-free modeling. Furthermore, the average TM-

score of all the four predictors on the FM and FM/TBM domains is >= 0.5, substantially better than

average 0.32 TM-score of our CASP13 MULTICOM server predictors on the hard domains (Hou et al.,

2019), indicating a substantial improvement on template-free modeling made by our new template-free

structure prediction method.

3.4 Performance of the pure template-free modeling server predictor MULTICOM-DIST

The average TM-score of top one models predicted by MULTICOM-DIST for the 38 CASP14 FM and

FM/TBM  domains  is  0.513,  which  is  similar  to  0.514  of  MULTICOM-HYBRID  or  0.512  of

MULTICOM-DEEP. The result is expected because they used the similar distance-based template-free

modeling  method.  Over the 38 CASP14 FM and FM/TBM domains,  we investigate  how different

factors  affect  the model  quality  for  the distance-based template-free modeling  method.  One is  the

number  of  effective  sequences  (Neff)  in  MSAs,  measured  as  the  number  of  the  non-redundant

sequences at 62% sequence identity threshold. Figure 6A shows a weak correlation between the model

quality and the logarithm of Neff (Pearson’s correlation coefficient = 0.42) over all 38 domains. But

when the logarithm of Neff is less than 6 (i.e., Neff < 400), there is a strong correlation between the

model quality and the logarithm of Neff (Pearson’s correlation coefficient is 0.81). The results show



the strong positive correlation between the model quality and Neff exists until Neff reaches about 400.

Another  factor  investigated  is  the  precision  of  distance  prediction.  Figure  6B shows  a  strong

correlation between the precision of top L/2 contact prediction (L: sequence length) and the model

quality (Pearson’s correlation coefficient = 0.71), indicating that the model quality increases as the

distance prediction gets more accurate.

    On the 58 TBM domains, the average TM-score of MULTICOM-DIST based on template-free

modeling  only  is  0.702,  which  is  a  little  lower  than  0.730  of  MULTICOM-DEEP  and  0.720  of

MULTICOM-HYBRID based on both template-based and template-free modeling. The results show

that, even though the template-based modeling may perform slightly better than template-free modeling

on some template-based targets, the high TM-score of MULTICOM-DIST on template-based targets

and  its  good  performance  close  to  that  of  MULTICOM-DEEP  and  MULTICOM-HYBRID

demonstrates that the distance-based template-free modeling can work very well on template-based

targets, which is consistent with the finding of AlphaFold in the CASP13 experiment. In fact, if only

top one model is considered for each domain, MULTICOM-DIST predicts the correct fold for 53 out of

58 (91.4%) TBM domains. If the best of five models is considered for each domain, the success is

increased to 96.6%. The results confirm that the distance-based protein structure prediction is able to

universally  address  the  protein  structure  prediction  problem.  Therefore,  the  traditional  division  of

protein  structure  prediction  into  template-based and template-free  modeling  may not  be  necessary

anymore, even though template-based structural information can still be used in the modeling process.

    The slightly worse average TM-score of MULTICOM-DIST on template-based targets was largely

due  to  the  lack  of  good  treatment  of  large  multi-domain  targets  in  the  early  stage  of  CASP14

experiment. For large proteins with sequence length > 500, it was often hard to find a sufficient amount



of well-aligned homologous sequences covering the entire sequence for accurate full-length residue-

residue distance prediction. The global multiple sequence alignment could be dominated by one or two

regions with a lot of homologous sequences, leaving the remaining regions not well aligned (i.e., a

large number of gaps). For one large TBM-easy target T1036s1 of 818 residues long, MULTICOM-

DIST failed to construct the full-length model for this target and its model had a very low TM-score -

0.19 for the domain T1036s1-D1 (sequence region: 1-621). The number of effective sequences of the

multiple  sequence  alignment  for  the  target  was  45  and  the  number  of  sequences  in  the  multiple

sequence alignment  was 265, which were relatively small  for the distance prediction for the entire

target.  For each residue position in the multiple sequence alignment of the target,  we calculate the

number  of  non-gap amino  acids  in  the  position  shown in  Figure  7A.  There  are  few homologous

sequences that can cover the entire sequence length. Most homologous sequences in the alignment only

cover some regions of the target. There are a large number of gaps in the region ranging from residue

300 to 400. Figure 7B compares the true distance map (lower triangle) and the predicted distance map

(upper  triangle).  Even  though  the  predicted  distance  map  contains  good  intra-domain  distance

predictions that are similar to the true distances, it does not have good long-range inter-domain distance

predictions. The region inside the red circle in the predicted distance map denotes the place where

long-range inter-residue contacts were not well predicted in comparison with the true distance map.

The true contacts in the region correspond to the interactions between residues 1-78 and residues 57-

551 (Figure  7C).  Different from MULTICOM-DIST, the other four MULTICOM server predictors

found  strong  full-length  templates  and  constructed  high-quality  models  from  the  templates.  For

instance, MULTICOM-CONSTRUCT found a significant template 3NWA with the sequence identity

of 0.488, sequence coverage of 0.966, and E-value of 5.7E-226 and built a good model with TM-score



of 0.92.  This  example  shows that  more care needs  to  be taken for large multi-domain proteins  in

template-free modeling and it is useful to incorporate some template-based distance information into

the distance-based free modeling.

3.5 Comparison of MULTICOM server predictors with other CASP14 server predictors

Based on the official results from the CASP website, after combining multiples server predictors from

the same group as one entry,  MULTICOM-DEEP was ranked 6th after BAKER, RaptorX, Zhang,

FEIG, and Seok groups by the assessor’s formula (GDT_HA + (SG + lDDT + CAD) / 3 + ASE) on 58

TBM domains in terms of sum for Z-scores larger than -2.0 (Table 3), where GDT_HA is GDT High

Accuracy, SG the Sphere Grinder score,  lDDT the local  Distance Difference Test score, CAD the

Contact Area Difference score, and ASE the Accuracy Self Estimate score. MULTICOM-HYBRID

server predictor was ranked 5th after Zhang, tFold, BAKER, Yang groups according to the assessor’s

formula (GDT_TS + QCS + 0.1 * Molprobity) on 38 TBM/FM and FM domains in terms of the sum

for positive Z-scores (Table 4), where GDT-TS is the Global Distance Test Score and QCS the Quality

Control Score. Both evaluations only considered submitted top 1 models from each server predictor.

3.6 Good and bad prediction examples

Among all 92 all-group domains, MULTICOM human prediction were ranked in the top five for three

targets in terms of top 1 model: T1034-D1, T1092-D1, and T1093-D2. For T1034-D1 (Supplementary

Figure  S2), MULTICOM model quality assessment selected RaptorX_TS1 as a start model, whose

GDT-TS is 0.8237. MULTICOM combined it with 19 other top ranked server models that were similar

to the start model (i.e., GDT-TS > 0.6) to generate a final model. The GDT-TS of the final top1 model

(MULTICOM_TS1) is 0.8702, which is significantly improved over the start model and is ranked only

after  the AlphaFold2 model.  For T1092-D1 and T1093-D2, the full-length protein sequences  were



divided into domains whose boundaries were close to the true domain definition. Based on the domain

splitting,  MULTICOM was able to select the best  domain model in the server model pool as start

models to generate high-quality final models.

    MULTICOM performed relatively poorly on some FM/TBM or FM domains, including T1031-D1,

T1039-D1,  T1043-D1,  T1061-D1.  For  T1031-D1,  T1039-D1,  T1043-D1,  MULTICOM’s  quality

assessment failed to select good start models from the model pool. One reason causing the failure is the

number of good-quality models in the model pool is low and the distribution of TM-scores of the

models for these targets is highly skewed. In Figure 8A, the percentage of good-quality models (TM-

score > 0.5) is plotted against the GDT-TS loss of the best quality assessment method - DeepRank. It is

shown that  TBM targets  have  a  larger  proportion  of  good-quality  models  than  FM and FM/TBM

targets. Among five hard targets that have greater than 0% but less than 10% of good models, three of

them (T1031-D1, T1039-D1, T1043-D1) have the highest loss among all the targets (>0.25). All the

other targets have the loss less than 0.15, even for the targets that have no good models predicted at all

(i.e., 0% good models).  Figure 8B is the plot of the distribution of TM-scores of the models for these

three targets. DeepRank selected a model with the score close to the mode (the high density area) of the

distribution instead of a good model in the extreme low density area. To further investigate how the

distribution of the quality scores of the models in the model pool affects the performance of DeepRank,

the  skewness  of  the distribution  is  calculated  for  the  targets  and plotted  against  the  loss  on them

(Figure 8C). The three targets with the highest loss have the highest skewness (i.e., 1.85 for T1031-D1,

1.6 for T1039-D1, 3.05 for T1043-D1), where positive (negative) value of skewness indicates that the

mean  TM-score  is  larger  (less)  than  the  median  TM-score.  On 31 FM and FM/TBM targets,  the

correlation  between  the  skewness  and  the  loss  of  DeepRank  is  0.56,  lower  than  0.71  of  Pcons,



indicating that both methods are affected by the skewness, but DeepRank integrating both multi-model

and single model features is more robust against  the skewness than a clustering-based multi-model

method. Another reason for the ranking failure is the incorrect domain prediction. For T1061-D1, a

long 949-residue long target, MULTICOM failed to detect the correct domain boundaries, which led to

the bad prediction for its first domain (T1061-D1). The example demonstrates that the accuracy of

domain prediction has a significant impact on the tertiary structure prediction for some multi-domain

targets.

4 Discussion and Conclusion

We  developed  the  MULTICOM  protein  structure  prediction  system  for  CASP14  experiment  and

evaluated and analyzed its performance on CASP14 targets.  We demonstrate that the distance-based

template-free prediction empowered by deep learning significantly improves the accuracy of protein

tertiary structure prediction. The approach can work well on both template-free and template-based

targets  and  therefore  can  be  applied  to  elucidate  the  structures  of  many  proteins  without  known

structures  in  a  genome.  However,  the  quality  of  template-free  modeling  critically  depends  on  the

quality  of  deep  learning-based residue-residue  distance  prediction,  which  in  turns  depends  on  the

quality of multiple sequence alignment.  In contrast to the substantial  improvement in template-free

structure prediction,  there is  little  improvement  in protein model  quality  assessment in our CAS14

system over  the  CASP13 methods.  The  quality  assessment  methods  using  more  accurate  residue-

residue distance prediction features did not perform better than the quality assessment method using

only  residue-residue  contact  prediction  features,  suggesting  that  better  methods  of  using  distance

predictions in quality assessment are needed. Moreover, domain prediction plays an important role in



both model generation and evaluation.  Accurate domain prediction can help generate better tertiary

structure models and select better predicted models for some multi-domain targets. Finally, according

to the CASP14 official  assessment,  our  distance-based MULTICOM method that  predicts  residue-

residue distance from multiple sequence alignments first and then reconstructs tertiary structures from

the predicted distances did not perform as well as AlphaFold2 that directly predicted 3D structures

from multiple sequence alignments, indicating the new direction of the end-to-end prediction of tertiary

structures from multiple sequence alignments via deep learning needs to be pursued in the future.
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Tables 

Table 1. Top 20 predictors in CASP14 tertiary structure prediction ranked by Z-score calculated from 
GDT-TS.

# Group Name
Sum Z-
score
(>0.0)

Avg 
TM-
score

Avg
GDT-TS

# Group Name
Sum Z-score

(>0.0)
Avg 

TM-score
Avg

GDT-TS

1 AlphaFold2 244.0217 0.9052 0.8801 11 tFold-CaT_human 61.8464 0.6938 0.6229

2 BAKER 92.1241 0.7388 0.6695 12 FEIG-R3 58.5809 0.6576 0.5942



3
BAKER-
experimental

91.4731 0.7334 0.6653
13

ropius0QA 57.8135 0.6891 0.6169

4 FEIG-R2 74.5627 0.7088 0.6464 14 MUFOLD_H 55.9608 0.6659 0.6004

5 Zhang 68.8922 0.7142 0.6386 15 Zhang-CEthreader 55.9467 0.6812 0.6064

6 tFold_human 65.2157 0.7021 0.6280 16 MESHI 55.9047 0.6861 0.6148

7 MULTICOM 64.0531 0.6989 0.6302 17 EMAP_CHAE 55.4235 0.6836 0.6129

8 QUARK 62.9711 0.6959 0.6234
18 BAKER-

ROSETTASERVER
55.2993 0.6511 0.5876

9 Zhang-Server 62.9122 0.6978 0.6249 19 Wallner 55.1852 0.6760 0.6086

10 tFold-IDT_human 62.0795 0.6862 0.6179 20 VoroMQA-select 54.571 0.6814 0.6102

Table 2. Top 20 predictors in the inter-domain structure prediction ranked by Z-score.

# Group Name
Sum Z-
score 
(>0.0)

Avg Z-score
(>0.0)

# Group Name
Sum Z-score

(>0.0)
Avg Z-score

(>0.0)

1 AlphaFold2 35.3062 3.5306 11 UOSHAN 7.2491 0.7249

2 BAKER-experimental 15.717 1.4288 12 Ornate-select 7.1811 0.6528

3 MULTICOM 8.986 0.8986 13 Bhattacharya 7.1549 0.7155

4 BAKER 8.759 0.8759 14 ProQ2 7.147 0.7147

5 ProQ3D 8.5411 0.8541 15 FEIG-R1 6.8338 0.6834

6 FEIG-R3 8.178 0.8178 16 NOVA 6.3867 0.6387

7 BAKER-
ROSETTASERVER

7.8402 0.784 17 Bilbul2020 6.3768 0.6377

8 EMAP_CHAE 7.8057 0.7806 18 RaptorX 6.3226 0.6323

9 VoroCNN-select 7.5861 0.6896 19 DATE 6.3098 0.631

10 tFold-CaT_human 7.532 0.7532 20 VoroMQA-select 6.1055 0.6106

Table 3. Top 20 CASP14 server predictors on 58 TBM domains. Multiple servers from the same group
are denoted by the same number in the superscript.

Group Name
Sum Zscore (>-

2.0)
Avg Zscore (>-

2.0)
Sum Zscore

(>0.0)
Avg Zscore

(>0.0)

BAKER-ROSETTASERVER[1] 38.0718 0.6564 52.0907 0.8981

RaptorX[2] 26.5604 0.4579 40.5722 0.6995

Zhang-Server[3] 24.6831 0.4256 39.018 0.6727

QUARK[3] 23.1323 0.3988 37.3346 0.6437

FEIG-S[4] 18.8587 0.3252 35.7677 0.6167

Seok-server[5] 12.1097 0.2088 29.7808 0.5135

Zhang-TBM[3] 9.3442 0.1611 31.5684 0.5443

Zhang-CEthreader[3] 7.8989 0.1362 31.4171 0.5417

MULTICOM-DEEP[6] 4.6145 0.0796 20.8194 0.359

MULTICOM-CONSTRUCT[6] 3.9167 0.0675 19.75 0.3405

MULTICOM-HYBRID[6] 1.5593 0.0269 18.9844 0.3273

MULTICOM-CLUSTER[6] -0.6846 -0.0118 17.1611 0.2959

MULTICOM-DIST[6] -2.0824 -0.0359 18.4336 0.3178

Yang-Server[7] -3.1289 -0.0539 23.9924 0.4137

Yang_FM[7] -3.634 -0.0627 23.11 0.3984

Zhang_Ab_Initio[3] -8.5749 -0.1478 19.034 0.3282



IntFOLD6[8] -8.6664 -0.1494 19.0746 0.3289

Yang_TBM[7] -10.1453 -0.1749 20.5955 0.3551

CATHER[9] -10.4899 -0.1809 21.2685 0.3667

BAKER-ROBETTA[1] -16.3391 -0.0068 18.7091 0.3742

Table 4.  Top 20 CASP14 server predictors on 38 TBM/FM and FM domains. Multiple servers from
the same group are denoted by the same number in the superscript.

Group Name
Sum Zscore (>-

2.0)
Avg Zscore (>-

2.0)
Sum Zscore

(>0.0)
Avg Zscore

(>0.0)

QUARK[1] 38.5983 1.0157 41.0331 1.0798

Zhang-Server[1] 37.833 0.9956 40.2236 1.0585

Zhang-CEthreader[1] 32.8307 0.864 37.4477 0.9855

Zhang-TBM[1] 30.5569 0.8041 33.439 0.88

Zhang_Ab_Initio[1] 25.1922 0.663 29.5266 0.777

tFold-CaT[2] 20.554 0.5409 24.0149 0.632

BAKER-ROSETTASERVER[3] 20.0555 0.5278 27.0395 0.7116

tFold[2] 19.2048 0.5054 23.7377 0.6247

tFold-IDT[2] 19.1705 0.5045 23.2788 0.6126

Yang-Server[4] 17.9829 0.4732 22.4134 0.5898

Yang_FM[4] 16.1171 0.4241 21.3196 0.561

MULTICOM-HYBRID[5] 14.6973 0.3868 20.1767 0.531

FoldX[6] 14.4935 0.3814 18.905 0.4975

MULTICOM-DIST[5] 13.8536 0.3646 19.2372 0.5062

Yang_TBM[4] 13.6895 0.3603 20.0208 0.5269

MULTICOM-DEEP[5] 13.6875 0.3602 19.6591 0.5173

FALCON-DeepFolder[7] 13.5072 0.3555 18.6262 0.4902

TOWER[8] 13.2279 0.3481 18.1948 0.4788

MULTICOM-CONSTRUCT[5] 12.0938 0.3183 18.4616 0.4858

RaptorX[9] 11.8695 0.3124 16.2479 0.4276

Figures

Figure 1. The pipeline of MULTICOM human and server protein structure predictors.

Figure 2. MULTICOM distance-based template-free structure predictors in CASP14.

Figure 3. The average loss of 40 QA methods and features in MULTICOM. (A) the loss on 61 “all

groups” full-length targets. (B) the loss on 30 TBM-easy and TBM-hard full-length targets. (C) the loss

on  31  TBM/FM and  FM full-length  targets.  Red:  three  DeepRank  methods  including  DeepRank,



DeepRank_con, DeepRank3_Cluster; Green: three Multi-model methods including APOLLO27, Pcons43

and  ModFOLDcluster244;  Blue:  17  single-model  methods  including  (i.e.,  SBROD28,  RWplus30,

Voronota31, Dope32, OPUS_PSP33, RF_CB_SRS_OD39, DeepQA40, ProQ241, ProQ342); Pink: six contact

matching  scores  including  DeepDist/DNCON2  short-range,  medium-range  and  long-range  contact

matching  scores;  Yellow:  11  distance  scores  including  SSIM  & PSNR45,  GIST46,  RMSE,  Recall,

Precision, PHASH47, Pearson correlation, and ORB48.

Figure  4. Evaluation of four MULTICOM server predictors in terms of the TM-scores for the first

submitted models. (A) On 92 “all group” + 4 “server only” domains (left: TM-scores of MULTICOM-

DEEP MULTICOM-HYBRID, MULTICOM-CONSTRUCT models vs TM-scores of MULTICOM-

CLUSTER models; right plot: mean and variation of the TM-scores of the models of the four methods).

(B) On 58 template-based (TBM-easy, TBM-hard) domains. (C) On 38 FM or TBM/FM domains.

Figure  5. Predicted structures and distance maps compared with native structures and true distance

maps for 20 FM or FM/TBM domains for which the first model predicted by MULTICOM-DEEP has

the correct topology (TM-score > 0.5). For each domain, on the left is the comparison of the distance

maps (lower triangle: true distance map; upper triangle: predicted distance map); and on the right is the

comparison of predicted and true structures (light yellow: native structure, light blue: the first predicted

structure). The TM-score of the predicted structure and the precision of top L/2 long-range contact

predictions for each domain is listed on top of each sub-figure.

Figure 6. (A) Logarithm of Neff of MSA vs. the quality of MULTICOM-DIST top 1 model on the 38

CASP14 FM and FM/TBM domains.  (B) The precision of top L/2 long-range contact predictions vs.

the quality of MULTICOM-DIST top one model on the 38 FM and FM/TBM domains.



Figure 7. (A) The plot of the number of non-gap residues of multiple sequence alignment of T1036s1

against  residue  positions,  where  x-axis  stands  for  each  residue  position  and  y-axis  stands  for  the

number of non-gap amino acids. (B) The true distance map of T1036s1-D1 (lower triangle) versus the

predicted  distance  map from MULTICOM-DIST (upper  triangle).  (C) The  true  structure  of  target

T1036s1-D1 in rainbow, starting from the N-terminal in blue to C-terminal in red.

Figure 8. (A) The percentage of good-quality models (TM-score > 0.5) vs GDT-TS loss off DeepRank.

(B) The distribution of TM-scores of the models of T1031-D1 (green), T1039-D1 (red), and T1043-D1

(blue); Dots on the curves denote the top model selected for the targets.  (C) The skewness of TM-

scores of the models vs GDT-TS loss of DeepRank for all 61 targets.
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