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The realization of fractional quantum chemistry is presented. Adopting the integro-
differential operators of the calculus of arbitrary-order, we develop a general framework for
the description of quantum nonlocal effects in the complex electronic environments. After a
brief overview of the historical and fundamental aspects of the calculus of arbitrary-order,
various classes of fractional Schrödinger equations are discussed and pertinent controversies
and open problems around their applications to model systems are detailed. We provide
a unified approach toward fractional generalization of the quantum chemical models such
as Hartree-Fock and Kohn-Sham density functional theory and develop fractional variants
of the fundamental molecular integrals and correlation energy. Furthermore, we offer var-
ious strategies for modeling static- and dynamic-order quantum nonlocal effects through
constant- and variable-order fractional operators, respectively. Possible directions for future
developments of fractional quantum chemistry are also outlined.

I. Introduction

One of the central challenges in quantum chemistry is to find an efficient and accurate delineation
of the electron correlation effects in many-body systems.1,2 Modern quantum chemical methods such
as coupled-cluster have been successfully applied for the description of the electronic structure of
systems with weak electron correlation. However, modeling strongly correlated electrons requires
more sophisticated methodologies often suffering from the computational cost barrier problem in
dealing with large systems.1 Density matrix-based models, on the other hand, offer a compact
representation of the electronic structure of many-body systems making them suitable candidates
for large-scale computations. Nevertheless, the density-based models often have to deal with the
N -representability problem.3

The study of chaotic and complex electronic environments in molecular systems becomes a
more challenging subject when the electron correlation is dominated by the nonlocal effects of
the surrounding complex molecular media with fractional dimensions.4 Memory effect5–7 and long-
range correlation are two manifestations of such nonlocalities with respect to temporal and spatial
fractional dimensions, respectively. An efficient way to account for these nonlocal effects is to go
beyond classical calculus by replacing the integer-order differential and integral operators with their
counterparts from the calculus of arbitrary-order.

During the past few decades, the calculus of arbitrary-order has witnessed a growing number of
applications in different branches of physics7–9 such as optics,10,11 solid-state physics,12,13 and fluid
dynamics.14 In particular, the possibility of adopting fractional operators in density functional the-
ory (DFT) was raised by Dong,15 who developed a fractional variant of the Thomas-Fermi model and
conjectured the validity of the Hohenberg-Kohn theorem within the framework of time-independent
fractional quantum mechanics. Recently, numerical solutions to the Riemann-Liouville (RL) space-
fractional Schrödinger equation (FSE) with Lennard-Jones16, Morse17, and Coulomb potentials18

have been computed for several model systems. In another investigation,19 the non-adiabatic effects
in the fractional nuclear dynamics of H+

2 and D+
2 molecular ions were numerically studied. Despite

these preliminary results, to our knowledge, quantum chemical studies describing the electronic
structure of many-body systems based on the calculus of arbitrary-order have been scarce. The
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present perspective aims to fill this gap in literature through the fractional generalization of some
of the existing quantum chemical methods and presenting possible future directions for the ad-
vancement of fractional quantum chemistry. Following the common practice in literature, we adopt
the names fractional calculus and calculus of arbitrary-order, interchangeably. However, whenever
possible, the latter should be preferred for mathematical rigor.

The present perspective is organized as follows: Section II briefly overviews the historical and
fundamental aspects of fractional calculus. In Sec. III, various types of FSE alongside their math-
ematical properties and physical applications are discussed. Section IV focuses on two important
controversial topics and open problems that are the major sources of long-standing confusions in
literature. Next, some potential areas of the applications of fractional calculus in quantum chem-
istry such as the fractional generalization of the self-consistent field (SCF) methods, fundamental
molecular integrals and elecron correlation energy, are presented in Sec. V. The description of
dynamic-order nonlocal effects within the framework of variable-order fractional calculus is dis-
cussed in Sec. VI. Possible avenues for the future applications of the calculus of arbitrary-order in
quantum chemistry are outlined in Sec. VII.

II. Calculus of Arbitrary-Order

The history of fractional calculus is as old as its classical Newtonian counterpart dating back to
L’Hôpital’s 1695 letter to Leibniz raising the possibility of extending the integer-order derivatives
to their fractional variants (For a comprehensive historical survey, see Refs. 8, 20, and 21). Despite
many contributions from eminent mathematicians such as Bernoulli, Laplace, Fourier and others,
the calculus of arbitrary-order remained a subject of pure mathematical interest for centuries until
a few decades ago, where it started garnering attention from researchers in engineering, physics,
biology, and applied mathematics.8 In 1823, Abel published his landmark paper22,23 on tautochrone
problem where he introduced RL fractional integrals and Caputo fractional derivatives which are
still the most widely used forms of fractional operators. The RL fractional integral can be considered
as a generalization of Cauchy’s integral formula for n-fold repeated integration,

In[f(x)] =

∫ xn

a

∫ xn−1

a
· · ·

∫ x1

a
f(x0) dx0 · · · dxn−1 =

1

(n− 1)!

∫ x

a
(x− ξ)n−1f(ξ) dξ, (1)

to its non-integer-order forms, defined as

RL
aI

α
x [f(x)] =

1

Γ(α)

∫ x

a
(x− ξ)α−1f(ξ) dξ, and (2a)

RL
xI

α
b [f(x)] =

1

Γ(α)

∫ b

x
(ξ − x)α−1f(ξ) dξ, (2b)

where −∞ < a < x < b < ∞ and the function f is Lebesgue-integrable on the open interval (a, b)
or f ∈ L1(a, b). Here, Γ(α) is the Euler Gamma function and Re(α) > 0. The domain of Lévy
index α can also be extended to the set of complex numbers (α ∈ C) through analytic continuation.
Equations 2a and 2b define the left- and right-sided RL fractional integral operators, respectively,
which can also be viewed as the left-inverse of the corresponding fractional derivatives. As such,
the factorization of fractional derivative operator as

Dα = (±1)mDmDα−m

= (±1)m
(

dm

dxm

)
Im−α, where m ∈ N,

(3)
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allows for the interpretation of the fractional derivative operator as an ordinary derivative preceded
by a fractional integral, if a concrete definition for the latter is provided. In Eq. 3, N denotes the
set of natural numbers, and the positive and negative signs correspond to the left- and right-sided
fractional operators, respectively. Note that the equality of Iα = D−α is also assumed. Adopting
RL fractional integral operators, for example, one can define the left- and right-sided RL fractional
derivative operators as

RL
aD

α
x [f(x)] =

(
dm

dxm

)
RL
aI

m−α
x [f(x)], x ∈ R, and (4a)

RL
xD

α
b [f(x)] = (−1)m

(
dm

dxm

)
RL
xI

m−α
b [f(x)], x ∈ R, (4b)

respectively, where m − 1 < α ≤ m and R stands for the set of real numbers. For α = 0, both
RL integrals become identity operators. Setting a = 0 (or b = 0) in the left- (or right-) sided RL
fractional derivatives in Eq. 4a (or Eq. 4b), yields Riemann’s definition of the fractional derivatives.
By allowing a → −∞ (or b → +∞) instead, one obtains Liouville’s interpretation of the fractional
derivatives. As an example, the Riemann fractional derivative of f(x) = xn can be written as

RL
0D

α
x [f(x)] =

[
Γ(n+ 1)

Γ(n− α+ 1)

]
xn−α, (5)

which is a generalization of the integer-order derivative expression for the power functions where
factorials are replaced by the Gamma functions. Note that the right-hand side of Eq. 5 can also
be obtained from other types of fractional derivatives of the power function. Plots of the Riemann
derivative of the quadratic function, calculated on the positive side of the real axis (x > 0), are
illustrated in Fig. 1. Here, the differentiation order of α ∈ [0, 2] and the step size of ∆α = 0.1 are
adopted.

Figure 1 demonstrates that the Riemann fractional derivative of the power function can smoothly
interpolate between its integer-order derivative counterparts. Equation 5 reveals an important
distinction between fractional and conventional derivatives: the Riemann (and more generally, the
RL) fractional derivatives of a constant (e.g., x0 when x ̸= 0) can be non-zero.8

Interchanging the order of differentiation and integration in Eq. 3 yields the definition of the
Caputo derivative operators, written as

C
aD

α
x [f(x)] =

1

Γ(m− α)

∫ x

a
(x− ξ)m−α−1

(
dmf(ξ)

dξm

)
dξ, and (6a)

C
xD

α
b [f(x)] =

(−1)m

Γ(m− α)

∫ b

x
(ξ − x)m−α−1

(
dmf(ξ)

dξm

)
dξ, (6b)

where m− 1 < α ≤ m and the function f belongs to the set of absolutely m-continuous functions
on the closed interval [a, b] or f ∈ ACm[a, b]. The condition f (m) ∈ L1(a, b) is also assumed for
interchanging the order of differentiation and integration in Eq. 3. Equations 6a and 6b imply that
contrary to the RL derivatives (Eqs. 4a and 4b), the Caputo fractional derivatives of a constant
are equal to zero.

III. Fractional Schrödinger Equation

Brownian paths are an important example of fractals in physics– self-similar and non-differentiable
trajectories with fractal dimensions distinct from their topological dimensions. Feynman’s path
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FIG. 1: The left-sided Riemann fractional derivative of the quadratic function, f(x) = x2, where
α ∈ [0, 2] and x > 0. Plots of fractional derivatives of arbitrary-order (grey) coincide with those of
integer-order differentiation for α = 0.0 (blue), α = 1.0 (green), and α = 2.0 (red). A step size of

∆α = 0.1 is adopted for illustration.

integral over Brownian trajectories not only provides an independent realization of non-relativistic
Schrödinger equation but also signifies the first successful interpretation of fractional dimensions in
quantum mechanics.24 Inspired by Feynman’s work, Laskin adopted the path integrals over Lévy
flights and formulated the space-FSE,25 which can be written as

iℏ∂tΨ(r, t) = ĤαΨ(r, t), (7)

where ℏ is the Planck constant, ∂t denotes ordinary differentiation with respect to time and Ĥα is
the fractional Hamiltonian operator defined as

Ĥα = Dα(−ℏ2∆)α/2 + V̂ (r), 1 < α ≤ 2. (8)

Here, ∆ is the Laplacian operator, Dα represents the scale coefficient of dimension [Dα] =
[energy]1−α× [length]α× [time]−α, V̂ (r) is the potential operator, and Ψ(r, t) is the time-dependent
wave function with temporal, t, and spatial coordinates, r, respectively. Note that the α-stable
Lévy distributions with Lévy index α, where 0 < α ≤ 2, have finite moments of order µ < α and
infinite moments for higher orders. However, the existence of first-order moments such as position,
⟨x⟩, and momentum, ⟨p⟩, expectation values restricts the Lévy index to 1 < α ≤ 2.25 For α = 2,
Lévy and Gaussian distributions are equal and moments of all orders become stable. Simultane-
ously, D2 = 1/(2me), where me is the mass of electron, and Hα reduces to its conventional form.
Laskin’s derivation of space-FSE was based upon the Fourier integral transform representation of
the quantum Riesz fractional derivative operator, (−ℏ2∆)α/2, defined as

(−ℏ2∆)α/2Ψ(r, t) =
1

(2πℏ)3

∫
|p|αe

ip·r
ℏ Φ(p, t) d3p, (9)
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where p is the momentum. Here, the wave function representations in configuration, Ψ(r, t), and
momentum, Φ(p, t), spaces are related to each other through 3-dimensional Fourier transformations
given by

Ψ(r, t) =
1

(2πℏ)3

∫
e

ip·r
ℏ Φ(p, t) d3p, and Φ(p, t) =

∫
e

−ip·r
ℏ Ψ(r, t) d3r. (10)

Based on the similarities between diffusion and Schrödinger equations, Naber adopted the Ca-
puto fractional derivative operator for the time variable to formulate the time-FSE.26 In contrast
to space-FSE, the Hamiltonian in time-FSE is non-Hermitian and nonlocal in time. As such, the
resulting wave functions are not invariant under time reversal and probabilities are not be con-
served. Furthermore, the solutions to the time-FSE for free particle and infinite potential well
models revealed that probabilities and energy levels increase with time to a limiting value which
depends on the fractional order of differentiation with respect to time.26 Later, different variants
of space-time FSE were developed, in which fractional derivatives of both space and time variables
were employed.27,28

IV. Controversies and Open Problems

An unfortunate reality about the calculus of arbitrary-order is the existence of multitudes of
definitions for fractional operators.8 Furthermore, there are different sets of criteria20,29,30 for cate-
gorizing an integral or differential operator as fractional, some of which are still subject of ongoing
debates.29,30 For example, the law of exponents or index law raises the “the philosophical contro-
versy” on whether each criterion should correspond to the fractional operator or its operand.29,31

Moreover, Tarasov showed that linear derivative operators of non-integer order cannot satisfy Leib-
niz’s rule or otherwise, should be crossed out from the list of fractional derivatives.32 Tarasov’s
theorem affects many derivative operators in literature that were previously considered as frac-
tional.

The inconsistent treatment of fractional operators combined with the rapid growth of their
applications in a variety of research areas in science and engineering has littered the literature
with confusion and controversy. For example, Jeng et al.33 demonstrated that piecewise continuous
solutions to space-FSE with model potentials such as infinite potential well cannot be valid due to
the nonlocal nature of the fractional differential operators. These results were later corroborated by
Luchko who reformulated the problem in terms of integral equations with power kernels.34 Bayın
presented a different view of this problem35 opposing the results of Refs. 33 and 34. Hawkins and
Schwarz36 pointed out an error in Bayın’s methodology, thereby reaffirming the original results of
Ref. 33. Several authors37–39 adopted various types of fractional derivatives such as Weyl38 and
Caputo-Fabrizio39 to analyze the solutions of FSE for the one-dimensional infinite potential well,
again, in a piecewise continuous fashion. As such, the aforementioned controversies cast doubt on
the existing results in literature making it imperative for the quantum chemistry community to be
aware of such pitfalls and open problems while advancing the development of fractional quantum
chemical models from a firm mathematical standpoint.

V. Applications

Calculus of arbitrary-order is a powerful tool to study the nonlocal aspects of electron corre-
lation, such as memory and long-range effects, in strongly correlated systems. The majority of
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theoretical studies in this area, including the applications of FSE, are mainly focused on simple
model systems.33–38,40,41 However, to our knowledge, the realization of fractional quantum chemical
models based on space-, time- and space-time-FSE is still lacking. As such, at least two methods
for the generalization of non-relativistic time-independent methods to the fractional regime can be
envisioned: The substitution of either (i) the Laplacian operator in the kinetic term, and/or (ii) the
Coulomb operator in the potential term with their fractional counterparts. Despite Laskin’s for-
mulation of FSE in Gaussian-cgs unit system (Eqs. 7–10), we adopt Hartree atomic units (a.u.) to
develop our fractional quantum chemical models throughout the remaining parts of this manuscript.

A. Fractional self-consistent field methods

The Hartree-Fock (HF) method is one of the pillars of modern electronic structure theory which
plays a central role in quantum chemistry. It delineates the electronic structure of an N -electron
system by focusing on the interactions of individual electrons with an effective potential gener-
ated by the remaining N − 1 electrons in an average sense. Thus, Coulomb electron correlation
effects are absent in the HF theory, by construction. However, the fractional realization of the HF
method offers new insights into the electronic structure of many-body systems through capturing
nonlocal correlation effects. An expedient way towards fractional generalization of the HF method
is to replace the Laplacian operator in the kinetic energy term with its quantum Riesz fractional
derivative counterpart. Let the N -electron HF wave function, |Ψ⟩, be represented by an antisym-
metric product (Slater determinant) of spin-orbitals, χ(x), where {χj(x)|j = 1, 2, 3, . . . , N} and x
collectively stands for the spatial and spin coordinates of an electron. Using Slater-Condon rules,2

the fractional ground-state energy, Eα
0 , of a single-determinant wave function can be written as

Eα
0 = ⟨Ψ0|Ĥα|Ψ0⟩ =

N∑
j=1

⟨j|ĥα|j⟩+
1

2

N∑
j=1

N∑
k=1

⟨jk||jk⟩ , (11)

in which, the expectation value of the fractional core-Hamiltonian, ĥα, and the element of anti-
symmetric two-electron-repulsion integral tensor, ⟨jk||jk⟩, are defined as

⟨j|ĥα|j⟩ =
∫

χ∗
j (x)

[
D̄α(−∆)α/2 −

∑
A

ZA

rA

]
χj(x) dx, and (12)

⟨jk||jk⟩ =
∫∫

χ∗
j (x1)χ

∗
k(x2)r

−1
12 (1− P̂12)χj(x1)χk(x2) dx1dx2, (13)

respectively. Here, D̄α is the scale coefficient in a.u., the asterisk denotes complex conjugation, P̂12

is the permutation operator, r12 is the interelectronic distance and rA is the distance of an electron
from the nuclear center A of charge ZA. The minimization of the fractional energy functional,
Eα[χ(x)], with respect to the variations of spin-orbitals, subject to their orthonormality, yields
the set of fractional Riesz-Hartree-Fock equations in their integro-differential form, which after
transformation to the canonical set of spin-orbitals, can be written as[

ĥα +

N∑
k=1

⟨χk| r−1
12 (1− P̂12) |χk⟩

]
|χj⟩ = ϵαj |χj⟩ , j = 1, 2, 3, . . . , N. (14)

The expression within the brackets in Eq. 14 defines the fractional Fock operator, f̂α. The second
and third terms in the Fock operator are Coulomb and exchange potentials, which collectively
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define the HF effective potential operator, v̂HF(r). Due to the dependency of the HF potential on
the spin-orbitals, solutions to the system of Eqs. 14 are often obtained through an iterative SCF
procedure within a generalized matrix eigenvalue form represented in a finite set of basis functions.
The resulting eigenvalue expression is called Roothan-Hall or Pople-Nesbet equation, depending on
whether or not the spin symmetry restrictions are imposed on the basis functions, respectively.2

The derivation of fractional Kohn-Sham (KS) equations is similar to the aforementioned process for
the derivation of the fractional HF method. However, it requires a generalized form for fractional
noninteracting kinetic energy density functional similar to the one proposed in Eq. 12.

In addition to the kinetic energy operator, both classical Coulomb and exchange-correlation
potentials can also be extended to the fractional regime. For the former, convolution integrals with
fractional weight factors, r−α = |r1− r2|−α, were used in the context of nuclear and cluster physics
and folded potentials where the variation of fractional index α allowed for a smooth interpolation
between Coulomb and Yukawa type potentials.7 Furthermore, a combination of Mie-type potentials
and Jumarie-type derivative operator for the kinetic term were also employed to study the energy
spectrum of a typical diatomic molecule by investigating the solutions of FSE in a N -dimensional
hyperspherical coordinate system.42

Although in the fractional generalization of HF (and KS) equations, the Riesz derivative oper-
ator was adopted, other types of fractional operators can also be used if they do not violate the
quantum mechanical principles and mathematical requirements within their domain of definitions.
As such, the unification methods such as fractional corresponding operators43 or generalized frac-
tional operators8 can be employed to ensure a unified and consistent realization of fractional models
which are independent of the specific choice of fractional operators. The fractional corresponding
operators offer an additional nice feature that their pertinent FSEs are derivable from path inte-
grals over Lévy flights.43 The RL, Caputo, Riesz and Grünwald-Letnikov operators are examples
of fractional corresponding operators.

B. Fundamental fractional molecular integrals

In the standard formulation of quantum chemistry, the fundamental kinetic energy molecular
integrals over Gaussian-type orbitals (GTOs) are expressed as44

IK =

∫
e−γ|r−A|2

[
−1

2
∆r

]
e−ζ|r−B|2dr, (15)

where the exponents γ and ζ are positive real numbers and the Laplacian operator carries the
differentiation with respect to the spatial variable r. Equivalently, the differentiation can also be
performed with respect to the nuclear coordinate B as

IK = −1

2

[
∂2

∂B2
x

+
∂2

∂B2
y

+
∂2

∂B2
z

]
IS, (16)

where IS denotes the overlap integral between two GTOs. Thus, the task of computing the funda-
mental kinetic energy integrals over GTOs can be reduced to the calculation of overlap integrals and
their derivatives with respect to the nuclear coordinates.44 What makes fractional HF or KS-DFT
methods different from their conventional counterparts is the substitution of the kinetic energy
derivative or potential integral operators with their fractional variants. Therefore, the fundamental
fractional kinetic energy integrals over GTOs can be written in their general form as

IαK :=

∫
e−γ|r−A|2

[
D̄α(−i)αT̂α

]
e−ζ|r−B|2dr, (17)
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where T̂α is the generalized7,8,30 or the corresponding fractional differential operator.43 The ma-
trix elements of fractional kinetic operators should be calculated once for each value of α and
remain constant during the course of SCF procedure. However, the mathematical convenience in
computing the fundamental kinetic energy integrals as operator expressions45 in terms of overlap
integrals and derivatives with respect to the nuclear coordinates might not necessarily exist for
the fractional kinetic energy operators. Therefore, mathematical techniques such as Euler integral
transforms of elementary functions expressed as generalized hypergeometric functions with power-
law arguments46 can alternatively be employed to facilitate the derivation of working expressions
for the fundamental integrals. The treatment of the fundamental molecular integrals of electron-
nuclear attraction and electron-electron repulsion potentials, where the (anti-)Coulomb operator is
replaced by its fractional tensor operator counterpart, requires a much more detailed approach7,42,45

which is out of the scope of this manuscript and will be presented elsewhere.

C. Fractional electron correlation energy

The classical definition of the electron correlation energy1 can be extended to its fractional form
as

Eα
c := E− Eα

HF, (18)

where E is the exact non-relativistic energy and Eα
HF stands for fractional HF energy calculated in

the limit of complete-basis set with fractional Lévy index α. In practice, however, one often resorts
to the concept of basis-set correlation energy described in Ref. 2. Note that when the fractional Lévy
index changes, the order of fractional kinetic operator and the corresponding integro-differential
equation vary as well. Hence, the resulting set of eigenvalues and eigenfunctions of the fractional
HF equations (if exist) will change accordingly.

Another useful metric to measure the improvement in the description of correlation energy, due
to the incorporation of fractional nonlocalities in the model, can be defined as

∆Eα
c := Ec − Eα

c = −(EHF −Eα
HF). (19)

It is important to note that Eq. 18 is mathematically ambiguous (similar to its conventional form)
because it does not specify which type of fractional operator is adopted for the generalization of
the HF model. Also, Eq. 19 implies that a fractional model becomes most useful in practice if it
is able to reproduce the classical results when Lévy index takes integer values. For example, both
problems can be addressed in the Riesz-Hartree-Fock method where Ec and EHF, respectively,
represent the correlation and HF energies (corresponding to α = 2) and Eα

c and Eα
HF are their

fractional counterparts (pertinent to 1 < α < 2).

VI. Variable-Order Fractional Calculus

Compared with the long history of constant-order fractional calculus, the fundamental theory of
variable-order fractional calculus was not fully developed until 1993.47 Later, the theoretical foun-
dations of variable-order fractional differential equations alongside the existence and uniqueness of
their solutions48–52 were established by several authors.53 Despite the growing number of applica-
tions of the variable-order fractional calculus in various branches of science and engineering,8,31,47,54

particularly, recent numerical studies on the solutions to the specific classes of variable-order
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FSE,55–58 to our knowledge, there has been no study in the literature focusing on the electron
correlation problem.

As previously mentioned, the constant-order fractional operators can describe the static-order
nonlocal correlation effects in the electronic structure of many-body systems.59 Nevertheless, when
the nature of the quantum nonlocal effects dynamically evolve, the constant orders of differentiation
or integration, α, should be replaced with a dependent variable, α(·). Thus, both memory effects
and long-range electron correlation not only become associated with the inherent nonlocal nature of
the fractional operators (fading memory),31 but also the functional form of the variable order itself
(order memory).6,31,60 For example, a study on the reaction kinetics of the proteins suggests that
the fractional order of the relaxation mechanism depends on temperature.61 Therefore, variable-
order fractional operators can be adopted to describe the dynamic-order nonlocal effects pertinent
to the evolving nature of the relation between the relaxation mechanism of the proteins and the
temperature. Recently, different ansätze of the general form, α(t, τ) := α(At + Bτ),6,31,60 have
been proposed for the variable order of fractional integro-differential operators including: case (1),
α(t, τ) := α(t); case (2), α(t, τ) := α(τ); and case (3), α(t, τ) := α(t − τ). Here, A and B are
constants, t is an independent variable and τ is the dummy variable in the integral representation
of the fractional operator. It has been demonstrated6,31,60 that the rate of response from fractional
operators is inversely proportional to the variations in the order memory such that case (1) exhibits
no memory, case (2) indicates a weak memory and case (3) displays a strong memory of the history
of the order variations.6,31,60

VII. Outlook

The realization of fractional quantum chemistry opens the doors to a pristine area of research
in molecular physics and offers new insights into the delineation of the electronic structure of the
complex electronic environments. The fractional integro-differential operators of constant- and
variable-order can be adopted to describe the static- and dynamic-order quantum nonlocalities
such as memory effects and long-range electron correlation in the strongly correlated systems.
There is a mounting body of evidence in literature demonstrating the generality and superior
performance of the space-, time- and space-time variants of FSE compared with their classical
counterparts for complex electronic systems with dominant nonlocal effects of fractional nature.
The rapid growth of the applications of FSE in different branches of physics, notwithstanding
was not without side-effects: The existence of multiple sets of criteria and definitions for fractional
operators combined with inconsistent mathematical interpretations have littered the literature with
numerous controversies and confusions.

Following the development of various classes of FSE in quantum mechanics, the present perspec-
tive mainly focuses on the generalization of the existing quantum chemical models such as HF and
KS-DFT to their fractional versions. As such, necessary ingredients such as fundamental molecular
integrals of fractional operators and concepts such as the correlation energy have been extended to
their fractional variants. An important area for future investigations involves the numerical tech-
niques of constant- and variable-order fractional calculus of variation and their applications in the
development of fractional quantum chemistry. To our knowledge, within the quantum chemistry
community,55–58,62 very little is known about the stability, convergence rate and computational
scaling of the constant- and variable-order fractional methods. Therefore, the understanding of
the mathematical aspects of fractional numerical techniques8,59,63,64 is of key importance for the
development of fractional models in quantum chemistry.
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1881) pp. 11–27.
24 R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals; McGraw-Hill, New York (1965).

Emended by D. F. Styer (Dover, Mineola, New York, 2010).
25 N. Laskin, Phys. Rev. E 62, 3135 (2000).
26 M. Naber, J. Math. Phys. 45, 3339 (2004).
27 S. Wang and M. Xu, J. Math. Phys. 48, 043502 (2007).
28 J. Dong and M. Xu, J. Math. Anal. Appl. 344, 1005 (2008).
29 M. D. Ortigueira and J. A. Tenreiro Machado, J. Comput. Phys. 293, 4 (2015).
30 G. Sales Teodoro, J. A. Tenreiro Machado, and E. Capelas de Oliveira, J. Comput. Phys. 388, 195

(2019).
31 S. Patnaik, J. P. Hollkamp, and F. Semperlotti, Proc. Math. Phys. Eng. Sci. 476, 20190498 (2020).
32 V. E. Tarasov, Commun. Nonlinear Sci. Numer. Simulat. 18, 2945 (2013).
33 M. Jeng, S. L. Xu, E. Hawkins, and J. M. Schwarz, J. Math. Phys. 51, 062102 (2010).
34 Y. Luchko, J. Math. Phys. 54, 012111 (2013).
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