Acknowledgement
We would like to thank Ania Globinska for her great supports with the figures.
1. Eyerich, S., et al., Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. Trends Immunol, 2018.39 (4): p. 315-327.
2. Werfel, T., et al., Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol, 2016. 138 (2): p. 336-49.
3. Bieber, T., et al., Clinical phenotypes and endophenotypes of atopic dermatitis: Where are we, and where should we go? J Allergy Clin Immunol, 2017. 139 (4s): p. S58-s64.
4. Lauffer, F., et al., Predicting persistence of atopic dermatitis in children using clinical attributes and serum proteins.Allergy, 2020.
5. Czarnowicki, T., et al., Atopic dermatitis endotypes and implications for targeted therapeutics. J Allergy Clin Immunol, 2019.143 (1): p. 1-11.
6. Zeiser, K., et al., Social and psychosocial effects on atopic eczema symptom severity – a scoping review of observational studies published from 1989 to 2019. Journal of the European Academy of Dermatology and Venereology, 2021. 35 (4): p. 835-843.
7. Barbarot, S., et al., Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy, 2018.73 (6): p. 1284-1293.
8. Kowalska-Oledzka, E., M. Czarnecka, and A. Baran, Epidemiology of atopic dermatitis in Europe. J Drug Assess, 2019. 8 (1): p. 126-128.
9. Cork, M.J., S.G. Danby, and G.S. Ogg, Atopic dermatitis epidemiology and unmet need in the United Kingdom. J Dermatolog Treat, 2020. 31 (8): p. 801-809.
10. Drucker, A.M., et al., The Burden of Atopic Dermatitis: Summary of a Report for the National Eczema Association. J Invest Dermatol, 2017. 137 (1): p. 26-30.
11. Silverberg, J.I., Public Health Burden and Epidemiology of Atopic Dermatitis. Dermatol Clin, 2017. 35 (3): p. 283-289.
12. Sasaki, M., et al., The change in the prevalence of wheeze, eczema and rhino-conjunctivitis among Japanese children: Findings from 3 nationwide cross-sectional surveys between 2005 and 2015. Allergy, 2019. 74 (8): p. 1572-1575.
13. Paller, A.S., et al., The atopic march and atopic multimorbidity: Many trajectories, many pathways. J Allergy Clin Immunol, 2019. 143 (1): p. 46-55.
14. Zuberbier, T., et al., Economic burden of inadequate management of allergic diseases in the European Union: a GA(2) LEN review. Allergy, 2014. 69 (10): p. 1275-9.
15. Bylund, S., et al., Prevalence and Incidence of Atopic Dermatitis: A Systematic Review. Acta Derm Venereol, 2020.100 (12): p. adv00160.
16. Kantor, R. and J.I. Silverberg, Environmental risk factors and their role in the management of atopic dermatitis. Expert Rev Clin Immunol, 2017. 13 (1): p. 15-26.
17. Traidl-Hoffmann, C., [Allergy - an environmental disease]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2017. 60 (6): p. 584-591.
18. Gilles, S., et al., The role of environmental factors in allergy: A critical reappraisal. Experimental Dermatology, 2018.27 (11): p. 1193-1200.
19. Heuson, C. and C. Traidl-Hoffmann, [The significance of climate and environment protection for health under special consideration of skin barrier damages and allergic sequelae].Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2018.61 (6): p. 684-696.
20. Alkotob, S.S., et al., Advances and novel developments in environmental influences on the development of atopic diseases.Allergy, 2020. 75 (12): p. 3077-3086.
21. Hale, G., et al., What’s new in atopic eczema? An analysis of systematic reviews published in 2017. Part 2: epidemiology, aetiology and risk factors. Clin Exp Dermatol, 2019. 44 (8): p. 868-873.
22. Boutin, R.C.T., et al., Mining the infant gut microbiota for therapeutic targets against atopic disease. Allergy, 2020.75 (8): p. 2065-2068.
23. Venter, C., et al., EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy, 2019. 74 (8): p. 1429-1444.
24. Chang, Y.S., et al., Association between keratoconus and the risk of adolescent- or adult-onset atopic dermatitis. Allergy, 2020.75 (11): p. 2946-2948.
25. Kantor, R., et al., Association of atopic dermatitis with smoking: A systematic review and meta-analysis. Journal of the American Academy of Dermatology, 2016. 75 (6): p. 1119-1125.e1.
26. Haahtela, T., et al., The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J, 2013. 6 (1): p. 3.
27. Haahtela, T., A biodiversity hypothesis. Allergy, 2019.74 (8): p. 1445-1456.
28. Rook, G.A.W., A Darwinian View of the Hygiene or “Old Friends” Hypothesis. Microbe Magazine, 2012. 7 (4): p. 173-180.
29. Walter, J. and L. O’Mahony, The importance of social networks-An ecological and evolutionary framework to explain the role of microbes in the aetiology of allergy and asthma. Allergy, 2019.74 (11): p. 2248-2251.
30. Xu, F., et al., Prevalence of childhood atopic dermatitis: an urban and rural community-based study in Shanghai, China. PloS one, 2012. 7 (5): p. e36174-e36174.
31. Chatenoud, L., et al., Markers of microbial exposure lower the incidence of atopic dermatitis. Allergy, 2020. 75 (1): p. 104-115.
32. Thyssen, J.P., et al., Interaction between filaggrin mutations and neonatal cat exposure in atopic dermatitis. Allergy, 2020.75 (6): p. 1481-1485.
33. Marrs, T., et al., Dog ownership at three months of age is associated with protection against food allergy. Allergy, 2019.74 (11): p. 2212-2219.
34. Skajaa, N., et al., Cesarean delivery and risk of atopic dermatitis. Allergy, 2020. 75 (5): p. 1229-1231.
35. Dimitriu, P.A., et al., New Insights into the Intrinsic and Extrinsic Factors That Shape the Human Skin Microbiome. mBio, 2019.10 (4).
36. Fairweather, V., E. Hertig, and C. Traidl-Hoffmann, A brief introduction to climate change and health. Allergy, 2020.75 (9): p. 2352-2354.
37. Hassoun, Y., C. James, and D.I. Bernstein, The Effects of Air Pollution on the Development of Atopic Disease. Clin Rev Allergy Immunol, 2019. 57 (3): p. 403-414.
38. Ahn, K., The role of air pollutants in atopic dermatitis.Journal of Allergy and Clinical Immunology, 2014. 134 (5): p. 993-999.
39. Kabashima, K., A. Otsuka, and T. Nomura, Linking air pollution to atopic dermatitis. Nature Immunology, 2017. 18 (1): p. 5-6.
40. Wang, H.L., et al., Association between air pollution and atopic dermatitis in Guangzhou, China: modification by age and season.British Journal of Dermatology, 2020. n/a (n/a).
41. Raap, U. and G. Schmid-Ott, Psychological Factors of Atopic Dermatitis .
42. Raap, U., et al., [Atopic dermatitis and psychological stress]. Hautarzt, 2003. 54 (10): p. 925-9.
43. Chida, Y., et al., The effects of psychological intervention on atopic dermatitis. A systematic review and meta-analysis. Int Arch Allergy Immunol, 2007. 144 (1): p. 1-9.
44. Harter, K., et al., Different Psychosocial Factors Are Associated with Seasonal and Perennial Allergies in Adults: Cross-Sectional Results of the KORA FF4 Study. Int Arch Allergy Immunol, 2019. 179 (4): p. 262-272.
45. Lee, E., et al., Atopic dermatitis phenotype with early onset and high serum IL-13 is linked to the new development of bronchial hyperresponsiveness in school children. Allergy, 2016. 71 (5): p. 692-700.
46. Mortz, C.G., et al., Atopic diseases and type I sensitization from adolescence to adulthood in an unselected population (TOACS) with focus on predictors for allergic rhinitis. Allergy, 2019.74 (2): p. 308-317.
47. Toppila-Salmi, S., et al., Risk of adult-onset asthma increases with the number of allergic multimorbidities and decreases with age. Allergy, 2019. 74 (12): p. 2406-2416.
48. Brough, H.A., et al., Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy, 2020. 75 (9): p. 2185-2205.
49. Lemonnier, N., et al., A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy, 2020.
50. Martin, M.J., et al., Genetics and Epigenetics of Atopic Dermatitis: An Updated Systematic Review. Genes, 2020. 11 (4): p. 442.
51. Saunders, S.P., et al., Dysregulated skin barrier function in Tmem79 mutant mice promotes IL-17A-dependent spontaneous skin and lung inflammation. Allergy, 2020.
52. Schwartz, C., et al., Spontaneous atopic dermatitis in mice with a defective skin barrier is independent of ILC2 and mediated by IL-1β. Allergy, 2019. 74 (10): p. 1920-1933.
53. Rahrig, S., et al., Transient epidermal barrier deficiency and lowered allergic threshold in filaggrin-hornerin (FlgHrnr(-/-) ) double-deficient mice. Allergy, 2019. 74 (7): p. 1327-1339.
54. Palmer, C.N., et al., Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet, 2006. 38 (4): p. 441-6.
55. McAleer, M.A. and A.D. Irvine, The multifunctional role of filaggrin in allergic skin disease. Journal of Allergy and Clinical Immunology, 2013. 131 (2): p. 280-291.
56. Danby, S.G. and M.J. Cork, pH in Atopic Dermatitis .
57. Ali, S.M. and G. Yosipovitch, Skin pH: from basic science to basic skin care. Acta Derm Venereol, 2013. 93 (3): p. 261-7.
58. Hachem, J.P., et al., pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol, 2003. 121 (2): p. 345-53.
59. Jang, H., et al., Skin pH Is the Master Switch of Kallikrein 5-Mediated Skin Barrier Destruction in a Murine Atopic Dermatitis Model. Journal of Investigative Dermatology, 2016. 136 (1): p. 127-135.
60. Ramesh, K., et al., Exonic mutations associated with atopic dermatitis disrupt lympho-epithelial Kazal-type related inhibitor action and enhance its degradation. Allergy, 2020. 75 (2): p. 403-411.
61. Baurecht, H., et al., Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol, 2018.141 (5): p. 1668-1676.e16.
62. Boer, D.E.C., et al., Skin of atopic dermatitis patients shows disturbed β-glucocerebrosidase and acid sphingomyelinase activity that relates to changes in stratum corneum lipid composition. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2020.1865 (6): p. 158673.
63. Seiti Yamada Yoshikawa, F., et al., Exploring the Role of Staphylococcus Aureus Toxins in Atopic Dermatitis. Toxins, 2019.11 (6): p. 321.
64. Hülpüsch, C., et al., Skin pH-dependent Staphylococcus aureus abundance as predictor for increasing atopic dermatitis severity.Allergy, 2020. 75 (11): p. 2888-2898.
65. Elias, P.M., The skin barrier as an innate immune element.Seminars in Immunopathology, 2007. 29 (1): p. 3-14.
66. Ottman, N., et al., Microbial and transcriptional differences elucidate atopic dermatitis heterogeneity across skin sites. Allergy, 2020.
67. Gonzalez, T., et al., Biofilm propensity of Staphylococcus aureus skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort.Allergy, 2020. n/a (n/a).
68. Di Domenico, E.G., et al., Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: a pivotal interplay in the pathogenesis of Atopic Dermatitis. Scientific reports, 2018. 8 (1): p. 9573-9573.
69. Krysko, O., et al., Protease/antiprotease network in allergy: The role of Staphylococcus aureus protease-like proteins. Allergy, 2019. 74 (11): p. 2077-2086.
70. Lacoma, A., et al., Cigarette smoke exposure redirects Staphylococcus aureus to a virulence profile associated with persistent infection. Sci Rep, 2019. 9 (1): p. 10798.
71. Oetjen, L.K. and B.S. Kim, Interactions of the immune and sensory nervous systems in atopy. Febs j, 2018. 285 (17): p. 3138-3151.
72. Guseva, D., et al., Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis. Clin Exp Allergy, 2020. 50 (5): p. 577-584.
73. Roesner, L.M., T. Werfel, and A. Heratizadeh, The adaptive immune system in atopic dermatitis and implications on therapy. Expert Rev Clin Immunol, 2016. 12 (7): p. 787-96.
74. Brunner, P.M., E. Guttman-Yassky, and D.Y. Leung, The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol, 2017.139 (4s): p. S65-s76.
75. Eyerich, S., et al., New biological treatments for asthma and skin allergies. Allergy, 2020. 75 (3): p. 546-560.
76. Bieber, T., Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy, 2020. 75 (1): p. 54-62.
77. Brulefert, A., et al., Vitamin D3-elicited CD14+ human skin dendritic cells promote thymic stromal lymphopoietin-independent type 2 T-helper responses. Allergy, 2020.
78. Yamanishi, Y., et al., Skin-infiltrating basophils promote atopic dermatitis-like inflammation via IL-4 production in mice.Allergy, 2020. 75 (10): p. 2613-2622.
79. Murata, Y., et al., Phase 2a, randomized, double-blind, placebo-controlled, multicenter, parallel-group study of a H4 R-antagonist (JNJ-39758979) in Japanese adults with moderate atopic dermatitis. J Dermatol, 2015. 42 (2): p. 129-39.
80. Werfel, T., et al., Efficacy and safety of the histamine H(4) receptor antagonist ZPL-3893787 in patients with atopic dermatitis. J Allergy Clin Immunol, 2019. 143 (5): p. 1830-1837.e4.
81. Schaper-Gerhardt, K., et al., The H(4) R is highly expressed on eosinophils from AD patients and IL-4 upregulates expression and function via the JAK/STAT pathway. Allergy, 2020.
82. Karra, L., et al., CD300a expression is modulated in atopic dermatitis and could influence the inflammatory response. Allergy, 2019. 74 (7): p. 1377-1380.
83. Coates, M., et al., The Skin and Intestinal Microbiota and Their Specific Innate Immune Systems. Frontiers in Immunology, 2019.10 (2950).
84. Ong, P.Y., et al., Endogenous Antimicrobial Peptides and Skin Infections in Atopic Dermatitis. New England Journal of Medicine, 2002.347 (15): p. 1151-1160.
85. de Jongh, G.J., et al., High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J Invest Dermatol, 2005. 125 (6): p. 1163-73.
86. Rieg, S., et al., Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol, 2005. 174 (12): p. 8003-10.
87. Nguyen, H.L.T., et al., Role of Antimicrobial Peptides in Skin Barrier Repair in Individuals with Atopic Dermatitis. Int J Mol Sci, 2020. 21 (20).
88. Maintz, L. and N. Novak, Modifications of the innate immune system in atopic dermatitis. J Innate Immun, 2011. 3 (2): p. 131-41.
89. Novak, N., et al., Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy, 2007. 62 (7): p. 766-72.
90. Skabytska, Y., et al., How the innate immune system trains immunity: lessons from studying atopic dermatitis and cutaneous bacteria. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 2016. 14 (2): p. 153-156.
91. Moriwaki, M., et al., Staphylococcus aureus from atopic dermatitis skin accumulates in the lysosomes of keratinocytes with induction of IL-1α secretion via TLR9. Allergy, 2019. 74 (3): p. 560-571.
92. Janmohamed, S.R., et al., Medical algorithm: Diagnosis of atopic dermatitis in early childhood (part I). Allergy, 2021.76 (1): p. 403-406.
93. Jacob, M., et al., Quantitative profiling of cytokines and chemokines in DOCK8-deficient and atopic dermatitis patients. Allergy, 2019. 74 (2): p. 370-379.
94. Rinaldi, A.O., et al., Direct assessment of skin epithelial barrier by electrical impedance spectroscopy. Allergy, 2019.74 (10): p. 1934-1944.
95. Chopra, R., et al., Efficacy of bleach baths in reducing severity of atopic dermatitis: A systematic review and meta-analysis.Ann Allergy Asthma Immunol, 2017. 119 (5): p. 435-440.
96. Darrigade, A.S., et al., Atopic Dermatitis Score 7 (ADS7): A promising tool for daily clinical assessment of atopic dermatitis.Allergy, 2020. 75 (5): p. 1264-1266.
97. Nouwen, A.E.M., et al., Natural moisturizing factor as a clinical marker in atopic dermatitis. Allergy, 2020. 75 (1): p. 188-190.
98. Sun, Z., et al., A Microbiome-Based Index for Assessing Skin Health and Treatment Effects for Atopic Dermatitis in Children.mSystems, 2019. 4 (4): p. e00293-19.
99. Paller, A.S., et al., The microbiome in patients with atopic dermatitis. The Journal of allergy and clinical immunology, 2019.143 (1): p. 26-35.
100. Kong, H.H., et al., Performing Skin Microbiome Research: A Method to the Madness. J Invest Dermatol, 2017. 137 (3): p. 561-568.
101. Thijs, J.L., et al., Biomarkers detected in dried blood spots from atopic dermatitis patients strongly correlate with disease severity. Allergy, 2019. 74 (11): p. 2240-2243.
102. Thijs, J.L., et al., EASI p-EASI: Predicting disease severity in atopic dermatitis patients treated with cyclosporin A. Allergy, 2019. 74 (3): p. 613-617.
103. Bakker, D.S., et al., EASI p-EASI: Predicting disease severity in atopic dermatitis patients treated with dupilumab using a combination of serum biomarkers. Allergy, 2020. 75 (12): p. 3287-3289.
104. Chen, S., et al., AllergyGenDB: A literature and functional annotation-based omics database for allergic diseases. Allergy, 2020.75 (7): p. 1789-1793.
105. Baumann, R., et al., Non-invasive and minimally-invasive techniques for the diagnosis and management of allergic diseases.Allergy, 2020.
106. Pavel, A.B., et al., Tape strips from early-onset pediatric atopic dermatitis highlight disease abnormalities in nonlesional skin.Allergy, 2021. 76 (1): p. 314-325.
107. Breiteneder, H., et al., Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma.Allergy, 2020. 75 (12): p. 3039-68.
108. Czarnowicki, T., et al., Evolution of pathologic T-cell subsets in patients with atopic dermatitis from infancy to adulthood.Journal of Allergy and Clinical Immunology, 2020. 145 (1): p. 215-228.
109. Werfel T, H.A., Aberer W, Ahrens F, Augustin M, Biedermann T, Diepgen T, Fölster-Holst R, Kahle J, Kapp A, Nemat K, Peters E, Schlaeger M, Schmid-Grendelmeier P, Schmitt J, Schwennesen T, Staab D, Traidl-Hoffmann C, Werner R, Wollenberg A, Worm M, Ott H, Update ”Systemic treatment of atopic dermatitis” of the S2k-guideline on atopic dermatitis. . J Dtsch Dermatol Ges, 2021. Jan (19): p. 151-168.
110. Looman, K.I.M., et al., Associations of Th2, Th17, Treg cells, and IgA(+) memory B cells with atopic disease in children: The Generation R Study. Allergy, 2020. 75 (1): p. 178-187.
111. Avena-Woods, C., Overview of atopic dermatitis. Am J Manag Care, 2017. 23 (8 Suppl): p. S115-s123.
112. Wollenberg, A., et al., Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol, 2018. 32 (5): p. 657-682.
113. Wollenberg, A., et al., Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II. J Eur Acad Dermatol Venereol, 2018. 32 (6): p. 850-878.
114. Nakahara, T., et al., Treatment satisfaction in atopic dermatitis relates to patient-reported severity: A cross-sectional study. Allergy, 2019. 74 (6): p. 1179-1181.
115. Sindher, S., et al., Pilot study measuring transepidermal water loss (TEWL) in children suggests trilipid cream is more effective than a paraffin-based emollient. Allergy, 2020. 75 (10): p. 2662-2664.
116. Nilsson, E.J., C.G. Henning, and J. Magnusson, Topical corticosteroids and Staphylococcus aureus in atopic dermatitis. J Am Acad Dermatol, 1992. 27 (1): p. 29-34.
117. Gonzalez, M.E., et al., Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic dermatitis. J Am Acad Dermatol, 2016. 75 (3): p. 481-493.e8.
118. Blanchet-Réthoré, S., et al., Effect of a lotion containing the heat-treated probiotic strain Lactobacillus johnsonii NCC 533 on Staphylococcus aureus colonization in atopic dermatitis. Clinical, cosmetic and investigational dermatology, 2017. 10 : p. 249-257.
119. Myles, I.A., et al., First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight, 2018. 3 (9).
120. Parlet, C.P., M.M. Brown, and A.R. Horswill, Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. Trends Microbiol, 2019. 27 (6): p. 497-507.
121. Williams, M.R., et al., Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Science Translational Medicine, 2019. 11 (490): p. eaat8329.
122. Paharik, A.E., et al., Coagulase-Negative Staphylococcal Strain Prevents Staphylococcus aureus Colonization and Skin Infection by Blocking Quorum Sensing. Cell host & microbe, 2017. 22 (6): p. 746-756.e5.
123. Luu, L.A., et al., Apple cider vinegar soaks [0.5%] as a treatment for atopic dermatitis do not improve skin barrier integrity.Pediatric Dermatology, 2019. 36 (5): p. 634-639.
124. Sawada, Y., et al., Dilute bleach baths used for treatment of atopic dermatitis are not antimicrobial in vitro. J Allergy Clin Immunol, 2019. 143 (5): p. 1946-1948.
125. Silva, S.H., et al., Influence of narrow-band UVB phototherapy on cutaneous microbiota of children with atopic dermatitis. J Eur Acad Dermatol Venereol, 2006. 20 (9): p. 1114-20.
126. Clowry, J., A.D. Irvine, and R.M. McLoughlin, Next-generation anti&#x2013;<em>Staphylococcus aureus</em> vaccines: A&#xa0;potential new therapeutic option for atopic dermatitis? Journal of Allergy and Clinical Immunology, 2019. 143 (1): p. 78-81.
127. Siegels, D., et al., Systemic treatments in the management of atopic dermatitis: A systematic review and meta-analysis. Allergy, 2020.
128. Siegels, D., et al., Systemic treatments in the management of atopic dermatitis: A systematic review and meta-analysis. Allergy, 2020.
129. Le Floc’h, A., et al., Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Ralpha antibody, is required to broadly inhibit type 2 inflammation. Allergy, 2020. 75 (5): p. 1188-1204.
130. Rohner, M.H., et al., Dupilumab reduces inflammation and restores the skin barrier in patients with atopic dermatitis. Allergy, 2020.
131. Ariëns, L.F.M., et al., Dupilumab is very effective in a large cohort of difficult-to-treat adult atopic dermatitis patients: First clinical and biomarker results from the BioDay registry. Allergy, 2020. 75 (1): p. 116-126.
132. Pfaller, B., et al., Biologicals in atopic disease in pregnancy: An EAACI position paper. Allergy, 2021. 76 (1): p. 71-89.
133. Spekhorst, L.S., et al., Two-year drug survival of dupilumab in a large cohort of difficult-to-treat adult atopic dermatitis patients compared to cyclosporine A and methotrexate: Results from the BioDay registry. Allergy, 2020. 75 (9): p. 2376-2379.
134. Agache, I., et al., Efficacy and safety of dupilumab for moderate-to-severe atopic dermatitis: A systematic review for the EAACI biologicals guidelines. Allergy, 2021. 76 (1): p. 45-58.
135. Chen, X., et al., Treatment-emergent adverse events in dupilumab-treated patients with allergic diseases: A meta-analysis.Allergy, 2021. 76 (2): p. 593-596.
136. Jonstam, K., et al., Dupilumab reduces local type 2 pro-inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy, 2019. 74 (4): p. 743-752.
137. Nettis, E., et al., Efficacy of dupilumab in atopic comorbidities associated with moderate-to-severe adult atopic dermatitis. Allergy, 2020. 75 (10): p. 2653-2661.
138. Akdis, C.A., et al., Type 2 immunity in the skin and lungs.Allergy, 2020. 75 (7): p. 1582-1605.
139. Kang, E.G., et al., Efficacy and safety of mepolizumab administered subcutaneously for moderate to severe atopic dermatitis.Allergy, 2020. 75 (4): p. 950-953.
140. Wegner, J., et al., IgE-specific immunoadsorption: New treatment option for severe refractory atopic dermatitis. Allergy, 2019. 74 (6): p. 1190-1193.
141. Weidner, J., et al., Spotlight on microRNAs in allergy and asthma. Allergy, 2020.
142. Vaher, H., et al., miR-10a-5p is increased in atopic dermatitis and has capacity to inhibit keratinocyte proliferation.Allergy, 2019. 74 (11): p. 2146-2156.
143. Hayashi, K., et al., LAT1-specific inhibitor is effective against T cell-mediated allergic skin inflammation. Allergy, 2020.75 (2): p. 463-467.
144. Bieber, T., et al., Unraveling the complexity of atopic dermatitis: The CK-CARE approach toward precision medicine. Allergy, 2020. 75 (11): p. 2936-2938.
145. Perrett, K.P. and R.L. Peters, Emollients for prevention of atopic dermatitis in infancy. The Lancet, 2020. 395 (10228): p. 923-924.
146. Skjerven, H.O., et al., Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. The Lancet, 2020. 395 (10228): p. 951-961.
147. Chalmers, J.R., et al., Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. The Lancet, 2020. 395 (10228): p. 962-972.
148. Horimukai, K., et al., Application of moisturizer to neonates prevents development of atopic dermatitis. J Allergy Clin Immunol, 2014. 134 (4): p. 824-830.e6.
149. Simpson, E.L., et al., Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol, 2014. 134 (4): p. 818-23.
150. Kothari, A., A. Locke, and T. Eiwegger, Emollients for the prevention of atopic dermatitis. Allergy, 2020.
151. Lack, G., et al., Factors associated with the development of peanut allergy in childhood. N Engl J Med, 2003. 348 (11): p. 977-85.
152. Nicklaus, S., et al., The protective effect of cheese consumption at 18 months on allergic diseases in the first 6 years.Allergy, 2019. 74 (4): p. 788-798.
153. Venter, C., et al., EAACI position paper on diet diversity in pregnancy, infancy and childhood: Novel concepts and implications for studies in allergy and asthma. Allergy, 2020. 75 (3): p. 497-523.
154. Rusu, E., et al., Prebiotics and probiotics in atopic dermatitis. Experimental and therapeutic medicine, 2019.18 (2): p. 926-931.
155. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995. 125 (6): p. 1401-12.
156. Hill, C., et al., Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol, 2014. 11 (8): p. 506-14.
157. Amalia, N., et al., Systematic review and meta-analysis on the use of probiotic supplementation in pregnant mother, breastfeeding mother and infant for the prevention of atopic dermatitis in children.Australas J Dermatol, 2020. 61 (2): p. e158-e173.
158. Roßberg, S., et al., Orally applied bacterial lysate in infants at risk for atopy does not prevent atopic dermatitis, allergic rhinitis, asthma or allergic sensitization at school age: Follow-up of a randomized trial. Allergy, 2020. 75 (8): p. 2020-2025.
159. Garcia-Larsen, V., et al., Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med, 2018. 15 (2): p. e1002507.
160. Li, L., et al., Probiotic Supplementation for Prevention of Atopic Dermatitis in Infants and Children: A Systematic Review and Meta-analysis. Am J Clin Dermatol, 2019. 20 (3): p. 367-377.