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1 Introduction

Chemical graph theory is an interdisciplinary field of science which relates chemistry with

a branch of mathematical modeling of graphs. Topological indices are graph invariants that

play an important role in chemical and pharmaceutical sciences, since they can be used to

predict physicochemical properties of organic compounds ( [30]). There are lots of topological

indices in the literature of chemical graph theory. Recently, Gutman introduces a family of

Sombor indices in the chemical graph theory ( [13]). It was examined in [28] that the Sombor

index, reduced Sombor index and average Sombor index showed satisfactory predictive and

discriminative potential in modeling entropy and enthalpy of vaporization of alkanes. The

results of testing predictive potential of Sombor indices indicate that these descriptors may be

successfully applied on modeling thermodynamic properties of compounds.

Let G = (V,E) be a finite, connected, simple graph with vertex set V (G) and edge set

E = E(G), where |V (G)| is the number of vertices and |E(G)| is the number of edges. We

∗This work is supported by the National Natural Science Foundation of China (Grant No. 11971180), the
Guangdong Provincial Natural Science Foundation (Grant No. 2019A1515012052).

†Corresponding author: ylhua@scnu.edu.cn

1



denote the degree of a vertex i in G by di. The (ordinary) Sombor index is defined as

SO(G) =
∑
i∼j

√
d2i + d2j ,

the reduced Sombor index is defined as

SOred(G) =
∑
i∼j

√
(di − 1)2 + (dj − 1)2,

and the average Sombor index, as

SOavr(G) =
∑
i∼j

√
(di − d̄)2 + (dj − d̄)2,

where d̄ = 2·|E(G)|
|V (G)| is the average degree of graph G ( [13]). In this paper, Sombor indices refer

to Sombor index, reduced Sombor index and average Sombor index. Let a be any real number

or parameter of graph G. We generalize the Sombor indices with a. The generalized index is

defined as

SOa(G) =
∑
i∼j

√
(di − a)2 + (dj − a)2.

It’s clear when a = 0, SOa(G) = SO(G), when a = 1, SOa(G) = SOred(G) and when a = d̄,

SOa(G) = SOavr(G).

Sombor indices have attracted much attention due to good chemical applicability. Cruz,

Gutman and Rada characterized the extremal graphs of the chemical graphs, chemical trees

and hexagon systems with respect to Sombor index ( [6]). In [4], the Sombor index of polymer

graphs which can be decomposed into monomer units was consider. In [7], the extremal values

of the Sombor index in unicyclic and bicyclic graphs were studied. Das, Cevik, Cangul and

Shang presented lower and upper bounds on the Sombor index of graphs by using some graph

parameters and obtain several relations on Sombor index with the first and second Zagreb

indices of graphs ( [9]). More results of Sombor indices can be found in [10, 11, 13–15, 18, 21,

28, 29, 31]. In Section 2, we study the expected values of the Sombor indices in the random

hexagonal chains and random phenylene chains, and make a comparison between the expected

values. In Section 3, we study the Sombor indices of some graphs that are of importance

in chemistry such as graphene, coronoid systems and carbon nanocones, and give numerical

comparison of the Sombor indices and graphical profiles of the comparison.
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2 The expected values of Sombor indices in random hexag-

onal chains and phenylene chains

Random molecular graphs are of great importance for theoretical chemistry. There are

many results about the extreme values of topological indices of random molecular graphs in

recent years ( [16, 20, 24, 25, 32]). In this section, we study the expected values of the Sombor

indices in random hexagonal chains and phenylene chains.

We say an edge is (i, j)-type if it joins a vertex with degree i and a vertex with degree j in

G. Let mij(G) be the number of edges of (i, j)-type. Then we have the following Proposition.

Proposition 2.1. Let G be a graph. If there exists only (2, 2), (2, 3) and (3, 3)-type of edges

in G, then we have

SOa(G) =
√

2 · |2− a| ·m22(G) +
√

2a2 − 10a + 13m23(G) +
√

2 · |3− a| ·m33(G) (1)

2.1 Random hexagonal chains

A benzenoid system is a finite connected subgraph of the infinite hexagonal lattice without

cut vertices or non-hexagonal interior faces. A benzenoid system without any hexagon which

has more than two neighboring hexagons is called a hexagonal chain, denoted by HXGn.

For n ≥ 3, the terminal hexagon can be attached in three ways, which results in the local

arrangements, we describe as HXG1
n, HXG2

n, and HXG3
n, respectively, see Figure 1.

A random hexagonal chain HXG(n; p1, p2) with n hexagons is a hexagonal chain obtained

by stepwise addition of terminal hexagons. At each step t(= 3, 4, · · · , n), a random selection is

made from one of the three possible constructions:

(1) HXGn−1 → HXG1
n with probability p1;

(2) HXGn−1 → HXG2
n with probability p2;

(3) HXGn−1 → HXG3
n with probability 1 − p1 − p2, where p1, p2 are constants, irrelative to

the step parameter t.

Since HXG(n; p1, p2) is a random hexagonal chain, SO(HXG(n; p1, p2)), SOred(HXG(n; p1, p2))

and SOavr(HXG(n; p1, p2)) are random variables. We denote the expected values of these in-

dices by Ea
n = E[SOa(HXG(n; p1, p2))], En = E[SO(HXG(n; p1, p2))], E

red
n = E[SOred(HXG(n; p1, p2))]

and Eavr
n = E[SOavr(HXG(n; p1, p2))]. In this section, a is a constant.
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Figure 1: The three types of local arrangements in the hexagonal chains.

Theorem 2.2. Let HXG(n; p1, p2) be the hexagonal chain of length n(≥ 2). Then

Ea
n = 2(np2 − 2p2 + n)

√
2a2 − 10a + 13 +

√
2(−np2 + 2p2 + n + 4) · |2− a|

+
√

2(np2 − 2p2 + 2n− 3) · |3− a|,
(2)

En = [(2
√

13− 5
√

2)p2 + 8
√

2 + 2
√

13]n + (10
√

2− 4
√

13)p2 −
√

2, (3)

Ered
n = [(2

√
5− 3

√
2)p2 + 5

√
2 + 2

√
5]n + (6

√
2− 4

√
5)p2 − 2

√
2, (4)

Eavr
n = [2(p2 + 1)

√
2d̄2 − 10d̄ + 13 +

√
2(4− p2 − d̄)]n

−4p2
√

2d̄2 − 10d̄ + 13 +
√

2(2p2 + 7d̄− 17), where d̄ =
5n + 1

2n + 1
.

(5)

Proof. From the structure of the hexagonal chain, it is easy to see that there exists only (2, 2),

(2, 3) and (3, 3)-type of edges. From Proposition 2.1, when n = 2, Ea
2 = 4

√
2a2 − 10a + 13 +

√
2(6 · |2− a|+ |3− a|).

For n ≥ 3, there are three possibilities to be considered (see Figure 1).

Case 1. HXGn−1 → HXG1
n.

m22(HXG1
n) = m22(HXGn−1) + 1;

m23(HXG1
n) = m23(HXGn−1) + 2;

m33(HXG1
n) = m33(HXGn−1) + 2.

Thus, SOa(HXG1
n) = SOa(HXGn−1) + 2

√
2a2 − 10a + 13 +

√
2(|2− a|+ 2 · |3− a|).

Case 2. HXGn−1 → HXG2
n.

m22(HXG2
n) = m22(HXGn−1) + 0;

m23(HXG2
n) = m23(HXGn−1) + 4;

m33(HXG2
n) = m33(HXGn−1) + 1.

Thus, SOa(HXG2
n) = SOa(HXGn−1) + 4

√
2a2 − 10a + 13 +

√
2 · |3− a|.
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Case 3. HXGn−1 → HXG3
n.

m22(HXG3
n) = m22(HXGn−1) + 1;

m23(HXG3
n) = m23(HXGn−1) + 2;

m33(HXG3
n) = m33(HXGn−1) + 2.

Thus, SOa(HXG3
n) = SOa(HXGn−1) + 2

√
2a2 − 10a + 13 +

√
2(|2− a|+ 2 · |3− a|).

Therefore, Ea
n = p1 · SOa(HXG1

n) + p2 · SOa(HXG2
n) + (1 − p1 − p2) · SOa(HXG3

n) =

SOa(HXGn−1) + 2(p2 + 1)
√

2a2 − 10a + 13 +
√

2[(1 − p2) · |2 − a| + (2 − p2) · |3 − a|]. Since

E[Ea
n] = Ea

n, we have

Ea
n = Ea

n−1 + 2(p2 + 1)
√

2a2 − 10a + 13 +
√

2[(1− p2) · |2− a|+ (2− p2) · |3− a|]. (6)

After solving the recurrence relation (6) with initial condition, we get (2).

When a = 0, we have (3). When a = 1, we have (4). Since |V (HXG(n; p1, p2))| = 4n + 2,

|E(HXG(n; p1, p2))| = 5n + 1, we have 2 < d̄ = 5n+1
2n+1

< 3. For given n, d̄ is a constant and

therefore we get (5).

Let Rn = HXG(n; 0, 0), Ln = HXG(n; 1, 0) and Pn = HXG(n; 0, 1). By Theorem 2.2, we

have

Corollary 2.3. The Sombor indices of Rn, Ln and Pn are

SOa(Rn) = SOa(Ln) = 2n
√

2a2 − 10a + 13 +
√

2(n + 4) · |2− a|+
√

2(2n− 3) · |3− a|,

SOa(Pn) = 4(n− 1)
√

2a2 − 10a + 13 + 6
√

2 · |2− a|+
√

2(n− 1) · |3− a|.

Corollary 2.4. Among all random hexagonal chains HXGn(n ≥ 2), we have

(1) (8
√

2 + 2
√

13)n−
√

2 ≤ SO(HXGn) ≤ (3
√

2 + 4
√

13)n+ 9
√

2− 4
√

13, with left equality iff

G ∼= Rn or G ∼= Ln, right equality iff G ∼= Pn.

(2) (5
√

2 + 2
√

5)n− 2
√

2 ≤ SOred(HXGn) ≤ (2
√

2 + 4
√

5)n+ 4
√

2− 4
√

5, with left equality iff

G ∼= Rn or G ∼= Ln, right equality iff G ∼= Pn.

(3) 2n
√

2d̄2 − 10d̄ + 13+
√

2[(4− d̄)n+7d̄−17] ≤ SOavr(HXGn) ≤ 4(n−1)
√

2d̄2 − 10d̄ + 13+
√

2[(3− d̄)n+ 7d̄− 15], where d̄ = 5n+1
2n+1

, with left equality iff G ∼= Rn or G ∼= Ln, right equality

iff G ∼= Pn.
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Proof. Since En = (n−2)(2
√

13−5
√

2)p2 +
√

2(8n−1)+2
√

13n and (n−2)(2
√

13−5
√

2) ≥ 0,

SO(HXGn) reaches the maximum value when p2 = 1 and reaches the minimum value when

p2 = 0.

Since Ered
n = (n − 2)(2

√
5 − 3

√
2)p2 +

√
2(5n − 2) + 2

√
5n and (n − 2)(2

√
5 − 3

√
2) ≥ 0,

SOred(HXGn) reaches the maximum value when p2 = 1 and reaches the minimum value when

p2 = 0.

Eavr
n = (n− 2)[2

√
2d̄2 − 10d̄ + 13−

√
2]p2 + 2n

√
2d̄2 − 10d̄ + 13 +

√
2[(4− d̄)n + 7d̄− 17]

can be regarded as a linear function of p2. Since n ≥ 2, 2d̄2 − 10d̄ + 13 = 2(d̄ − 5
2
)2 + 1

2
≥ 1

2
,

we have 2
√

2d̄2 − 10d̄ + 13−
√

2 ≥ 0. Thus SOavr(HXGn) reaches the maximum value when

p2 = 1 and reaches the minimum value when p2 = 0.

Denote by HCn the set of all hexagonal chains with n hexagons. The average value of

Sombor indices among HCn can be characterized as

Aa(HCn) =
1

|HCn|
∑

G∈HCn

SOa(G).

Since each element in HCn has the same probability of occurrence, we have p1 = p2 = 1− p1−

p2 = 1
3
. Then we have the following theorem.

Theorem 2.5. The average values of Sombor indices among HCn are

Aa(HCn) =
4

3
(2n− 1)

√
2a2 − 10a + 13 +

2

3

√
2(n + 7) · |2− a|+

√
2

3
(5n− 7) · |3− a|.

We find that the average values of the Sombor index with respect to Rn, Ln, Pn is equal to

the average value of Sombor index among HCn.

SOa(Rn) + SOa(Ln) + SOa(Pn)

3
= Aa(HCn).

2.2 Random phenylene chains

The phenylene chains are a class of conjugated hydrocarbons consists of hexagons and

squares connected in turn, which has unique physicochemical properties due to their aromatic

and antiaromatic rings. In [26, 27], Raza studied the expected values of some indices such as

sum-connectivity, harmonic, symmetric division, arithmetic bond connectivity and geometric

indices in random phenylene chains. In the following, we will study the Sombor indices of

phenylene chains which are special molecular graphs. A phenylene chain RPHn with n hexagons

can be regarded as a phenylene chain RPHn−1 with n − 1 hexagons to which a new terminal
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hexagon has been adjoined by two edges. For n ≥ 3, the terminal hexagon can be attached in

three ways, which results in the local arrangements, we describe as RPH1
n, RPH2

n, and RPH3
n,

respectively (see Figure 2).

Figure 2: The three types of local arrangements in the random phenylene chains.

A random phenylene chain RPH(n; p1, p2) with n hexagons is a polyphenyl chain obtained

by stepwise addition of terminal hexagons. At each step t(= 3, 4, · · · , n), a random selection is

made from one of the three possible constructions:

(1) RPHn−1 → RPH1
n with probability p1;

(2) RPHn−1 → RPH2
n with probability p2;

(3) RPHn−1 → RPH3
n with probability 1− p1− p2, where p1, p2 are constants, irrelative to the

step parameter t.

We denote the expected values of Sombor indices by Ea
n = E[SOa(RPH(n; p1, p2))], En =

E[SO(RPH(n; p1, p2))], Ered
n = E[SOred(RPH(n; p1, p2))] and Eavr

n = E[SOavr(RPH(n; p1, p2))].

In this section, a is a constant.

Theorem 2.6. Let RPH(n; p1, p2) be the random phenylene chain of length n(≥ 2). Then

Ea
n = 2(np2 − 2p2 + n)

√
2a2 − 10a + 13 +

√
2(−np2 + 2p2 + n + 4) · |2− a|

+
√

2(−np2 + 2p2 + 5n− 6) · |3− a|,
(7)

En = [(2
√

13− 5
√

2)p2 + 17
√

2 + 2
√

13]n + 2(5
√

2− 2
√

13)p2 − 10
√

2, (8)

Ered
n = [(2

√
5− 3

√
2)p2 + 11

√
2 + 2

√
5]n + (6

√
2− 4

√
5)p2 − 8

√
2, (9)

Eavr
n = [2(p2 + 1)

√
2d̄2 − 10d̄ + 13 +

√
2(13− p2 − 4d̄)]n

−4p2
√

2d̄2 − 10d̄ + 13 + 2
√

2(p2 + 5d̄− 13), where d̄ =
8n− 2

3n
.

(10)

Proof. From the structure of the phenylene chain, it is easy to see that there exists only (2, 2),

(2, 3) and (3, 3)-type of edges. From Proposition 2.1, when n = 2, Ea
2 = 4

√
2a2 − 10a + 13 +
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6
√

2 · |2− a|+ 4
√

2 · |3− a|. For n ≥ 3, there are three possibilities to be considered (see Figure

2).

Case 1. RPHn−1 → RPH1
n.

m22(RPH1
n) = m22(RPHn−1) + 1;

m23(RPH1
n) = m23(RPHn−1) + 2;

m33(RPH1
n) = m33(RPHn−1) + 5.

Thus, SOa(RPH1
n) = SOa(RPHn−1) + 2

√
2a2 − 10a + 13 +

√
2 · |2− a|+ 5

√
2 · |3− a|.

Case 2. RPHn−1 → RPH2
n.

m22(RPH2
n) = m22(RPHn−1) + 0;

m23(RPH2
n) = m23(RPHn−1) + 4;

m33(RPH2
n) = m33(RPHn−1) + 4.

Thus, SOa(RPH2
n) = SOa(RPHn−1) + 4

√
2a2 − 10a + 13 + 4

√
2 · |3− a|.

Case 3. RPHn−1 → RPH3
n.

m22(RPH3
n) = m22(RPHn−1) + 1;

m23(RPH3
n) = m23(RPHn−1) + 2;

m33(RPH3
n) = m33(RPHn−1) + 5.

Thus, SOa(RPH3
n) = SOa(RPHn−1) + 2

√
2a2 − 10a + 13 +

√
2 · |2− a|+ 5

√
2 · |3− a|.

Therefore, Ea
n = p1 · SOa(RPH1

n) + p2 · SOa(RPH2
n) + (1 − p1 − p2) · SOa(RPH3

n) =

SOa(RPHn−1) + 2(p2 + 1)
√

2a2 − 10a + 13 +
√

2(1− p2) · |2− a|+
√

2(5− p2) · |3− a|. Since

E[Ea
n] = Ea

n, we have

Ea
n = Ea

n−1 + 2(p2 + 1)
√

2a2 − 10a + 13 +
√

2(1− p2) · |2− a|+
√

2(5− p2) · |3− a|. (11)

After solving the recurrence relation (11) with initial condition, we get (7).

When a = 0, we have (8). When a = 1, we have (9). Since |V (RPH(n; p1, p2))| = 6n,

|E(RPH(n; p1, p2))| = 8n − 2, we have 2 < d̄ = 8n−2
3n

< 3. For given n, d̄ is a constant and

therefore we get (10).

Let Rn = RPH(n; 0, 0), Ln = RPH(n; 1, 0) and Pn = RPH(n; 0, 1). By Theorem 2.2, we

have
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Corollary 2.7. The Sombor indices of Rn, Ln and Pn are

SOa(Rn) = SOa(Ln) = 2n
√

2a2 − 10a + 13 +
√

2(n + 4) · |2− a|+
√

2(5n− 6) · |3− a|,

SOa(Pn) = 4(n− 1)
√

2a2 − 10a + 13 + 6
√

2 · |2− a|+ 4
√

2(n− 1) · |3− a|.

Corollary 2.8. Among all random phenylene chains RPHn(n ≥ 2), we have

(1) (17
√

2 + 2
√

13)n − 10
√

2 ≤ SO(RPHn) ≤ (12
√

2 + 4
√

13)n − 4
√

13, with left equality iff

G ∼= Rn or G ∼= Ln, right equality iff G ∼= Pn.

(2) (11
√

2 + 2
√

5)n − 8
√

2 ≤ SOred(RPHn) ≤ (8
√

2 + 4
√

5)n − 2
√

2 − 4
√

5, with left equality

iff G ∼= Rn or G ∼= Ln, right equality iff G ∼= Pn.

(3) 2n
√

2d̄2 − 10d̄ + 13+
√

2[(13−4d̄)n+2(5d̄−13)] ≤ SOavr(RPHn) ≤ 4(n−1)
√

2d̄2 − 10d̄ + 13+

2
√

2[2n(3 − d̄) + 5d̄ − 12], where d̄ = 8n−2
3n

, with left equality iff G ∼= Rn or G ∼= Ln, right

equality iff G ∼= Pn.

Proof. Since En = (n−2)(2
√

13−5
√

2)p2+
√

2(17n−10)+2
√

13n and (n−2)(2
√

13−5
√

2) ≥ 0,

SO(RPHn) reaches the maximum value when p2 = 1 and reaches the minimum value when

p2 = 0.

Since Ered
n = (n − 2)(2

√
5 − 3

√
2)p2 +

√
2(11n − 8) + 2

√
5n and (n − 2)(2

√
5 − 3

√
2) ≥ 0,

SOred(RPHn) reaches the maximum value when p2 = 1 and reaches the minimum value when

p2 = 0.

Eavr
n = (n−2)[2

√
2d̄2 − 10d̄ + 13−

√
2]p2+2n

√
2d̄2 − 10d̄ + 13+

√
2[(13−4d̄)n+2(5d̄−13)]

can be regarded as a linear function of p2. Since n ≥ 2, 2d̄2 − 10d̄ + 13 = 2(d̄ − 5
2
)2 + 1

2
≥ 1

2
,

we have 2
√

2d̄2 − 10d̄ + 13 −
√

2 ≥ 0. Thus SOavr(RPHn) reaches the maximum value when

p2 = 1 and reaches the minimum value when p2 = 0.

Denote by PCn the set of all phenylene chains with n hexagons. The average value of

Sombor indices among PCn can be characterized as

Aa(PCn) =
1

|PCn|
∑

G∈PCn

SOa(G).

Since each element in PCn has the same probability of occurrence, we have p1 = p2 = 1− p1 −

p2 = 1
3
. Then we have the following theorem.

Theorem 2.9. The average values of Sombor indices among PCn are

Aa(PCn) =
4

3
(2n− 1)

√
2a2 − 10a + 13 +

2

3

√
2(n + 7) · |2− a|+ 2

3

√
2(7n− 8) · |3− a|.
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We find that the average values of the Sombor index with respect to Rn,Ln,Pn is equal to

the average value of Sombor index among PCn.

SOa(Rn) + SOa(Ln) + SOa(Pn)

3
= Aa(PCn).

2.3 Comparisons between Sombor indices with respect to random
hexagonal chains and random phenylene chains

With the help of Theorems 2.2 and 2.6, we make a comparison between the expected values

for Sombor, reduced Sombor and average Sombor indices of a random hexagonal chain or a

random phenylene chain with the same probabilities pi (i = 1, 2) (see Figure 3, 4).

Theorem 2.10. Let HXG(n; p1, p2) be the hexagonal chain of length n(≥ 2) and RPH(n; p1, p2)

be the random phenylene chain of length n(≥ 2). Then

E[SO(G)] > E[SOred(G)] > E[SOavr(G)], where G ∼= HXG(n; p1, p2) or RPH(n; p1, p2),

E[SO(RPH(n; p1, p2))] > E[SO(HXG(n; p1, p2))],

E[SOred(RPH(n; p1, p2))] > E[SOred(HXG(n; p1, p2))],

E[SOavr(RPH(n; p1, p2))] > E[SOavr(HXG(n; p1, p2))].

Proof. Since 2 ≤ di, dj ≤ 3, 2 < d̄ < 3, we have√
d2i + d2j >

√
(di − 1)2 + (dj − 1)2 >

√
(di − d̄)2 + (dj − d̄)2,

thus E[SO(G)] > E[SOred(G)] > E[SOavr(G)].

Since E[SO(RPH(n; p1, p2))]−E[SO(HXG(n; p1, p2))] = 9
√

2(n−1) > 0, E[SOred(RPH(n; p1, p2))]−

E[SOred(HXG(n; p1, p2))] = 6
√

2(n−1) > 0, we have E[SO(RPH(n; p1, p2))] > E[SO(HXG(n; p1, p2))],

and E[SOred(RPH(n; p1, p2))] > E[SOred(HXG(n; p1, p2))].

When n = 2, from Theorem 2.2 and Theorem 2.6, we have E[SOavr(RPH(2; p1, p2))] >

E[SOavr(HXG(2; p1, p2))]. Let d̄1 = d̄(HXG(n; p1, p2)) and d̄2 = d̄(RPH(n; p1, p2)). Since

11

5
≤ d̄1 =

5n + 1

2n + 1
<

5

2
,

7

3
≤ d̄2 =

8n− 2

3n
<

8

3
,

we have d̄1 − 4d̄2 ≥ 11
5
− 4 × 8

3
= −127

15
. Let f(a) = 2

√
2a2 − 10a + 13, then f(d̄2) − f(d̄1) ≥

f(5
2
)− f(11

5
) =
√

2− 2
5

√
17. By (6) and (11),

Eavr
n − Eavr

n−1 − (Eavr
n − Eavr

n−1)

10



=(p2 + 1)

(
2
√

2d̄22 − 10d̄2 + 13− 2
√

2d̄21 − 10d̄1 + 13

)
+
√

2(9 + d̄1 − 4d̄2)

≥(p2 + 1)× (
√

2− 2

5

√
17) +

√
2× (9− 127

15
)

≥2(
√

2− 2

5

√
17) +

√
2× (9− 127

15
)

=(11− 127

15
)
√

2− 7

5

√
17 > 0.

Therefore, E[SOavr(RPH(n; p1, p2))] > E[SOavr(HXG(n; p1, p2))].

Figure 3: Difference between SO(HXGn),
SOred(HXGn) and SOavr(HXGn)

Figure 4: Difference between
SOavr(HXGn) and SOavr(RPHn)

3 The Sombor indices of graphene, coronoid systems

and carbon nanocones

Graphene [5,23], denoted by GN(n, k), is a flat monolayer of carbon atoms tightly packed

into a two-dimensional hexagonal lattice that forms a basic building block for graphitic ma-

terials of different forms (see Figure 5). Due to the C-C covalent bonds, graphene is the

hardest material known in nature [12]. There are various results about the topological indices

of graphene in recent years [1, 3].

Theorem 3.1. Let G be a graphene nanoribbon GN(n, k), 1 ≤ k ≤ n. Then

SO(G) = 4
√

13(n + k − 2) +
√

2(18nk − 15n− 11k + 20),

SOred(G) = 4
√

5(n + k − 2) +
√

2(12nk − 8k − 10n + 12),

SOavr(G) =
4(k + n− 2)

k(2n + 1)

√
4k2n2 − 4k2n + 5k2 − 4kn2 + 6kn + 2n2

+

√
2(16k2n− 12k2 + 6kn2 − 9kn + 4k − 5n2)

k(2n + 1)
.

11



Figure 5: Structure of graphene GN(n, k).

Proof. From the structure of graphene GN(n, k), it is easy to see that there exists only (2, 2),

(2, 3) and (3, 3)-type of edges. Since m22(G) = 2k + 4, m23(G) = 4n + 4k − 8, m33(G) =

6nk − 5k − 5n + 4, from Proposition 2.1, we have

SOa(G) = 4(n+ k− 2)
√

2a2 − 10a + 13 + 2
√

2(k + 2) · |2− a|+
√

2(6nk− 5k− 5n+ 4) · |3− a|.

Thus

SO(G) = 4
√

13(n + k − 2) +
√

2(18nk − 15n− 11k + 20),

SOred(G) = 4
√

5(n + k − 2) +
√

2(12nk − 8k − 10n + 12).

Since |V (G)| = 2(2n + 1)k, |E(G)| = (6n + 1)k − n, we have 2 < d̄ = (6n+1)k−n
(2n+1)k

< 3. Thus

SOavr(G) =
4(k + n− 2)

k(2n + 1)

√
4k2n2 − 4k2n + 5k2 − 4kn2 + 6kn + 2n2

+

√
2(16k2n− 12k2 + 6kn2 − 9kn + 4k − 5n2)

k(2n + 1)
.

The proof is completed.

A coronoid system can be regarded as a benzenoid system that is allowed to have ‘holes’

such that the perimeter of the coronoid system and the perimeters of the holes are pairwise

disjoint. There are many results on topological index of coronoid systems [8, 17]. We now

consider a special family of coronoid systems, denoted by K(n, p, r) (see Figure 6), which is

formally generated from polycyclic benzenoid systems by circumcising some interior atoms or

bonds.

Theorem 3.2. Let G be the K(n, p, r) coronoid structure with r ≥ 1, n ≥ 3 and 1 ≤ p ≤ n.

Then

SO(G) = 4
√

13(2n + 4p + 3r − 6) + 3
√

2[3(3r − 2)(2p + n) + 9r2 − 15r + 16],

12



Figure 6: Structure of coronoid system K(n, p, r).

SOred(G) = 4
√

5(2n + 4p + 3r − 6) +
√

2[4(3r − 2)(2p + n) + 18r2 − 30r + 30],

SOavr(G) =
1

r + 1
[4
√
r2 + 1(2n + 4p + 3r − 6) +

√
2(1 + 6r)].

Proof. From the structure of K(n, p, r) coronoid structure, it is easy to see that there exists

only (2, 2), (2, 3) and (3, 3)-type of edges. Since m22(G) = 6, m23(G) = 8(2p + n) + 12(r − 2),

m33(G) = 2(3r − 2)(2p + n) + 3(3r2 − 5r + 4), from Proposition 2.1, we have

SOa(G) = 4
√

2a2 − 10a + 13(4p+2n+3r−6)+6
√

2·|2−a|+|3−a|·
√

2[2(3r−2)(2p+n)+3(3r2−5r+4)].

Thus

SO(G) = 4
√

13(2n + 4p + 3r − 6) + 3
√

2[3(3r − 2)(2p + n) + 9r2 − 15r + 16],

SOred(G) = 4
√

5(4p + 2n + 3r − 6) +
√

2[4(3r − 2)(n + 2p) + 18r2 − 30r + 30].

Since |V (G)| = 2(r + 1)(4p + 2n + 3r − 3), |E(G)| = (3r + 2)(4p + 2n + 3r − 3), we have

2 < d̄ = 3r+2
r+1

< 3. Thus

SOavr(G) =
1

r + 1
[4
√
r2 + 1(2n + 4p + 3r − 6) +

√
2(1 + 6r)].

The proof is completed.

From Theorem 3.2, it is easy to obtain Corollary 3.3 and Corollary 3.4 as special cases.

More precisely, we use the previous theorem on K(2, 1, r) and K(2, 2, r) to compute the indices

for r-circumscribed C32H16 and C48H24 coronoid structures.

13



Corollary 3.3. Let G be an r-circumscribed C32H16 coronoid structure (r ≥ 1). Then

SO(G) = 4
√

13(2 + 3r) + 3
√

2(9r2 + 21r − 8),

SOred(G) = 4
√

5(2 + 3r) + 2
√

2(9r2 + 9r − 1),

SOavr(G) =
1

r + 1
[4
√
r2 + 1(2 + 3r) +

√
2(1 + 6r)].

Corollary 3.4. Let G be an r-circumscribed C48H24 coronoid structure (r ≥ 1). Then

SO(G) = 12
√

13(2 + r) + 3
√

2(9r2 + 39r − 20),

SOred(G) = 12
√

5(2 + r) + 6
√

2(3r2 + 7r − 3),

SOavr(G) =
1

r + 1
[12
√
r2 + 1(2 + r) +

√
2(1 + 6r)].

Carbon nanocones are conical structures, which are conceived as curved forms of graphite

sheet obtained by excising a wedge and subsequently joining the edges (see Figure 7). Carbon

nanocones have a wide range of applications, such as caping ultrafine gold needles, which

attracted the attention of both theoretical and experimental chemists. There are many results

on topological index of carbon nanocones [2, 22].

Figure 7: Structure of carbon nanocone CNCk(n).

Theorem 3.5. Let G be the carbon nanocone structure CNCk(n) with k > 4 and n ≥ 1. Then

SO(G) = 2
√

13kn +

√
2k

2
(9n2 + 3n + 4),

SOred(G) = 2
√

5kn +
√

2k(3n2 + n + 1),

SOavr(G) =
kn

2

(
4

n + 1

√
n2 + 1 + 3

√
2

)
.
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Proof. From the structure of carbon nanocone CNCk(n), it is easy to see that there exists only

(2, 2), (2, 3) and (3, 3)-type of edges. Since m22(G) = k, m23(G) = 2kn, m33(G) = kn(3n+1)/2,

from Proposition 2.1, we have

SOa(G) = 2kn
√

2a2 − 10a + 13 +

√
2k

2
[2 · |2− a|+ |3− a| · (3n + 1)n].

Thus,

SO(G) = 2
√

13kn +

√
2k

2
(9n2 + 3n + 4),

SOred(G) = 2
√

5kn +
√

2k(3n2 + n + 1).

Since |V (G)| = k(n + 1)2, |E(G)| = k(n + 1)(3n + 2)/2, we have 2 < d̄ = 3n+2
n+1

< 3. Thus

SOavr(G) =
kn

2

(
4

n + 1

√
n2 + 1 + 3

√
2

)
.

The proof is completed.

Corollary 3.6. Let G be n-circumscribed one pentagonal carbon nanocone structure CNC5(n)

with n ≥ 1. Then

SO(G) = 10
√

13n +
5
√

2

2
(9n2 + 3n + 4),

SOred(G) = 10
√

5n + 5
√

2(3n2 + n + 1),

SOavr(G) =
5n

2

(
4

n + 1

√
n2 + 1 + 3

√
2

)
.

Figure 8: Differences between Sombor, re-
duced Sombor and average Sombor indices
of GN(n, k).

Figure 9: Differences between Sombor, re-
duced Sombor and average Sombor indices
of CNCk(n).

It’s clear that E[SO(G)] > E[SOred(G)] > E[SOavr(G)] for graph G with only (2, 2),

(2, 3) and (3, 3)-type of edges. The graphical profiles of the comparison between Sombor, re-

duced Sombor and average Sombor indices of graphene GN(n, k) or carbon nanocone structure

CNCk(n) is give in Figure 8, 9. The numerical comparison of the Sombor indices with respect

to different types of K(n, p, r) coronoid structure is give in Table 1.
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(n, p, r) SO(G) SOred(G) SOavr(G)
(3,1,1) 207.02 116.35 24.75
(3,1,2) 492.12 261.98 35.94
(3,1,3) 853.58 458.51 47.83
(4,2,4) 1759.79 929.34 79.64
(4,2,5) 2388.54 1278.61 92.29
(4,2,6) 3093.66 1678.80 104.80
(5,2,1) 373.31 210.53 47.38
(5,3,2) 970.66 505.07 71.72
(5,4,3) 1797.10 918.41 98.42
(6,4,4) 2696.53 1376.08 119.22
(6,4,5) 3554.38 1827.18 133.08
(6,4,6) 4488.60 2329.18 146.51
(9,5,7) 6852.57 3508.95 194.98
(9,6,8) 8748.16 4482.31 222.69
(9,7,9) 10872.85 5574.47 250.46

Table 1: Numeric differences for K(n, p, r)

4 Conclusion

In this paper, the expected values of Sombor index, reduced Sombor index and average

Sombor index have been determined for random hexagonal chains and random phenylene chains.

Explicit formulae for Sombor index, reduced Sombor index and average Sombor index of some

chemical graphs such as graphene, coronoid systems and carbon nanocones are given. And

detailed comparisons between these indices with respect to different chemical graphs have been

determined explicitly. The structural characteristics of the compound can be deduced from the

topological index formulae, which provides a theoretical basis for drug discovery and synthetic

organic chemistry.
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