Acknowledgements
We thank all the volunteers involved in marmot catching. We thank O. Vedder and S. Bouwhuis for their helpful comments and F. Kirkpatrick Baird for editing this manuscript. We also warmly thank M. Moiron for her advice regarding statistical analyses. The ANR-13-JSV7-0005 supported this work. The protocol was conducted under the permit AP n82010/121 and approved by the national ethical committee (n8BH2012-92 V1). The last author is authorised for animal experimentation (n8R45GRETAF110). The authors declare to have no conflict of interest.
References
Abolins, S., Lazarou, L., Weldon, L., Hughes, L., King, E. C., Drescher, P., Pocock, M. J. O., Hafalla, J. C. R., Riley, E. M., & Viney, M. (2018). The ecology of immune state in a wild mammal, Mus musculus domesticus. Plos Biology , 16 (4), e2003538. https://doi.org/10.1371/journal.pbio.2003538
Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell , 124 (4), 783–801. https://doi.org/10.1016/j.cell.2006.02.015
Allainé, D. (2000). Sociality, mating system and reproductive skew in marmots: Evidence and hypotheses. Behavioural Processes ,51 (1–3), 21–34. https://doi.org/10.1016/s0376-6357(00)00116-9
Arnold, W., & Dittami, J. (1997). Reproductive suppression in male alpine marmots. Animal Behaviour , 53 , 53–66. https://doi.org/10.1006/anbe.1996.0277
Bates, D., Maechler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software , 67 (1), 1–48.
Bauer, M. E., & De la Fuente, M. (2016). The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence.Mechanisms of Ageing and Development , 158 , 27–37. https://doi.org/10.1016/j.mad.2016.01.001
Beirne, C., Waring, L., McDonald, R. A., Delahay, R., & Young, A. (2016). Age-related declines in immune response in a wild mammal are unrelated to immune cell telomere length. Proceedings of the Royal Society B-Biological Sciences , 283 (1825), 20152949. https://doi.org/10.1098/rspb.2015.2949
Bektas, A., Schurman, S. H., Sen, R., & Ferrucci, L. (2017). Human T cell immunosenescence and inflammation in aging. Journal of Leukocyte Biology , 102 (4), 977–988. https://doi.org/10.1189/jlb.3RI0716-335R
Bichet, C., Moiron, M., Matson, K. D., Vedder, O., & Bouwhuis, S. (2022). Immunosenescence in the wild? A longitudinal study in a long-lived seabird. Journal of Animal Ecology , 91 (2), 458–469. https://doi.org/10.1111/1365-2656.13642
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution , 24 (3), 127–135. https://doi.org/10.1016/j.tree.2008.10.008
Boughton, R. K., Joop, G., & Armitage, S. A. O. (2011). Outdoor immunology: Methodological considerations for ecologists.Functional Ecology , 25 (1), 81–100. https://doi.org/10.1111/j.1365-2435.2010.01817.x
Bouwhuis, S., & Vedder, O. (2017). Avian Escape Artists? In The Evolution of Senescence in the Tree of Life (Richard P. Shefferson, Owen P. Jones, Roberto Salguero-Gómez). Cambridge University Press. https://doi.org/10.1017/9781139939867.008
Brooks, R. C., & Garratt, M. G. (2017). Life history evolution, reproduction, and the origins of sex-dependent aging and longevity.Annals of the New York Academy of Sciences , 1389 (1), 92–107. https://doi.org/10.1111/nyas.13302
Buesching, C. D., Heistermann, M., & Macdonald, D. W. (2009). Seasonal and inter-individual variation in testosterone levels in badgers Meles meles: Evidence for the existence of two endocrinological phenotypes.Journal of Comparative Physiology A , 195 (9), 865–871. https://doi.org/10.1007/s00359-009-0465-0
Cheynel, L., Lemaitre, J.-F., Gaillard, J.-M., Rey, B., Bourgoin, G., Ferte, H., Jego, M., Debias, F., Pellerin, M., Jacob, L., & Gilot-Fromont, E. (2017). Immunosenescence patterns differ between populations but not between sexes in a long-lived mammal.Scientific Reports , 7 , 13700. https://doi.org/10.1038/s41598-017-13686-5
Cohas, A., Yoccoz, N. G., Bonenfant, C., Goossens, B., Genton, C., Galan, M., Kempenaers, B., & Allainé, D. (2008). The genetic similarity between pair members influences the frequency of extrapair paternity in alpine marmots. Animal Behaviour , 76 (1), 87–95. https://doi.org/10.1016/j.anbehav.2008.01.012
Cohas, A., Yoccoz, N. G., Silva, A. D., Goossens, B., & Allainé, D. (2006). Extra-Pair Paternity in the Monogamous Alpine Marmot (Marmota marmota): The Roles of Social Setting and Female Mate Choice.Behavioral Ecology and Sociobiology , 59 (5), 597–605. JSTOR.
Davis, A. K., Maney, D. L., & Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists.Functional Ecology , 22 (5), 760–772. https://doi.org/10.1111/j.1365-2435.2008.01467.x
Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P., & French, S. S. (2011). Beyond phytohaemagglutinin: Assessing vertebrate immune function across ecological contexts. Journal of Animal Ecology , 80 (4), 710–730. https://doi.org/10.1111/j.1365-2656.2011.01813.x
Dhabhar, F. S. (2002). Stress-induced augmentation of immune function—The role of stress hormones, leukocyte trafficking, and cytokines. Brain, Behavior, and Immunity , 16 (6), 785–798. https://doi.org/10.1016/S0889-1591(02)00036-3
Dowling, M. R., & Hodgkin, P. D. (2009). Why does the thymus involute? A selection-based hypothesis. Trends in Immunology , 30 (7), 295–300. https://doi.org/10.1016/j.it.2009.04.006
Eraud, C., Jacquet, A., & Faivre, B. (2009). Survival Cost of an Early Immune Soliciting in Nature. Evolution , 63 (4), 1036–1043. https://doi.org/10.1111/j.1558-5646.2008.00540.x
Fay, R., Martin, J., & Plard, F. (2022). Distinguishing within- from between-individual effects: How to use the within-individual centring method for quadratic patterns. Journal of Animal Ecology ,91 (1), 8–19. https://doi.org/10.1111/1365-2656.13606
Franceschi, C., Bonafe, M., & Valensin, S. (2000a). Human immunosenescence: The prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space.Vaccine , 18 (16), 1717–1720. https://doi.org/10.1016/S0264-410X(99)00513-7
Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., & De Benedictis, G. (2000b). Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences , 908 , 244–254.
Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., Panourgia, M. P., Invidia, L., Celani, L., Scurti, M., Cevenini, E., Castellani, G. C., & Salvioli, S. (2007). Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of Ageing and Development ,128 (1), 92–105. https://doi.org/10.1016/j.mad.2006.11.016
Franceschi, C., Garagnani, P., Parini, P., Giuliani, C., & Santoro, A. (2018). Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nature Reviews Endocrinology , 14 (10), 576–590. https://doi.org/10.1038/s41574-018-0059-4
Frasca, D., Diaz, A., Romero, M., Landin, A. M., & Blomberg, B. B. (2011). Age effects on B cells and humoral immunity in humans.Ageing Research Reviews , 10 (3), 330–335. https://doi.org/10.1016/j.arr.2010.08.004
Frasca, D., Riley, R. L., & Blomberg, B. B. (2005). Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Seminars in Immunology ,17 (5), 378–384. https://doi.org/10.1016/j.smim.2005.05.005
Froy, H., Sparks, A. M., Watt, K., Sinclair, R., Bach, F., Pilkington, J. G., Pemberton, J. M., McNeilly, T. N., & Nussey, D. H. (2019). Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science , 365 (6459), 1296–1298. https://doi.org/10.1126/science.aaw5822
Fulop, T., Larbi, A., Dupuis, G., Le Page, A., Frost, E. H., Cohen, A. A., Witkowski, J. M., & Franceschi, C. (2018). Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes?Frontiers in Immunology , 8 , 1960. https://doi.org/10.3389/fimmu.2017.01960
Fulop, T., Larbi, A., Hirokawa, K., Cohen, A. A., & Witkowski, J. M. (2020). Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Seminars in Immunopathology ,42 (5), 521–536. https://doi.org/10.1007/s00281-020-00818-9
Gayoso, I., Sanchez-Correa, B., Campos, C., Alonso, C., Pera, A., Casado, J. G., Morgado, S., Tarazona, R., & Solana, R. (2011). Immunosenescence of Human Natural Killer Cells. Journal of Innate Immunity , 3 (4), 337–343. https://doi.org/10.1159/000328005
Gelman, A., & Yu-Sung. (2020). arm: Data Analysis Using Regression and Multilevel/Hierarchical Models (1.11-2) [Computer software]. https://CRAN.R-project.org/package=arm
Gomez, C. R., Nomellini, V., Faunce, D. E., & Kovacs, E. J. (2008). Innate immunity and aging. Experimental Gerontology ,43 (8), 718–728. https://doi.org/10.1016/j.exger.2008.05.016
Goto, M. (2008). Inflammaging (inflammation plus aging): A driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Bioscience Trends , 2 (6), 218–230.
Graham, A. L., Allen, J. E., & Read, A. F. (2005). Evolutionary Causes and Consequences of Immunopathology. Annual Review of Ecology, Evolution, and Systematics , 36 (1), 373–397. https://doi.org/10.1146/annurev.ecolsys.36.102003.152622
Graham, A. L., Hayward, A. D., Watt, K. A., Pilkington, J. G., Pemberton, J. M., & Nussey, D. H. (2010). Fitness Correlates of Heritable Variation in Antibody Responsiveness in a Wild Mammal.Science , 330 (6004), 662–665. https://doi.org/10.1126/science.1194878
Gubbels Bupp, M. R., Potluri, T., Fink, A. L., & Klein, S. L. (2018). The Confluence of Sex Hormones and Aging on Immunity. Frontiers in Immunology , 9 . https://doi.org/10.3389/fimmu.2018.01269
Hacklander, K., Mostl, E., & Arnold, W. (2003). Reproductive suppression in female Alpine marmots, Marmota marmota. Animal Behaviour , 65 , 1133–1140. https://doi.org/10.1006/anbe.2003.2159
Hakim, F. T., & Gress, R. E. (2007). Immunosenescence: Deficits in adaptive immunity in the elderly. Tissue Antigens , 70 (3), 179–189. https://doi.org/10.1111/j.1399-0039.2007.00891.x
Hanssen, S. A., Hasselquist, D., Folstad, I., & Erikstad, K. E. (2004). Costs of immunity: Immune responsiveness reduces survival in a vertebrate. Proceedings of the Royal Society B-Biological Sciences , 271 (1542), 925–930. https://doi.org/10.1098/rspb.2004.2678
Hawkey, C. M., & Dennett, T. B. (1989). A colour atlas of comparative veterinary haematology. Normal and abnormal blood cells in mammals, birds and reptiles. Wolfe Publishing Limited, Ipswich.
Hill, S. C., Manvell, R. J., Schulenburg, B., Shell, W., Wikramaratna, P. S., Perrins, C., Sheldon, B. C., Brown, I. H., & Pybus, O. G. (2016). Antibody responses to avian influenza viruses in wild birds broaden with age. Proceedings of the Royal Society B-Biological Sciences , 283 (1845), 20162159. https://doi.org/10.1098/rspb.2016.2159
Hoebe, K., Janssen, E., & Beutler, B. (2004). The interface between innate and adaptive immunity. Nature Immunology , 5 (10), 971–974. https://doi.org/10.1038/ni1004-971
Iwasaki, A., & Medzhitov, R. (2010). Regulation of Adaptive Immunity by the Innate Immune System. Science , 327 (5963), 291–295. https://doi.org/10.1126/science.1183021
Iwasaki, A., & Medzhitov, R. (2015). Control of adaptive immunity by the innate immune system. Nature Immunology , 16 (4), 343–353. https://doi.org/10.1038/ni.3123
Jain, N. C. (1993). Essentials of Veterinary Hematology . Blackwell Publishing.
Karasuyama, H., Mukai, K., Obata, K., Tsujimura, Y., & Wada, T. (2011). Nonredundant Roles of Basophils in Immunity. Annual Review of Immunology , 29 (1), 45–69. https://doi.org/10.1146/annurev-immunol-031210-101257
Kelly, C. D., Stoehr, A. M., Nunn, C., Smyth, K. N., & Prokop, Z. M. (2018). Sexual dimorphism in immunity across animals: A meta‐analysis . https://pubag.nal.usda.gov/catalog/6206256
Kirk, C. M., Amstrup, S., Swor, R., Holcomb, D., & O’Hara, T. M. (2010). Hematology of Southern Beaufort Sea Polar Bears (2005-2007): Biomarker for an Arctic Ecosystem Health Sentinel. Ecohealth ,7 (3), 307–320. https://doi.org/10.1007/s10393-010-0322-1
Klasing, K. C. (2004). The costs of immunity. Dong Wu Xue Bao. [Acta Zoologica Sinica] , 50 (6), 961–969.
Klein, S. L., & Flanagan, K. L. (2016). Sex differences in immune responses. Nature Reviews. Immunology , 16 (10), 626–638. https://doi.org/10.1038/nri.2016.90
Larbi, A., Franceschi, C., Mazzatti, D., Solana, R., Wikby, A., & Pawelec, G. (2008). Aging of the immune system as a prognostic factor for human longevity. Physiology , 23 (2), 64–74. https://doi.org/10.1152/physiol.00040.2007
Lardy, S., Cohas, A., Desouhant, E., Tafani, M., & Allainé, D. (2012). Paternity and Dominance Loss in Male Breeders: The Cost of Helpers in a Cooperatively Breeding Mammal. PLoS ONE , 7 (1), e29508. https://doi.org/10.1371/journal.pone.0029508
Lardy, S., Cohas, A., Figueroa, I., & Allainé, D. (2011). Mate change in a socially monogamous mammal: Evidences support the “forced divorce” hypothesis. Behavioral Ecology , 22 (1), 120–125. https://doi.org/10.1093/beheco/arq168
Lecomte, V. J., Sorci, G., Cornet, S., Jaeger, A., Faivre, B., Arnoux, E., Gaillard, M., Trouve, C., Besson, D., Chastel, O., & Weimerskirch, H. (2010). Patterns of aging in the long-lived wandering albatross.Proceedings of the National Academy of Sciences of the United States of America , 107 (14), 6370–6375. https://doi.org/10.1073/pnas.0911181107
Lee, K. A. (2006). Linking immune defenses and life history at the levels of the individual and the species. Integrative and Comparative Biology , 46 (6), 1000–1015. https://doi.org/10.1093/icb/icl049
Lemaitre, J.-F., Berger, V., Bonenfant, C., Douhard, M., Gamelon, M., Plard, F., & Gaillard, J.-M. (2015). Early-late life trade-offs and the evolution of ageing in the wild. Proceedings of the Royal Society B-Biological Sciences , 282 (1806), UNSP 20150209. https://doi.org/10.1098/rspb.2015.0209
Lemaitre, J.-F., Gaillard, J.-M., Lackey, L. B., Clauss, M., & Mueller, D. W. H. (2013). Comparing free-ranging and captive populations reveals intra-specific variation in aging rates in large herbivores.Experimental Gerontology , 48 (2), 162–167. https://doi.org/10.1016/j.exger.2012.12.004
Lochmiller, R. L., & Deerenberg, C. (2000). Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos ,88 (1), 87–98. https://doi.org/10.1034/j.1600-0706.2000.880110.x
Lopez-Olvera, J. R., Marco, I., Montane, J., Casas-Diaz, E., & Lavin, S. (2007). Effects of acepromazine on the stress response in Southern chamois (Rupicapra pyrenaica) captured by means of drive-nets.Canadian Journal of Veterinary Research-Revue Canadienne De Recherche Veterinaire , 71 (1), 41–51.
Lüdecke, D., Makowski, D., Waggoner, P., & Patil, I. (2020).performance: Assessment of Regression Models Performance . https://easystats.github.io/performance/
Maizels, R. M., & Nussey, D. H. (2013). Into the wild: Digging at immunology’s evolutionary roots. Nature Immunology , 14 , 879–883. https://doi.org/10.1038/ni.2643
Mantovani, A., Cassatella, M. A., Costantini, C., & Jaillon, S. (2011). Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews. Immunology , 11 (8), 519–531. https://doi.org/10.1038/nri3024
Massot, M., Clobert, J., Montes-Poloni, L., Haussy, C., Cubo, J., & Meylan, S. (2011). An integrative study of ageing in a wild population of common lizards. Functional Ecology , 25 (4), 848–858. https://doi.org/10.1111/j.1365-2435.2011.01837.x
McDade, T. W., Georgiev, A. V., & Kuzawa, C. W. (2016). Trade-offs between acquired and innate immune defenses in humans. Evolution, Medicine, and Public Health , 2016 (1), 1–16. https://doi.org/10.1093/emph/eov033
Metcalf, C. J. E., & Graham, A. L. (2018). Schedule and magnitude of reproductive investment under immune trade-offs explains sex differences in immunity. Nature Communications , 9 (1), 4391. https://doi.org/10.1038/s41467-018-06793-y
Mueller, L., Fueloep, T., & Pawelec, G. (2013). Immunosenescence in vertebrates and invertebrates. Immunity & Ageing , 10 , 12. https://doi.org/10.1186/1742-4933-10-12
Nathan, C. (2006). Neutrophils and immunity: Challenges and opportunities. Nature Reviews. Immunology , 6 (3), 173–182. https://doi.org/10.1038/nri1785
Nenko, I., Hayward, A. D., Simons, M. J. P., & Lummaa, V. (2018). Early-life environment and differences in costs of reproduction in a preindustrial human population. Plos One , 13 (12), e0207236. https://doi.org/10.1371/journal.pone.0207236
Nikolich-Zugich, J. (2018). The twilight of immunity: Emerging concepts in aging of the immune system. Nature Immunology , 19 (1), 10–19. https://doi.org/10.1038/s41590-017-0006-x
Noreen, E., Bourgeon, S., & Bech, C. (2011). Growing old with the immune system: A study of immunosenescence in the zebra finch (Taeniopygia guttata). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology , 181 (5), 649–656. https://doi.org/10.1007/s00360-011-0553-7
Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R., & McNeilly, T. N. (2012). Age-related variation in immunity in a wild mammal population. Aging Cell , 11 (1), 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x
Palacios, M. G., Cunnick, J. E., Winkler, D. W., & Vleck, C. M. (2007). Immunosenescence in some but not all immune components in a free-living vertebrate, the tree swallow. Proceedings of the Royal Society B-Biological Sciences , 274 (1612), 951–957. https://doi.org/10.1098/rspb.2006.0192
Panda, A., Arjona, A., Sapey, E., Bai, F., Fikrig, E., Montgomery, R. R., Lord, J. M., & Shaw, A. C. (2009). Human innate immunosenescence: Causes and consequences for immunity in old age. Trends in Immunology , 30 (7), 325–333. https://doi.org/10.1016/j.it.2009.05.004
Pawelec, G. (2018). Age and immunity: What is “immunosenescence”?Experimental Gerontology , 105 , 4–9. https://doi.org/10.1016/j.exger.2017.10.024
Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A., & Verhulst, S. (2019). Immunosenescence in wild animals: Meta-analysis and outlook.Ecology Letters , 22 (10), 1709–1722. https://doi.org/10.1111/ele.13343
Ripatti, S., & Palmgren, J. (2000). Estimation of multivariate frailty models using penalized partial likelihood. Biometrics ,56 (4), 1016–1022. https://doi.org/10.1111/j.0006-341X.2000.01016.x
Roast, M. J., Aranzamendi, N. H., Fan, M., Teunissen, N., Hall, M. D., & Peters, A. (2020). Fitness outcomes in relation to individual variation in constitutive innate immune function. Proceedings of the Royal Society B: Biological Sciences , 287 (1938), 20201997. https://doi.org/10.1098/rspb.2020.1997
Roast, M. J., Hidalgo Aranzamendi, N., Teunissen, N., Fan, M., Verhulst, S., & Peters, A. (2022). No Evidence for Constitutive Innate Immune Senescence in a Longitudinal Study of a Wild Bird. Physiological and Biochemical Zoology: PBZ , 95 (1), 54–65. https://doi.org/10.1086/717937
Roitt, I., Brostoff, J., & Male, D. (2001). Immunology . Mosby-Harcourt Publishers.
Saino, N., Ferrari, R. P., Romano, M., Rubolini, D., & Moller, A. P. (2003). Humoral immune response in relation to senescence, sex and sexual ornamentation in the barn swallow (Hirundo rustica).Journal of Evolutionary Biology , 16 (6), 1127–1134. https://doi.org/10.1046/j.1420-9101.2003.00616.x
Schneeberger, K., Courtiol, A., Czirjak, G. A., & Voigt, C. C. (2014). Immune Profile Predicts Survival and Reflects Senescence in a Small, Long-Lived Mammal, the Greater Sac-Winged Bat (Saccopteryx bilineata).Plos One , 9 (9), e108268. https://doi.org/10.1371/journal.pone.0108268
Shanley, D. P., Aw, D., Manley, N. R., & Palmer, D. B. (2009). An evolutionary perspective on the mechanisms of immunosenescence.Trends in Immunology , 30 (7), 374–381. https://doi.org/10.1016/j.it.2009.05.001
Shaw, A. C., Goldstein, D. R., & Montgomery, R. R. (2013). Age-dependent dysregulation of innate immunity. Nature Reviews Immunology , 13 (12), 875–887. https://doi.org/10.1038/nri3547
Sheldon, B. C., & Verhulst, S. (1996). Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution , 11 (8), 317–321. https://doi.org/10.1016/0169-5347(96)10039-2
Simon, A. K., Hollander, G. A., & McMichael, A. (2015). Evolution of the immune system in humans from infancy to old age. Proceedings of the Royal Society B-Biological Sciences , 282 (1821), 20143085. https://doi.org/10.1098/rspb.2014.3085
Solana, R., Tarazona, R., Gayoso, I., Lesur, O., Dupuis, G., & Fulop, T. (2012). Innate immunosenescence: Effect of aging on cells and receptors of the innate immune system in humans. Seminars in Immunology , 24 (5), 331–341. https://doi.org/10.1016/j.smim.2012.04.008
Sugianto, N. A., Newman, C., Macdonald, D. W., & Buesching, C. D. (2019). Heterochrony of puberty in the European badger (Meles meles) can be explained by growth rate and group-size: Evidence for two endocrinological phenotypes. PLOS ONE , 14 (3), e0203910. https://doi.org/10.1371/journal.pone.0203910
Taneja, V. (2018). Sex Hormones Determine Immune Response.Frontiers in Immunology , 9 . https://doi.org/10.3389/fimmu.2018.01931
Therneau, T. M. (2018). coxme: Mixed Effects Cox Models . https://CRAN.R-project.org/package=coxme
Therneau, T. M., Grambsch, P. M., & Pankratz, V. S. (2003). Penalized survival models and frailty. Journal of Computational and Graphical Statistics , 12 (1), 156–175. https://doi.org/10.1198/1061860031365
Tidière, M., Badruna, A., Fouchet, D., Gaillard, J.-M., Lemaître, J.-F., & Pontier, D. (2020). Pathogens Shape Sex Differences in Mammalian Aging. Trends in Parasitology , 36 (8), 668–676. https://doi.org/10.1016/j.pt.2020.05.004
Ujvari, B., & Madsen, T. (2011). Do natural antibodies compensate for humoral immunosenescence in tropical pythons? Functional Ecology ,25 (4), 813–817. https://doi.org/10.1111/j.1365-2435.2011.01860.x
van de Pol, M., & Verhulst, S. (2006). Age-dependent traits: A new statistical model to separate within- and between-individual effects.The American Naturalist , 167 (5), 766–773. https://doi.org/10.1086/503331
van de Pol, M., & Wright, J. (2009). A simple method for distinguishing within- versus between-subject effects using mixed models. Animal Behaviour , 77 (3), 753–758. https://doi.org/10.1016/j.anbehav.2008.11.006
van Lieshout, S. H. J., Badás, E. P., Mason, M. W. T., Newman, C., Buesching, C. D., Macdonald, D. W., & Dugdale, H. L. (2020). Social effects on age-related and sex-specific immune cell profiles in a wild mammal. Biology Letters , 16 (7), 20200234. https://doi.org/10.1098/rsbl.2020.0234
Vermeulen, A., Eens, M., Van Dongen, S., & Muller, W. (2017). Does baseline innate immunity change with age? A multi-year study in great tits. Experimental Gerontology , 92 , 67–73. https://doi.org/10.1016/j.exger.2017.03.011
Viney, M. E., Riley, E. M., & Buchanan, K. L. (2005). Optimal immune responses: Immunocompetence revisited. Trends in Ecology & Evolution , 20 (12), 665–669. https://doi.org/10.1016/j.tree.2005.10.003
Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L., Yokoyama, W. M., & Ugolini, S. (2011). Innate or adaptive immunity? The example of natural killer cells. Science (New York, N.Y.) , 331 (6013), 44–49. https://doi.org/10.1126/science.1198687
Watson, R. L., McNeilly, T. N., Watt, K. A., Pemberton, J. M., Pilkington, J. G., Waterfall, M., Hopper, P. R. T., Cooney, D., Zamoyska, R., & Nussey, D. H. (2016). Cellular and humoral immunity in a wild mammal: Variation with age & sex and association with overwinter survival. Ecology and Evolution , 6 (24), 8695–8705. https://doi.org/10.1002/ece3.2584
Zimmerman, L. M., Clairardin, S. G., Paitz, R. T., Hicke, J. W., LaMagdeleine, K. A., Vogel, L. A., & Bowden, R. M. (2013). Humoral immune responses are maintained with age in a long-lived ectotherm, the red-eared slider turtle. Journal of Experimental Biology ,216 (4), 633–640. https://doi.org/10.1242/jeb.078832
Tables
Table 1: Parameter estimates and credible intervals at 95% (CI) for the selected models testing whether within-individual variation in leukocyte concentration or relative number of each type of leukocytes were explained by age. Parameters were obtained from the minimal adequate models. Significant effects (CI which do not overlap zero) are in bold. “-“ means a parameter not retained in the model.