REFERENCES
  1. Antonelli, A., Kissling, W. D., Flantua, S. G. A., Bermúdez, M. A., Mulch, A., Muellner-Riehl, A. N., Kreft, H., Linder, H. P., Badgley, C., Fjeldså, J., Fritz, S. A., Rahbek, C., Herman, F., Hooghiemstra, H., and Hoorn, C. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11(10), 718–725. https://doi.org/10.1038/s41561-018-0236-z
  2. Antonelli, A., Nylander, J. A. A., Persson, C., and Sanmartín, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences,106(24), 9749–9754. https://doi.org/10.1073/pnas.0811421106
  3. Barthlott, W., Hostert, A., Kier, G., Küper, W., Kreft, H., Mutke, J., Rafiqpoor, M. D., and Sommer, J. H. (2007). Geographic Patterns of Vascular Plant Diversity at Continental to Global Scales (Geographische Muster der Gefäßpflanzenvielfalt im kontinentalen und globalen Maßstab). Erdkunde, 61(4), 305–315.
  4. Bennett, K. D., Tzedakis, P. C., and Willis, K. J. (1991). Quaternary Refugia of North European Trees. Journal of Biogeography,18(1), 103–115. https://doi.org/10.2307/2845248
  5. Brummitt, N., Araújo, A. C., and Harris, T. (2021). Areas of plant diversity—What do we know? PLANTS, PEOPLE, PLANET,3(1), 33–44. https://doi.org/10.1002/ppp3.10110
  6. Brummitt, R. K. (2001). World geographical scheme for recording plant distributions(ed. 2). Hunt Inst. for Botanical Documentation.
  7. Cardelús, C.L., Colwell, R.K., and Watkins, J.E. (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J. Ecol., 94(1), 144-156. http://doi.wiley.com/10.1111/j.1365-2745.2005.01052.x
  8. Clarke, A., and Gaston, K. J. (2006). Climate, energy and diversity.Proceedings of the Royal Society B: Biological Sciences,273(1599), 2257–2266. https://doi.org/10.1098/rspb.2006.3545
  9. Craine, J. M., Ocheltree, T. W., Nippert, J. B., Towne, E. G., Skibbe, A. M., Kembel, S. W., and Fargione, J. E. (2013). Global diversity of drought tolerance and grassland climate-change resilience.Nature Climate Change, 3(1), 63–67. https://doi.org/10.1038/nclimate1634
  10. Dagallier, L.-P. M. J., Janssens, S. B., Dauby, G., Blach‐Overgaard, A., Mackinder, B. A., Droissart, V., Svenning, J.-C., Sosef, M. S. M., Stévart, T., Harris, D. J., Sonké, B., Wieringa, J. J., Hardy, O. J., and Couvreur, T. L. P. (2020). Cradles and museums of generic plant diversity across tropical Africa. New Phytologist,225(5), 2196–2213. https://doi.org/10.1111/nph.16293
  11. Donoghue, M.J. (2008) A phylogenetic perspective on the distribution of plant diversity. PNAS, 105, 11549-11555.
  12. Egli, M., and Poulenard, J. (2016). Soils of Mountainous Landscapes. In D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu, and R. A. Marston (Eds.), International Encyclopedia of Geography: People, the Earth, Environment and Technology(pp. 1–10). John Wiley and Sons, Ltd. https://doi.org/10.1002/9781118786352.wbieg0197
  13. Elsen, P. R., and Tingley, M. W. (2015). Global mountain topography and the fate of montane species under climate change. Nature Climate Change, 5(8), 772–776. https://doi.org/10.1038/nclimate2656
  14. Emerson, B. C., and Gillespie, R. G. (2008). Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution, 23(11), 619–630. https://doi.org/10.1016/j.tree.2008.07.005
  15. Fick, S. E., and Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
  16. Flantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C., and Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography,46(8), 1808–1825. https://doi.org/10.1111/jbi.13607
  17. Folk, R. A., Siniscalchi, C. M., and Soltis, D. E. (2020). Angiosperms at the edge: Extremity, diversity, and phylogeny. Plant, Cell and Environment, 43(12), 2871–2893. https://doi.org/10.1111/pce.13887
  18. Graham, A. (1999). Late Cretaceous and Cenozoic History of North American Vegetation.Oxford University Press.
  19. Graham, A. (2010). Late Cretaceous and Cenozoic History of Latin American Vegetation and Terrestrial Environments. Missouri Botanical Garden Press.
  20. Graham, A. (2011). The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany, 98(3), 336–351. https://doi.org/10.3732/ajb.1000353
  21. Grytnes, J.A. (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography,26(3), 291-300. http://doi.wiley.com/10.1034/j.1600-0587.2003.03358.x
  22. Grytnes J.A. and Vetaass, O.R. (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat.,159(3), 294-304.
  23. Guo, Q., Kelt, D. A., Sun, Z., Liu, H., Hu, L., Ren, H., and Wen, J. (2013). Global variation in elevational diversity patterns.Scientific Reports, 3(1), 3007. https://doi.org/10.1038/srep03007
  24. Hawkins, B. A., Rueda, M., Rangel, T. F., Field, R., and Diniz‐Filho, J. A. F. (2014). Community phylogenetics at the biogeographical scale: Cold tolerance, niche conservatism and the structure of North American forests. Journal of Biogeography, 41(1), 23–38. https://doi.org/10.1111/jbi.12171
  25. Hughes, C. E. (2017). Are there many different routes to becoming a global biodiversity hotspot? Proceedings of the National Academy of Sciences , 114 (17), 4275–4277. https://doi.org/10.1073/pnas.1703798114
  26. Hughes, C., and Atchison, G. W. (2015). The ubiquity of alpine plant radiations: From the Andes to the Hengduan Mountains. New Phytologist, 207(2), 275–282. https://doi.org/10.1111/nph.13230
  27. Hughes, C., and Eastwood, R. (2006). Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences,103(27), 10334–10339. https://doi.org/10.1073/pnas.0601928103
  28. Körner, C. (1995). Alpine Plant Diversity: A Global Survey and Functional Interpretations. In F. S. Chapin and C. Körner (Eds.),Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences(pp. 45–62). Springer. https://doi.org/10.1007/978-3-642-78966-3_4
  29. Körner, C. (2003). Alpine plant life: Functional plant ecology of high mountain ecosystems.(2nd ed.). Springer.
  30. Körner, C. (2004). Mountain Biodiversity, Its Causes and Function.AMBIO: A Journal of the Human Environment, 33(sp13), 11–17. https://doi.org/10.1007/0044-7447-33.sp13.11
  31. Körner, C., Jetz, W., Paulsen, J., Payne, D., Rudmann-Maurer, K., and M. Spehn, E. (2017). A global inventory of mountains for bio-geographical applications. Alpine Botany, 127(1), 1–15. https://doi.org/10.1007/s00035-016-0182-6
  32. Körner, C., and Paulsen, J. (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography,31(5), 713–732. https://doi.org/10.1111/j.1365-2699.2003.01043.x
  33. Körner, C., Paulsen, J., and Spehn, E. M. (2011). A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alpine Botany, 121(2), 73–78. https://doi.org/10.1007/s00035-011-0094-4
  34. Levins, R. (1968). Evolution in changing environments.Princeton University Press.
  35. MacArthur, R. H. (1972). Geographical ecology: Patterns in the distribution of species.Princeton University Press.
  36. Martínez-Padilla, J., Estrada, A., Early, R., and Garcia-Gonzalez, F. (2017). Evolvability meets biogeography: Evolutionary potential decreases at high and low environmental favourability.Proceedings of the Royal Society B: Biological Sciences,284(1856), 20170516. https://doi.org/10.1098/rspb.2017.0516
  37. McFadden, I. R., Sandel, B., Tsirogiannis, C., Morueta‐Holme, N., Svenning, J.-C., Enquist, B. J., and Kraft, N. J. B. (2019). Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic β diversity. Ecology Letters, 22(7), 1126–1135. https://doi.org/10.1111/ele.13269
  38. Meyer, C., Kreft, H., Guralnick, R., and Jetz, W. (2015). Global priorities for an effective information basis of biodiversity distributions. Nature Communications, 6(1), 8221. https://doi.org/10.1038/ncomms9221
  39. Moles, A. T., Perkins, S. E., Laffan, S. W., Flores‐Moreno, H., Awasthy, M., Tindall, M. L., Sack, L., Pitman, A., Kattge, J., Aarssen, L. W., Anand, M., Bahn, M., Blonder, B., Cavender‐Bares, J., Cornelissen, J. H. C., Cornwell, W. K., Díaz, S., Dickie, J. B., Freschet, G. T., … Bonser, S. P. (2014). Which is a better predictor of plant traits: Temperature or precipitation? Journal of Vegetation Science,25(5), 1167–1180. https://doi.org/10.1111/jvs.12190
  40. Ohler, L.-M., Lechleitner, M., and Junker, R. R. (2020). Microclimatic effects on alpine plant communities and flower-visitor interactions.Scientific Reports , 10 (1), 1366. https://doi.org/10.1038/s41598-020-58388-7
  41. Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  42. Qian, H. (2017). Relationship between clade age and temperature for angiosperm tree species in forest communities along an elevational gradient in tropical Asia. Journal of Plant Ecology,10(4), 618–625. https://doi.org/10.1093/jpe/rtw074
  43. R Development Core Team. (2020). R: a language and environment for statistical computing.R Foundation for Statistical Computing.
  44. Rahbek, C., Borregaard, M. K., Antonelli, A., Colwell, R. K., Holt, B. G., Nogues-Bravo, D., Rasmussen, C. M. Ø., Richardson, K., Rosing, M. T., Whittaker, R. J., and Fjeldså, J. (2019). Building mountain biodiversity: Geological and evolutionary processes.Science,365(6458), 1114–1119. https://doi.org/10.1126/science.aax0151
  45. Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., and Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365(6458), 1108–1113. https://doi.org/10.1126/science.aax0149
  46. Rasmann, S., Pellissier, L., Defossez, E., Jactel, H., and Kunstler, G. (2014). Climate-driven change in plant-insect interactions along elevation gradients. Functional Ecology,28(1), 46–54. https://doi.org/10.1111/1365-2435.12135
  47. Roy, M. S. (1997). Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model.Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1386), 1337–1344. https://doi.org/10.1098/rspb.1997.0185
  48. Segovia, R. A., Pennington, R. T., Baker, T. R., Souza, F. C. de, Neves, D. M., Davis, C. C., Armesto, J. J., Olivera-Filho, A. T., and Dexter, K. G. (2020). Freezing and water availability structure the evolutionary diversity of trees across the Americas.Science Advances, 6(19), eaaz5373. https://doi.org/10.1126/sciadv.aaz5373
  49. Sklenář, P., Kučerová, A., Macková, J., and Romoleroux, K. (2016). Temperature Microclimates of Plants in a Tropical Alpine Environment: How Much does Growth Form Matter? Arctic, Antarctic, and Alpine Research , 48 (1), 61–78. https://doi.org/10.1657/AAAR0014-084
  50. Smith, S. A., and Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany,105(3), 302–314. https://doi.org/10.1002/ajb2.1019
  51. Smithers, B. V., Oldfather, M. F., Koontz, M. J., Bishop, J., Bishop, C., Nachlinger, J., and Sheth, S. N. (2020). Community turnover by composition and climatic affinity across scales in an alpine system.American Journal of Botany, 107(2), 239–249. https://doi.org/10.1002/ajb2.1376
  52. Stevens, P. F. (2001). Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since].
  53. ter Steege, H., Prado, P. I., Lima, R. A. F. de, Pos, E., de Souza Coelho, L., de Andrade Lima Filho, D., Salomão, R. P., Amaral, I. L., de Almeida Matos, F. D., Castilho, C. V., Phillips, O. L., Guevara, J. E., de Jesus Veiga Carim, M., Cárdenas López, D., Magnusson, W. E., Wittmann, F., Martins, M. P., Sabatier, D., Irume, M. V., … Pickavance, G. (2020). Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 10(1), 10130. https://doi.org/10.1038/s41598-020-66686-3
  54. Ulloa Ulloa, C., Acevedo-Rodríguez, P., Beck, S., Belgrano, M. J., Bernal, R., Berry, P. E., Brako, L., Celis, M., Davidse, G., Forzza, R. C., Gradstein, S. R., Hokche, O., León, B., León-Yánez, S., Magill, R. E., Neill, D. A., Nee, M., Raven, P. H., Stimmel, H., … Jørgensen, P. M. (2017). An integrated assessment of the vascular plant species of the Americas. Science, 358(6370), 1614–1617. https://doi.org/10.1126/science.aao0398
  55. Webb, C. O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annual Review of Ecology and Systematics , 33 (1), 475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
  56. Wen, J., Zhang, J., Nie, Z.-L., Zhong, Y., and Sun, H. (2014). Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Frontiers in Genetics, 5. https://doi.org/10.3389/fgene.2014.00004
  57. Whittaker, R. H. (1970). Communities and ecosystems. Macmillan. https://www.cabdirect.org/cabdirect/abstract/19740615709
  58. Xing, Y., and Ree, R. H. (2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot.Proceedings of the National Academy of Sciences,114(17), E3444–E3451. https://doi.org/10.1073/pnas.1616063114
  59. Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., McGlinn, D. J., O’Meara, B. C., Moles, A. T., Reich, P. B., Royer, D. L., Soltis, D. E., Stevens, P. F., Westoby, M., Wright, I. J., Aarssen, L., Bertin, R. I., Calaminus, A., Govaerts, R., … Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature,506(7486), 89–92. https://doi.org/10.1038/nature12872.