VII. REFERENCES
Allendorf, F. W., & Thorgaard, G. H. (1984). Tetraploidy and the
evolution of salmonid fishes. In Evolutionary genetics of fishes (pp.
1-53). Springer, Boston, MA.
Baillie, S. M., et al. (2016). ”Loss of genetic diversity and reduction
of genetic distance among lake trout Salvelinus namaycush ecomorphs,
Lake Superior 1959 to 2013.” Journal of Great Lakes Research 42(2):
204-216.
Balon, E. K. (1980). Charrs, salmonid fishes of the genus Salvelinus.
Kluwer Boston.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M.,
Kulikov, A. S., … & Pevzner, P. A. (2012). SPAdes: a new genome
assembly algorithm and its applications to single-cell sequencing.
Journal of computational biology, 19(5), 455-477.
Bertolotti, A. C., Layer, R. M., Gundappa, M. K., Gallagher, M. D.,
Pehlivanoglu, E., Nome, T., … & Macqueen, D. J. (2020). The
structural variation landscape in 492 Atlantic salmon genomes. Nature
communications, 11(1), 1-16.
Blackie, C.T., Weese, D.J., & Noakes, D.L.G. (2003). Evidence for
resource polymorphism in the lake charr (Salvelinus namaycush)
population of Great Bear Lake, Northwest Territories, Canada. Ecoscience
10(4), 509-514.
Bolger, A. M., Lohse, M., & Usadel, B. (2014) Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30(15), 2114-2120.
Bourgey, M., Dali, R., Eveleigh, R., Chen, K. C., Letourneau, L.,
Fillon, J., … & Bourque, G. (2019). GenPipes: an open-source
framework for distributed and scalable genomic analyses. GigaScience,
8(6), giz037.
Catchen, J., Amores, A., & Bassham, S. (2020). Chromonomer: a tool set
for repairing and enhancing assembled genomes through integration of
genetic maps and conserved synteny. G3: Genes, Genomes, Genetics,
10(11), 4115-4128.
Chaisson, M. J., & Tesler, G. (2012). Mapping single molecule
sequencing reads using basic local alignment with successive refinement
(BLASR): application and theory. BMC bioinformatics, 13(1), 1-18.
Chavarie, L., Howland, K., Harris, L., & Tonn, W. (2015). Polymorphism
in lake trout in Great Bear Lake: intra-lake morphological
diversification at two spatial scales. Biological Journal of the Linnean
Society 114(1): 109-125.
Chin, C. S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J.,
Heiner, C., … & Turner, S. W. (2013). Nonhybrid, finished microbial
genome assemblies from long-read SMRT sequencing data. Nature Methods,
10(6), 563.
Chin, C. S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G.
T., Clum, A., … & Schatz, M. C. (2016). Phased diploid genome
assembly with single-molecule real-time sequencing. Nature methods,
13(12), 1050-1054.
Christensen, K. A., Rondeau, E. B., Minkley, D. R., Leong, J. S.,
Nugent, C. M., Danzmann, R. G., … & Koop, B. F. (2018). The Arctic
Char (Salvelinus alpinus) genome and transcriptome assembly. PloS one,
13(9), e0204076.
Christensen, K.A., Leong, J.S., Sakhrani, D., Biagi, C.A., Minkley,
D.R., Withler, R.E., Rondeau, E.B., Koop, B.F., & Devlin, R.H. (2018).
Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PloS
One 13(4 (2018): e0195461.
Christensen, K. A., Rondeau, E. B., Minkley, D. R., Leong, J. S.,
Nugent, C. M., Danzmann, R. G., … & Koop, B. F. (2021). Retraction:
The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly.
Crête-Lafrenière, A., Weir, L. K., & Bernatchez, L. (2012). Framing the
Salmonidae family phylogenetic portrait: a more complete picture from
increased taxon sampling. PloS one, 7(10), e46662.
De‐Kayne, R., Zoller, S., & Feulner, P. G. (2020). A de novo
chromosome‐level genome assembly of Coregonus sp.“Balchen”: one
representative of the Swiss Alpine whitefish radiation. Molecular
Ecology Resources.
English, A. C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., … &
Gibbs, R. A. (2012). Mind the gap: upgrading genomes with Pacific
Biosciences RS long-read sequencing technology. PloS One, 7(11), e47768.
Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G.,
Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated
genomic discovery of transposable element families. Proceedings of the
National Academy of Sciences, 117(17), 9451-9457.
Gagnaire P-A, Normandeau E, Pavey SA, Bernatchez L. 2013. Mapping
phenotypic, expression and transmission ratiodistortion QTL using RAD
marker in the Lake Whitefish (Coregonus clupeaformis). Molecular
Ecology. 22: 3036-3048.
Garrison, E., & Marth, G. (2012). Haplotype-based variant detection
from short-read sequencing. arXiv preprint arXiv:1207.3907.
Ghurye, J., Pop, M., Koren, S., Bickhart, D., & Chin, C. S. (2017).
Scaffolding of long read assemblies using long range contact
information. BMC genomics, 18(1), 1-11.
Goetz, F., Rosauer, D., Sitar, S., Goetz, G., Simchick, C., Roberts, S.,
… & Mackenzie, S. (2010). A genetic basis for the phenotypic
differentiation between siscowet and lean lake trout (Salvelinus
namaycush). Molecular ecology, 19, 176-196.
Goetz, F., Smith, S. E., Goetz, G., & Murphy, C. A. (2016). Sea
lampreys elicit strong transcriptomic responses in the lake trout liver
during parasitism. BMC genomics, 17(1), 1-16.
Goodier, J. L. (1981). Native lake trout (Salvelinus namaycush) stocks
in the Canadian waters of Lake Superior prior to 1955. Canadian Journal
of Fisheries and Aquatic Sciences, 38(12), 1724-1737.
Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). circlize
implements and enhances circular visualization in R. Bioinformatics,
30(19), 2811-2812.
Guinand, B., K.T. Scribner, K.S. Page, and M.K. Burnham-Curtis. 2003.
Genetic variation over space and time: analyses of extinct and remnant
lake trout populations in the upper Great Lakes. Proc. Roy. Soc. Lond.
270: 425-434.
Hansen, Michael J. ”Lake trout in the Great Lakes: basin-wide stock
collapse and binational restoration.” (1999): 417-453. Pages 417-453 in
William W Taylor, C Paola Ferreri (eds). Great Lakes Fishery Policy and
Management: A Binational Perspective. Michigan State University Press.
Hanson, S. D., Holey, M. E., Treska, T. J., Bronte, C. R., &
Eggebraaten, T. H. (2013). Evidence of wild juvenile lake trout
recruitment in western Lake Michigan. North American Journal of
Fisheries Management, 33(1), 186-191.
Harris, L. N., Chavarie, L., Bajno, R., Howland, K. L., Wiley, S. H.,
Tonn, W. M., & Taylor, E. B. (2015). Evolution and origin of sympatric
shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in
Canada’s Great Bear Lake. Heredity, 114(1), 94-106.
Hotaling, S.; Kelley, J.L. The rising tide of high-quality genomic
resources. Mol. Ecol. Resour. 2020, 19, 567–569.
Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno,
M., … & Itoh, T. (2014). Efficient de novo assembly of highly
heterozygous genomes from whole-genome shotgun short reads. Genome
research, 24(8), 1384-1395.
Komen, H., & Thorgaard, G. H. (2007). Androgenesis, gynogenesis and the
production of clones in fishes: a review. Aquaculture, 269(1-4),
150-173.
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., &
Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome research,
27(5), 722-736.
Krueger, C. C., Horrall, R. M., & Gruenthal, H. (1983). Strategy for
the use of lake trout strains in Lake Michigan. Wisconsin Department of
Natural Resources, Administrative Report, 17.
Lantry JR (2015) Eastern basin of Lake Ontario warmwater fisheries
assessment, 1976–2014. 2014 annual report, Bureau of Fisheries, Lake
Ontario Unit and St Lawrence River Unit to the Great Lakes Fishery
Commission’s Lake Ontario Committee, pp. 1–35
Larson, W. A., Kornis, M. S., Turnquist, K. N., Bronte, C. R., Holey, M.
E., Hanson, S. D., … & Sloss, B. L. (2021). The genetic composition
of wild recruits in a recovering lake trout population in Lake Michigan.
Canadian Journal of Fisheries and Aquatic Sciences, 99(999), 1-15.
Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18), 3094-3100.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
… & Durbin, R. (2009). The sequence alignment/map format and
SAMtools. Bioinformatics, 25(16), 2078-2079.
Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Kent, M. P., Nome,
T., … & Davidson, W. S. (2016). The Atlantic salmon genome provides
insights into rediploidization. Nature, 533(7602), 200-205.
Limborg, M. T., Seeb, L. W., & Seeb, J. E. (2016). Sorting duplicated
loci disentangles complexities of polyploid genomes masked by genotyping
by sequencing. Molecular Ecology. DOI: 10.1111/mec.13601
Lynch, M., & Force, A. G. (2000). The origin of interspecific genomic
incompatibility via gene duplication. The American Naturalist, 156(6),
590-605.
Macqueen, D. J., & Johnston, I. A. (2014). A well-constrained estimate
for the timing of the salmonid whole genome duplication reveals major
decoupling from species diversification. Proceedings of the Royal
Society B: Biological Sciences, 281(1778), 20132881.
Marcais, G., & Kingsford, C. (2012). Jellyfish: A fast k-mer counter.
Tutorialis e Manuais, 1-8.
Marin, K., Coon, A., Carson, R., Debes, P. V., & Fraser, D. J. (2016).
Striking phenotypic variation yet low genetic differentiation in
sympatric lake trout (Salvelinus namaycush). PloS one, 11(9), e0162325.
Marsden, J. E., Noakes, D. L., & Krueger, C. C. (2021). Terminology
Issues in Lake Charr Early Development. In A. M. Muir (Ed.), The Lake
Charr Salvelinus namaycush: Biology, Ecology, Distribution, and
Management (1st ed., Fish and Fisheries, Ser. 39, pp. 487-497). Cham,
Switzerland: Springer International Publishing.
doi:10.1007/978-3-030-62259-6
Mérot, C., Oomen, R. A., Tigano, A., & Wellenreuther, M. (2020). A
roadmap for understanding the evolutionary significance of structural
genomic variation. Trends in Ecology & Evolution, 35(7), 561-572.
Muir, A. M., Bronte, C. R., Zimmerman, M. S., Quinlan, H. R., Glase, J.
D., & Krueger, C. C. (2014). Ecomorphological diversity of lake trout
at Isle Royale, Lake Superior. Transactions of the American Fisheries
Society, 143(4), 972-987.
Muir, A. M., Hansen, M. J., Bronte, C. R., & Krueger, C. C. (2016). If
Arctic charr Salvelinus alpinus is ‘the most diverse vertebrate’, what
is the lake charr Salvelinus namaycush?. Fish and Fisheries, 17(4),
1194-1207.
Ohno S. (1970). Evolution by gene duplication. New York:
Springer-Verlag.
Pan, W., Jiang, T., & Lonardi, S. (2020). OMGS: optical map-based
genome scaffolding. Journal of Computational Biology, 27(4), 519-533.
Pearse, D. E., Barson, N. J., Nome, T., Gao, G., Campbell, M. A.,
Abadía-Cardoso, A., … & Lien, S. (2019). Sex-dependent dominance
maintains migration supergene in rainbow trout. Nature Ecology &
Evolution, 3(12), 1731-1742.
Perreault‐Payette, A., Muir, A. M., Goetz, F., Perrier, C., Normandeau,
E., Sirois, P., & Bernatchez, L. (2017). Investigating the extent of
parallelism in morphological and genomic divergence among lake trout
ecotypes in Lake Superior. Molecular Ecology, 26(6), 1477-1497.
Pflug, J. M., Holmes, V. R., Burrus, C., Johnston, J. S., & Maddison,
D. R. (2020). Measuring genome sizes using read-depth, k-mers, and flow
cytometry: methodological comparisons in beetles (Coleoptera). G3:
Genes, Genomes, Genetics, 10(9), 3047-3060.
Prince, D. J., O’Rourke, S. M., Thompson, T. Q., Ali, O. A., Lyman, H.
S., Saglam, I. K., … & Miller, M. R. (2017). The evolutionary basis
of premature migration in Pacific salmon highlights the utility of
genomics for informing conservation. Science advances, 3(8), e1603198.
Pycha, R. L. (1980). Changes in mortality of lake trout (Salvelinus
namaycush) in Michigan waters of Lake Superior in relation to sea
lamprey (Petromyzon marinus) predation, 1968–78. Canadian Journal of
Fisheries and Aquatic Sciences, 37(11), 2063-2073.
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of
utilities for comparing genomic features. Bioinformatics, 26(6),
841-842.
R Core Team (2017). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Rakestraw, L. (1967). Post-columbian history of Isle Royale. Part II:
fisheries. Master’s thesis Houghton: Michigan Technological University
Döring, A., Weese, D., Rausch, T., & Reinert, K. (2008). SeqAn an
efficient, generic C++ library for sequence analysis. BMC
bioinformatics, 9(1), 1-9.
Rezvoy, C., Charif, D., Guéguen, L., & Marais, G. A. (2007). MareyMap:
an R-based tool with graphical interface for estimating recombination
rates. Bioinformatics, 23(16), 2188-2189.
Riley, S. C., et al. (2007). ”Evidence of widespread natural
reproduction by lake trout Salvelinus namaycush in the Michigan waters
of Lake Huron.” Journal of Great Lakes Research 33: 917-921.
Rougeux C, Gagnaire PA, Praebel K, Seehausen O, Bernatchez L. 2019.
Polygenic selection drives the evolution of convergent transcriptomic
landscapes across continents within a Nearctic sister-species complex.
Molecular Ecology. 28:4388-4403.
Ruan, J., & Li, H. (2020). Fast and accurate long-read assembly with
wtdbg2. Nature methods, 17(2), 155-158.
Salzberg, S. L. (2019). Next-generation genome annotation: we still
struggle to get it right. Genome Biology 20, 92.
https://doi.org/10.1186/s13059-019-1715-2
Scribner, Kim, Iyob Tsehaye, Travis Brenden, Wendylee Stott, Jeannette
Kanefsky, & James Bence. ”Hatchery strain contributions to emerging
wild lake trout populations in Lake Huron.” Journal of Heredity 109, no.
6 (2018): 675-688.
Shedko, S. V. (2019). Assembly ASM291031v2 (Genbank: GCA_002910315. 2)
identified as assembly of the Northern Dolly Varden (Salvelinus malma
malma) genome, and not the Arctic char (S. alpinus) genome. arXiv
preprint arXiv:1912.02474.
Siberchicot, A., Bessy, A., Guéguen, L., & Marais, G. A. (2017).
MareyMap online: a user-friendly web application and database service
for estimating recombination rates using physical and genetic maps.
Genome biology and evolution, 9(10), 2506-2509.
Smit, AFA, Hubley, R & Green, P. (2015). RepeatMasker Open-4.0.
<http://www.repeatmasker.org>.
Smith, S. H. (1968). ”Species succession and fishery exploitation in the
Great Lakes.” Journal of the Fisheries Research Board of Canada 25:
667-693.
Smith, S. R., Amish, S. J., Bernatchez, L., Le Luyer, J., C. Wilson, C.,
Boeberitz, O., … & Scribner, K. T. (2020). Mapping of Adaptive Traits
Enabled by a High-Density Linkage Map for Lake Trout. G3: Genes,
Genomes, Genetics, 10(6), 1929-1947.
Soderlund, C., Nelson, W., Shoemaker, A., & Paterson, A. (2006). SyMAP:
A system for discovering and viewing syntenic regions of FPC maps.
Genome research, 16(9), 1159-1168.
Soderlund, C., Bomhoff, M., & Nelson, W. M. (2011). SyMAP v3. 4: a
turnkey synteny system with application to plant genomes. Nucleic acids
research, 39(10), e68-e68.
Thibaud-Nissen, F., DiCuccio, M., Hlavina, W., Kimchi, A., Kitts, P. A.,
Murphy, T. D., … & Souvorov, A. (2016). P8008 The NCBI Eukaryotic
Genome Annotation Pipeline. Journal of Animal Science, 94(suppl_4),
184-184.
Thorgaard, Gary H., Fred W. Allendorf, & Kathy L. Knudsen.
”Gene-centromere mapping in rainbow trout: high interference over long
map distances.” Genetics 103, no. 4 (1983): 771-783.
Valiquette E, Perrier C, Thibault I, Bernatchez L. 2014. Loss of genetic
integrity in wild Lake Trout populations following stocking: Insights
from an exhaustive study of 72 lakes from Québec, Canada. Evolutionary
Applications. 7: 625-644.
Van de Peer, Y., Mizrachi, E., & Marchal, K. (2017). The evolutionary
significance of polyploidy. Nature Reviews Genetics, 18(7), 411.
Veale, A. J., & Russello, M. A. (2017). An ancient selective sweep
linked to reproductive life history evolution in sockeye salmon.
Scientific Reports, 7(1), 1-10.
Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Underwood, C. J., Fang,
H., Gurtowski, J., & Schatz, M. C. (2017). GenomeScope: fast
reference-free genome profiling from short reads. Bioinformatics,
33(14), 2202-2204.
Waples, R.S. K.A. Naish, and C.R. Primmer. 2020.Conservation and
Management of salmon in the age of genomics. Ann. Rev. Anim. Biosci. 8:
117-143.
Whibley, A., Kelley, J., & Narum, S. (2020). The changing face of
genome assemblies: guidance on achieving high‐quality reference genomes.
Molecular ecology resources.
Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017).
Unicycler: resolving bacterial genome assemblies from short and long
sequencing reads. PLoS computational biology, 13(6), e1005595.
Williams, D., Trimble, W. L., Shilts, M., Meyer, F., & Ochman, H.
(2013). Rapid quantification of sequence repeats to resolve the size,
structure and contents of bacterial genomes. BMC Genomics, 14(1), 1-11.
Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T., &
Christie, M. R. (2018). Rapid genetic adaptation to a novel environment
despite a genome‐wide reduction in genetic diversity. Molecular Ecology,
27(20), 4041-4051.
Wingett, S., Ewels, P., Furlan-Magaril, M., Nagano, T., Schoenfelder,
S., Fraser, P., & Andrews, S. (2015). HiCUP: pipeline for mapping and
processing Hi-C data. F1000Research, 4.
Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Zuzarte PC, et al.
Nanopore native RNA sequencing of a human poly(a) transcriptome.
bioRxiv; 2018. p. 459529. https://doi.org/10.1101/459529
Zimin, A. V., & Salzberg, S. L. (2020). The genome polishing tool POLCA
makes fast and accurate corrections in genome assemblies. PLoS
computational biology, 16(6), e1007981.
Zimmerman, Mara S., Charles C. Krueger, & Randy L. Eshenroder.
”Phenotypic diversity of lake trout in Great Slave Lake: differences in
morphology, buoyancy, and habitat depth.” Transactions of the American
Fisheries Society 135, no. 4 (2006): 1056-1067.