Acknowledgement
We would like to thank Ania Globinska for her great supports with the
figures.
1. Eyerich, S., et al., Cutaneous Barriers and Skin Immunity:
Differentiating A Connected Network. Trends Immunol, 2018.39 (4): p. 315-327.
2. Werfel, T., et al., Cellular and molecular immunologic
mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol,
2016. 138 (2): p. 336-49.
3. Bieber, T., et al., Clinical phenotypes and endophenotypes of
atopic dermatitis: Where are we, and where should we go? J Allergy Clin
Immunol, 2017. 139 (4s): p. S58-s64.
4. Lauffer, F., et al., Predicting persistence of atopic
dermatitis in children using clinical attributes and serum proteins.Allergy, 2020.
5. Czarnowicki, T., et al., Atopic dermatitis endotypes and
implications for targeted therapeutics. J Allergy Clin Immunol, 2019.143 (1): p. 1-11.
6. Zeiser, K., et al., Social and psychosocial effects on atopic
eczema symptom severity – a scoping review of observational studies
published from 1989 to 2019. Journal of the European Academy of
Dermatology and Venereology, 2021. 35 (4): p. 835-843.
7. Barbarot, S., et al., Epidemiology of atopic dermatitis in
adults: Results from an international survey. Allergy, 2018.73 (6): p. 1284-1293.
8. Kowalska-Oledzka, E., M. Czarnecka, and A. Baran, Epidemiology
of atopic dermatitis in Europe. J Drug Assess, 2019. 8 (1): p.
126-128.
9. Cork, M.J., S.G. Danby, and G.S. Ogg, Atopic dermatitis
epidemiology and unmet need in the United Kingdom. J Dermatolog Treat,
2020. 31 (8): p. 801-809.
10. Drucker, A.M., et al., The Burden of Atopic Dermatitis:
Summary of a Report for the National Eczema Association. J Invest
Dermatol, 2017. 137 (1): p. 26-30.
11. Silverberg, J.I., Public Health Burden and Epidemiology of
Atopic Dermatitis. Dermatol Clin, 2017. 35 (3): p. 283-289.
12. Sasaki, M., et al., The change in the prevalence of wheeze,
eczema and rhino-conjunctivitis among Japanese children: Findings from 3
nationwide cross-sectional surveys between 2005 and 2015. Allergy,
2019. 74 (8): p. 1572-1575.
13. Paller, A.S., et al., The atopic march and atopic
multimorbidity: Many trajectories, many pathways. J Allergy Clin
Immunol, 2019. 143 (1): p. 46-55.
14. Zuberbier, T., et al., Economic burden of inadequate
management of allergic diseases in the European Union: a GA(2) LEN
review. Allergy, 2014. 69 (10): p. 1275-9.
15. Bylund, S., et al., Prevalence and Incidence of Atopic
Dermatitis: A Systematic Review. Acta Derm Venereol, 2020.100 (12): p. adv00160.
16. Kantor, R. and J.I. Silverberg, Environmental risk factors and
their role in the management of atopic dermatitis. Expert Rev Clin
Immunol, 2017. 13 (1): p. 15-26.
17. Traidl-Hoffmann, C., [Allergy - an environmental
disease]. Bundesgesundheitsblatt Gesundheitsforschung
Gesundheitsschutz, 2017. 60 (6): p. 584-591.
18. Gilles, S., et al., The role of environmental factors in
allergy: A critical reappraisal. Experimental Dermatology, 2018.27 (11): p. 1193-1200.
19. Heuson, C. and C. Traidl-Hoffmann, [The significance of
climate and environment protection for health under special
consideration of skin barrier damages and allergic sequelae].Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 2018.61 (6): p. 684-696.
20. Alkotob, S.S., et al., Advances and novel developments in
environmental influences on the development of atopic diseases.Allergy, 2020. 75 (12): p. 3077-3086.
21. Hale, G., et al., What’s new in atopic eczema? An analysis of
systematic reviews published in 2017. Part 2: epidemiology, aetiology
and risk factors. Clin Exp Dermatol, 2019. 44 (8): p. 868-873.
22. Boutin, R.C.T., et al., Mining the infant gut microbiota for
therapeutic targets against atopic disease. Allergy, 2020.75 (8): p. 2065-2068.
23. Venter, C., et al., EAACI position paper: Influence of dietary
fatty acids on asthma, food allergy, and atopic dermatitis. Allergy,
2019. 74 (8): p. 1429-1444.
24. Chang, Y.S., et al., Association between keratoconus and the
risk of adolescent- or adult-onset atopic dermatitis. Allergy, 2020.75 (11): p. 2946-2948.
25. Kantor, R., et al., Association of atopic dermatitis with
smoking: A systematic review and meta-analysis. Journal of the American
Academy of Dermatology, 2016. 75 (6): p. 1119-1125.e1.
26. Haahtela, T., et al., The biodiversity hypothesis and allergic
disease: world allergy organization position statement. World Allergy
Organ J, 2013. 6 (1): p. 3.
27. Haahtela, T., A biodiversity hypothesis. Allergy, 2019.74 (8): p. 1445-1456.
28. Rook, G.A.W., A Darwinian View of the Hygiene or “Old
Friends” Hypothesis. Microbe Magazine, 2012. 7 (4): p.
173-180.
29. Walter, J. and L. O’Mahony, The importance of social
networks-An ecological and evolutionary framework to explain the role of
microbes in the aetiology of allergy and asthma. Allergy, 2019.74 (11): p. 2248-2251.
30. Xu, F., et al., Prevalence of childhood atopic dermatitis: an
urban and rural community-based study in Shanghai, China. PloS one,
2012. 7 (5): p. e36174-e36174.
31. Chatenoud, L., et al., Markers of microbial exposure lower the
incidence of atopic dermatitis. Allergy, 2020. 75 (1): p.
104-115.
32. Thyssen, J.P., et al., Interaction between filaggrin mutations
and neonatal cat exposure in atopic dermatitis. Allergy, 2020.75 (6): p. 1481-1485.
33. Marrs, T., et al., Dog ownership at three months of age is
associated with protection against food allergy. Allergy, 2019.74 (11): p. 2212-2219.
34. Skajaa, N., et al., Cesarean delivery and risk of atopic
dermatitis. Allergy, 2020. 75 (5): p. 1229-1231.
35. Dimitriu, P.A., et al., New Insights into the Intrinsic and
Extrinsic Factors That Shape the Human Skin Microbiome. mBio, 2019.10 (4).
36. Fairweather, V., E. Hertig, and C. Traidl-Hoffmann, A brief
introduction to climate change and health. Allergy, 2020.75 (9): p. 2352-2354.
37. Hassoun, Y., C. James, and D.I. Bernstein, The Effects of Air
Pollution on the Development of Atopic Disease. Clin Rev Allergy
Immunol, 2019. 57 (3): p. 403-414.
38. Ahn, K., The role of air pollutants in atopic dermatitis.Journal of Allergy and Clinical Immunology, 2014. 134 (5): p.
993-999.
39. Kabashima, K., A. Otsuka, and T. Nomura, Linking air pollution
to atopic dermatitis. Nature Immunology, 2017. 18 (1): p. 5-6.
40. Wang, H.L., et al., Association between air pollution and
atopic dermatitis in Guangzhou, China: modification by age and season.British Journal of Dermatology, 2020. n/a (n/a).
41. Raap, U. and G. Schmid-Ott, Psychological Factors of Atopic
Dermatitis .
42. Raap, U., et al., [Atopic dermatitis and psychological
stress]. Hautarzt, 2003. 54 (10): p. 925-9.
43. Chida, Y., et al., The effects of psychological intervention
on atopic dermatitis. A systematic review and meta-analysis. Int Arch
Allergy Immunol, 2007. 144 (1): p. 1-9.
44. Harter, K., et al., Different Psychosocial Factors Are
Associated with Seasonal and Perennial Allergies in Adults:
Cross-Sectional Results of the KORA FF4 Study. Int Arch Allergy
Immunol, 2019. 179 (4): p. 262-272.
45. Lee, E., et al., Atopic dermatitis phenotype with early onset
and high serum IL-13 is linked to the new development of bronchial
hyperresponsiveness in school children. Allergy, 2016. 71 (5):
p. 692-700.
46. Mortz, C.G., et al., Atopic diseases and type I sensitization
from adolescence to adulthood in an unselected population (TOACS) with
focus on predictors for allergic rhinitis. Allergy, 2019.74 (2): p. 308-317.
47. Toppila-Salmi, S., et al., Risk of adult-onset asthma
increases with the number of allergic multimorbidities and decreases
with age. Allergy, 2019. 74 (12): p. 2406-2416.
48. Brough, H.A., et al., Epicutaneous sensitization in the
development of food allergy: What is the evidence and how can this be
prevented? Allergy, 2020. 75 (9): p. 2185-2205.
49. Lemonnier, N., et al., A novel whole blood gene expression
signature for asthma, dermatitis, and rhinitis multimorbidity in
children and adolescents. Allergy, 2020.
50. Martin, M.J., et al., Genetics and Epigenetics of Atopic
Dermatitis: An Updated Systematic Review. Genes, 2020. 11 (4):
p. 442.
51. Saunders, S.P., et al., Dysregulated skin barrier function in
Tmem79 mutant mice promotes IL-17A-dependent spontaneous skin and lung
inflammation. Allergy, 2020.
52. Schwartz, C., et al., Spontaneous atopic dermatitis in mice
with a defective skin barrier is independent of ILC2 and mediated by
IL-1β. Allergy, 2019. 74 (10): p. 1920-1933.
53. Rahrig, S., et al., Transient epidermal barrier deficiency and
lowered allergic threshold in filaggrin-hornerin (FlgHrnr(-/-) )
double-deficient mice. Allergy, 2019. 74 (7): p. 1327-1339.
54. Palmer, C.N., et al., Common loss-of-function variants of the
epidermal barrier protein filaggrin are a major predisposing factor for
atopic dermatitis. Nat Genet, 2006. 38 (4): p. 441-6.
55. McAleer, M.A. and A.D. Irvine, The multifunctional role of
filaggrin in allergic skin disease. Journal of Allergy and Clinical
Immunology, 2013. 131 (2): p. 280-291.
56. Danby, S.G. and M.J. Cork, pH in Atopic Dermatitis .
57. Ali, S.M. and G. Yosipovitch, Skin pH: from basic science to
basic skin care. Acta Derm Venereol, 2013. 93 (3): p. 261-7.
58. Hachem, J.P., et al., pH directly regulates epidermal
permeability barrier homeostasis, and stratum corneum
integrity/cohesion. J Invest Dermatol, 2003. 121 (2): p.
345-53.
59. Jang, H., et al., Skin pH Is the Master Switch of Kallikrein
5-Mediated Skin Barrier Destruction in a Murine Atopic Dermatitis
Model. Journal of Investigative Dermatology, 2016. 136 (1): p.
127-135.
60. Ramesh, K., et al., Exonic mutations associated with atopic
dermatitis disrupt lympho-epithelial Kazal-type related inhibitor action
and enhance its degradation. Allergy, 2020. 75 (2): p. 403-411.
61. Baurecht, H., et al., Epidermal lipid composition, barrier
integrity, and eczematous inflammation are associated with skin
microbiome configuration. J Allergy Clin Immunol, 2018.141 (5): p. 1668-1676.e16.
62. Boer, D.E.C., et al., Skin of atopic dermatitis patients shows
disturbed β-glucocerebrosidase and acid sphingomyelinase activity that
relates to changes in stratum corneum lipid composition. Biochimica et
Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2020.1865 (6): p. 158673.
63. Seiti Yamada Yoshikawa, F., et al., Exploring the Role of
Staphylococcus Aureus Toxins in Atopic Dermatitis. Toxins, 2019.11 (6): p. 321.
64. Hülpüsch, C., et al., Skin pH-dependent Staphylococcus aureus
abundance as predictor for increasing atopic dermatitis severity.Allergy, 2020. 75 (11): p. 2888-2898.
65. Elias, P.M., The skin barrier as an innate immune element.Seminars in Immunopathology, 2007. 29 (1): p. 3-14.
66. Ottman, N., et al., Microbial and transcriptional differences
elucidate atopic dermatitis heterogeneity across skin sites. Allergy,
2020.
67. Gonzalez, T., et al., Biofilm propensity of Staphylococcus
aureus skin isolates is associated with increased atopic dermatitis
severity and barrier dysfunction in the MPAACH pediatric cohort.Allergy, 2020. n/a (n/a).
68. Di Domenico, E.G., et al., Inflammatory cytokines and biofilm
production sustain Staphylococcus aureus outgrowth and persistence: a
pivotal interplay in the pathogenesis of Atopic Dermatitis. Scientific
reports, 2018. 8 (1): p. 9573-9573.
69. Krysko, O., et al., Protease/antiprotease network in allergy:
The role of Staphylococcus aureus protease-like proteins. Allergy,
2019. 74 (11): p. 2077-2086.
70. Lacoma, A., et al., Cigarette smoke exposure redirects
Staphylococcus aureus to a virulence profile associated with persistent
infection. Sci Rep, 2019. 9 (1): p. 10798.
71. Oetjen, L.K. and B.S. Kim, Interactions of the immune and
sensory nervous systems in atopy. Febs j, 2018. 285 (17): p.
3138-3151.
72. Guseva, D., et al., Neuronal branching of sensory neurons is
associated with BDNF-positive eosinophils in atopic dermatitis. Clin
Exp Allergy, 2020. 50 (5): p. 577-584.
73. Roesner, L.M., T. Werfel, and A. Heratizadeh, The adaptive
immune system in atopic dermatitis and implications on therapy. Expert
Rev Clin Immunol, 2016. 12 (7): p. 787-96.
74. Brunner, P.M., E. Guttman-Yassky, and D.Y. Leung, The
immunology of atopic dermatitis and its reversibility with
broad-spectrum and targeted therapies. J Allergy Clin Immunol, 2017.139 (4s): p. S65-s76.
75. Eyerich, S., et al., New biological treatments for asthma and
skin allergies. Allergy, 2020. 75 (3): p. 546-560.
76. Bieber, T., Interleukin-13: Targeting an underestimated
cytokine in atopic dermatitis. Allergy, 2020. 75 (1): p. 54-62.
77. Brulefert, A., et al., Vitamin D3-elicited CD14+ human skin
dendritic cells promote thymic stromal lymphopoietin-independent type 2
T-helper responses. Allergy, 2020.
78. Yamanishi, Y., et al., Skin-infiltrating basophils promote
atopic dermatitis-like inflammation via IL-4 production in mice.Allergy, 2020. 75 (10): p. 2613-2622.
79. Murata, Y., et al., Phase 2a, randomized, double-blind,
placebo-controlled, multicenter, parallel-group study of a H4
R-antagonist (JNJ-39758979) in Japanese adults with moderate atopic
dermatitis. J Dermatol, 2015. 42 (2): p. 129-39.
80. Werfel, T., et al., Efficacy and safety of the histamine H(4)
receptor antagonist ZPL-3893787 in patients with atopic dermatitis. J
Allergy Clin Immunol, 2019. 143 (5): p. 1830-1837.e4.
81. Schaper-Gerhardt, K., et al., The H(4) R is highly expressed
on eosinophils from AD patients and IL-4 upregulates expression and
function via the JAK/STAT pathway. Allergy, 2020.
82. Karra, L., et al., CD300a expression is modulated in atopic
dermatitis and could influence the inflammatory response. Allergy,
2019. 74 (7): p. 1377-1380.
83. Coates, M., et al., The Skin and Intestinal Microbiota and
Their Specific Innate Immune Systems. Frontiers in Immunology, 2019.10 (2950).
84. Ong, P.Y., et al., Endogenous Antimicrobial Peptides and Skin
Infections in Atopic Dermatitis. New England Journal of Medicine, 2002.347 (15): p. 1151-1160.
85. de Jongh, G.J., et al., High expression levels of keratinocyte
antimicrobial proteins in psoriasis compared with atopic dermatitis. J
Invest Dermatol, 2005. 125 (6): p. 1163-73.
86. Rieg, S., et al., Deficiency of dermcidin-derived
antimicrobial peptides in sweat of patients with atopic dermatitis
correlates with an impaired innate defense of human skin in vivo. J
Immunol, 2005. 174 (12): p. 8003-10.
87. Nguyen, H.L.T., et al., Role of Antimicrobial Peptides in Skin
Barrier Repair in Individuals with Atopic Dermatitis. Int J Mol Sci,
2020. 21 (20).
88. Maintz, L. and N. Novak, Modifications of the innate immune
system in atopic dermatitis. J Innate Immun, 2011. 3 (2): p.
131-41.
89. Novak, N., et al., Putative association of a TLR9 promoter
polymorphism with atopic eczema. Allergy, 2007. 62 (7): p.
766-72.
90. Skabytska, Y., et al., How the innate immune system trains
immunity: lessons from studying atopic dermatitis and cutaneous
bacteria. JDDG: Journal der Deutschen Dermatologischen Gesellschaft,
2016. 14 (2): p. 153-156.
91. Moriwaki, M., et al., Staphylococcus aureus from atopic
dermatitis skin accumulates in the lysosomes of keratinocytes with
induction of IL-1α secretion via TLR9. Allergy, 2019. 74 (3):
p. 560-571.
92. Janmohamed, S.R., et al., Medical algorithm: Diagnosis of
atopic dermatitis in early childhood (part I). Allergy, 2021.76 (1): p. 403-406.
93. Jacob, M., et al., Quantitative profiling of cytokines and
chemokines in DOCK8-deficient and atopic dermatitis patients. Allergy,
2019. 74 (2): p. 370-379.
94. Rinaldi, A.O., et al., Direct assessment of skin epithelial
barrier by electrical impedance spectroscopy. Allergy, 2019.74 (10): p. 1934-1944.
95. Chopra, R., et al., Efficacy of bleach baths in reducing
severity of atopic dermatitis: A systematic review and meta-analysis.Ann Allergy Asthma Immunol, 2017. 119 (5): p. 435-440.
96. Darrigade, A.S., et al., Atopic Dermatitis Score 7 (ADS7): A
promising tool for daily clinical assessment of atopic dermatitis.Allergy, 2020. 75 (5): p. 1264-1266.
97. Nouwen, A.E.M., et al., Natural moisturizing factor as a
clinical marker in atopic dermatitis. Allergy, 2020. 75 (1): p.
188-190.
98. Sun, Z., et al., A Microbiome-Based Index for Assessing Skin
Health and Treatment Effects for Atopic Dermatitis in Children.mSystems, 2019. 4 (4): p. e00293-19.
99. Paller, A.S., et al., The microbiome in patients with atopic
dermatitis. The Journal of allergy and clinical immunology, 2019.143 (1): p. 26-35.
100. Kong, H.H., et al., Performing Skin Microbiome Research: A
Method to the Madness. J Invest Dermatol, 2017. 137 (3): p.
561-568.
101. Thijs, J.L., et al., Biomarkers detected in dried blood spots
from atopic dermatitis patients strongly correlate with disease
severity. Allergy, 2019. 74 (11): p. 2240-2243.
102. Thijs, J.L., et al., EASI p-EASI: Predicting disease severity
in atopic dermatitis patients treated with cyclosporin A. Allergy,
2019. 74 (3): p. 613-617.
103. Bakker, D.S., et al., EASI p-EASI: Predicting disease
severity in atopic dermatitis patients treated with dupilumab using a
combination of serum biomarkers. Allergy, 2020. 75 (12): p.
3287-3289.
104. Chen, S., et al., AllergyGenDB: A literature and functional
annotation-based omics database for allergic diseases. Allergy, 2020.75 (7): p. 1789-1793.
105. Baumann, R., et al., Non-invasive and minimally-invasive
techniques for the diagnosis and management of allergic diseases.Allergy, 2020.
106. Pavel, A.B., et al., Tape strips from early-onset pediatric
atopic dermatitis highlight disease abnormalities in nonlesional skin.Allergy, 2021. 76 (1): p. 314-325.
107. Breiteneder, H., et al., Biomarkers for diagnosis and
prediction of therapy responses in allergic diseases and asthma.Allergy, 2020. 75 (12): p. 3039-68.
108. Czarnowicki, T., et al., Evolution of pathologic T-cell
subsets in patients with atopic dermatitis from infancy to adulthood.Journal of Allergy and Clinical Immunology, 2020. 145 (1): p.
215-228.
109. Werfel T, H.A., Aberer W, Ahrens F, Augustin M, Biedermann T,
Diepgen T, Fölster-Holst R, Kahle J, Kapp A, Nemat K, Peters E,
Schlaeger M, Schmid-Grendelmeier P, Schmitt J, Schwennesen T, Staab D,
Traidl-Hoffmann C, Werner R, Wollenberg A, Worm M, Ott H, Update
”Systemic treatment of atopic dermatitis” of the S2k-guideline on atopic
dermatitis. . J Dtsch Dermatol Ges, 2021. Jan (19): p. 151-168.
110. Looman, K.I.M., et al., Associations of Th2, Th17, Treg
cells, and IgA(+) memory B cells with atopic disease in children: The
Generation R Study. Allergy, 2020. 75 (1): p. 178-187.
111. Avena-Woods, C., Overview of atopic dermatitis. Am J Manag
Care, 2017. 23 (8 Suppl): p. S115-s123.
112. Wollenberg, A., et al., Consensus-based European guidelines
for treatment of atopic eczema (atopic dermatitis) in adults and
children: part I. J Eur Acad Dermatol Venereol, 2018. 32 (5):
p. 657-682.
113. Wollenberg, A., et al., Consensus-based European guidelines
for treatment of atopic eczema (atopic dermatitis) in adults and
children: part II. J Eur Acad Dermatol Venereol, 2018. 32 (6):
p. 850-878.
114. Nakahara, T., et al., Treatment satisfaction in atopic
dermatitis relates to patient-reported severity: A cross-sectional
study. Allergy, 2019. 74 (6): p. 1179-1181.
115. Sindher, S., et al., Pilot study measuring transepidermal
water loss (TEWL) in children suggests trilipid cream is more effective
than a paraffin-based emollient. Allergy, 2020. 75 (10): p.
2662-2664.
116. Nilsson, E.J., C.G. Henning, and J. Magnusson, Topical
corticosteroids and Staphylococcus aureus in atopic dermatitis. J Am
Acad Dermatol, 1992. 27 (1): p. 29-34.
117. Gonzalez, M.E., et al., Cutaneous microbiome effects of
fluticasone propionate cream and adjunctive bleach baths in childhood
atopic dermatitis. J Am Acad Dermatol, 2016. 75 (3): p.
481-493.e8.
118. Blanchet-Réthoré, S., et al., Effect of a lotion containing
the heat-treated probiotic strain Lactobacillus johnsonii NCC 533 on
Staphylococcus aureus colonization in atopic dermatitis. Clinical,
cosmetic and investigational dermatology, 2017. 10 : p. 249-257.
119. Myles, I.A., et al., First-in-human topical microbiome
transplantation with Roseomonas mucosa for atopic dermatitis. JCI
Insight, 2018. 3 (9).
120. Parlet, C.P., M.M. Brown, and A.R. Horswill, Commensal
Staphylococci Influence Staphylococcus aureus Skin Colonization and
Disease. Trends Microbiol, 2019. 27 (6): p. 497-507.
121. Williams, M.R., et al., Quorum sensing between bacterial
species on the skin protects against epidermal injury in atopic
dermatitis. Science Translational Medicine, 2019. 11 (490): p.
eaat8329.
122. Paharik, A.E., et al., Coagulase-Negative Staphylococcal
Strain Prevents Staphylococcus aureus Colonization and Skin Infection by
Blocking Quorum Sensing. Cell host & microbe, 2017. 22 (6): p.
746-756.e5.
123. Luu, L.A., et al., Apple cider vinegar soaks [0.5%] as a
treatment for atopic dermatitis do not improve skin barrier integrity.Pediatric Dermatology, 2019. 36 (5): p. 634-639.
124. Sawada, Y., et al., Dilute bleach baths used for treatment of
atopic dermatitis are not antimicrobial in vitro. J Allergy Clin
Immunol, 2019. 143 (5): p. 1946-1948.
125. Silva, S.H., et al., Influence of narrow-band UVB
phototherapy on cutaneous microbiota of children with atopic
dermatitis. J Eur Acad Dermatol Venereol, 2006. 20 (9): p.
1114-20.
126. Clowry, J., A.D. Irvine, and R.M. McLoughlin, Next-generation
anti–<em>Staphylococcus
aureus</em> vaccines: A potential new
therapeutic option for atopic dermatitis? Journal of Allergy and
Clinical Immunology, 2019. 143 (1): p. 78-81.
127. Siegels, D., et al., Systemic treatments in the management of
atopic dermatitis: A systematic review and meta-analysis. Allergy,
2020.
128. Siegels, D., et al., Systemic treatments in the management of
atopic dermatitis: A systematic review and meta-analysis. Allergy,
2020.
129. Le Floc’h, A., et al., Dual blockade of IL-4 and IL-13 with
dupilumab, an IL-4Ralpha antibody, is required to broadly inhibit type 2
inflammation. Allergy, 2020. 75 (5): p. 1188-1204.
130. Rohner, M.H., et al., Dupilumab reduces inflammation and
restores the skin barrier in patients with atopic dermatitis. Allergy,
2020.
131. Ariëns, L.F.M., et al., Dupilumab is very effective in a
large cohort of difficult-to-treat adult atopic dermatitis patients:
First clinical and biomarker results from the BioDay registry. Allergy,
2020. 75 (1): p. 116-126.
132. Pfaller, B., et al., Biologicals in atopic disease in
pregnancy: An EAACI position paper. Allergy, 2021. 76 (1): p.
71-89.
133. Spekhorst, L.S., et al., Two-year drug survival of dupilumab
in a large cohort of difficult-to-treat adult atopic dermatitis patients
compared to cyclosporine A and methotrexate: Results from the BioDay
registry. Allergy, 2020. 75 (9): p. 2376-2379.
134. Agache, I., et al., Efficacy and safety of dupilumab for
moderate-to-severe atopic dermatitis: A systematic review for the EAACI
biologicals guidelines. Allergy, 2021. 76 (1): p. 45-58.
135. Chen, X., et al., Treatment-emergent adverse events in
dupilumab-treated patients with allergic diseases: A meta-analysis.Allergy, 2021. 76 (2): p. 593-596.
136. Jonstam, K., et al., Dupilumab reduces local type 2
pro-inflammatory biomarkers in chronic rhinosinusitis with nasal
polyposis. Allergy, 2019. 74 (4): p. 743-752.
137. Nettis, E., et al., Efficacy of dupilumab in atopic
comorbidities associated with moderate-to-severe adult atopic
dermatitis. Allergy, 2020. 75 (10): p. 2653-2661.
138. Akdis, C.A., et al., Type 2 immunity in the skin and lungs.Allergy, 2020. 75 (7): p. 1582-1605.
139. Kang, E.G., et al., Efficacy and safety of mepolizumab
administered subcutaneously for moderate to severe atopic dermatitis.Allergy, 2020. 75 (4): p. 950-953.
140. Wegner, J., et al., IgE-specific immunoadsorption: New
treatment option for severe refractory atopic dermatitis. Allergy,
2019. 74 (6): p. 1190-1193.
141. Weidner, J., et al., Spotlight on microRNAs in allergy and
asthma. Allergy, 2020.
142. Vaher, H., et al., miR-10a-5p is increased in atopic
dermatitis and has capacity to inhibit keratinocyte proliferation.Allergy, 2019. 74 (11): p. 2146-2156.
143. Hayashi, K., et al., LAT1-specific inhibitor is effective
against T cell-mediated allergic skin inflammation. Allergy, 2020.75 (2): p. 463-467.
144. Bieber, T., et al., Unraveling the complexity of atopic
dermatitis: The CK-CARE approach toward precision medicine. Allergy,
2020. 75 (11): p. 2936-2938.
145. Perrett, K.P. and R.L. Peters, Emollients for prevention of
atopic dermatitis in infancy. The Lancet, 2020. 395 (10228): p.
923-924.
146. Skjerven, H.O., et al., Skin emollient and early
complementary feeding to prevent infant atopic dermatitis
(PreventADALL): a factorial, multicentre, cluster-randomised trial. The
Lancet, 2020. 395 (10228): p. 951-961.
147. Chalmers, J.R., et al., Daily emollient during infancy for
prevention of eczema: the BEEP randomised controlled trial. The Lancet,
2020. 395 (10228): p. 962-972.
148. Horimukai, K., et al., Application of moisturizer to neonates
prevents development of atopic dermatitis. J Allergy Clin Immunol,
2014. 134 (4): p. 824-830.e6.
149. Simpson, E.L., et al., Emollient enhancement of the skin
barrier from birth offers effective atopic dermatitis prevention. J
Allergy Clin Immunol, 2014. 134 (4): p. 818-23.
150. Kothari, A., A. Locke, and T. Eiwegger, Emollients for the
prevention of atopic dermatitis. Allergy, 2020.
151. Lack, G., et al., Factors associated with the development of
peanut allergy in childhood. N Engl J Med, 2003. 348 (11): p.
977-85.
152. Nicklaus, S., et al., The protective effect of cheese
consumption at 18 months on allergic diseases in the first 6 years.Allergy, 2019. 74 (4): p. 788-798.
153. Venter, C., et al., EAACI position paper on diet diversity in
pregnancy, infancy and childhood: Novel concepts and implications for
studies in allergy and asthma. Allergy, 2020. 75 (3): p.
497-523.
154. Rusu, E., et al., Prebiotics and probiotics in atopic
dermatitis. Experimental and therapeutic medicine, 2019.18 (2): p. 926-931.
155. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the
human colonic microbiota: introducing the concept of prebiotics. J
Nutr, 1995. 125 (6): p. 1401-12.
156. Hill, C., et al., Expert consensus document. The
International Scientific Association for Probiotics and Prebiotics
consensus statement on the scope and appropriate use of the term
probiotic. Nat Rev Gastroenterol Hepatol, 2014. 11 (8): p.
506-14.
157. Amalia, N., et al., Systematic review and meta-analysis on
the use of probiotic supplementation in pregnant mother, breastfeeding
mother and infant for the prevention of atopic dermatitis in children.Australas J Dermatol, 2020. 61 (2): p. e158-e173.
158. Roßberg, S., et al., Orally applied bacterial lysate in
infants at risk for atopy does not prevent atopic dermatitis, allergic
rhinitis, asthma or allergic sensitization at school age: Follow-up of a
randomized trial. Allergy, 2020. 75 (8): p. 2020-2025.
159. Garcia-Larsen, V., et al., Diet during pregnancy and infancy
and risk of allergic or autoimmune disease: A systematic review and
meta-analysis. PLoS Med, 2018. 15 (2): p. e1002507.
160. Li, L., et al., Probiotic Supplementation for Prevention of
Atopic Dermatitis in Infants and Children: A Systematic Review and
Meta-analysis. Am J Clin Dermatol, 2019. 20 (3): p. 367-377.