Reference
[1] S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs, Nat
Biotechnol 32(8) (2014) 773-85.
[2] W. Aljohani, M.W. Ullah, X. Zhang, G. Yang, Bioprinting and its
Applications in Tissue Engineering and Regenerative Medicine,
International Journal of Biological Macromolecules 107(Pt A) (2017).
[3] A.G. Tabriz, M.A. Hermida, N.R. Leslie, W. Shu,
Three-dimensional bioprinting of complex cell laden alginate hydrogel
structures, Biofabrication 7(4) (2015) 045012.
[4] K.S. Lim, J.H. Galarraga, X. Cui, G.C.J. Lindberg, J.A. Burdick,
T.B.F. Woodfield, Fundamentals and Applications of Photo-Cross-Linking
in Bioprinting, Chemical Reviews 120(19) (2020) 10662-10694.
[5] B. Duan, L.A. Hockaday, K.H. Kang, J.T. Butcher, 3D Bioprinting
of heterogeneous aortic valve conduits with alginate/gelatin hydrogels,
J. Biomed. Mater. Res. Part A 101A(5) (2013) 1255-1264.
[6] A.L. Rutz, K.E. Hyland, A.E. Jakus, W.R. Burghardt, R.N. Shah, A
Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible
Hydrogels, Advanced Materials 27(9) (2015) 1607-1614.
[7] M. Yeo, J.-S. Lee, W. Chun, G.H. Kim, An Innovative
Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem
Cell-Laden Structures Consisting of Core–Sheath Structures for Tissue
Engineering, Biomacromolecules 17(4) (2016) 1365-1375.
[8] Y. Shin, J.S. Jeon, S. Han, G.-S. Jung, S. Shin, S.-H. Lee, R.
Sudo, R.D. Kamm, S. Chung, In vitro 3D collective sprouting angiogenesis
under orchestrated ANG-1 and VEGF gradients, Lab on a Chip 11(13) (2011)
2175.
[9] K.H. Song, C.B. Highley, A. Rouff, J.A. Burdick, Complex
3D-Printed Microchannels within Cell-Degradable Hydrogels, Advanced
Functional Materials 28(31) (2018) 1801331.
[10] E. Bible, O. Qutachi, D.Y.S. Chau, M.R. Alexander, K.M.
Shakesheff, M. Modo, Neo-vascularization of the stroke cavity by
implantation of human neural stem cells on VEGF-releasing PLGA
microparticles, Biomaterials 33(30) (2012) 7435-7446.
[11] K. Säljö, L.S. Orrhult, P. Apelgren, K. Markstedt, L. Kölby, P.
Gatenholm, Successful engraftment, vascularization, and In vivo survival
of 3D-bioprinted human lipoaspirate-derived adipose tissue, Bioprinting
17 (2020) e00065.
[12] S. Liu, H. Zhang, Q. Hu, Z. Shen, D. Rana, M. Ramalingam,
Designing vascular supportive albumen-rich composite bioink for organ 3D
printing, J Mech Behav Biomed Mater 104 (2020) 103642.
[13] E. Axpe, M.L. Oyen, Applications of Alginate-Based Bioinks in
3D Bioprinting, International Journal of Molecular Sciences 17(12)
(2016) 1976-.
[14] S. Li, H.G. Zhang, D.D. Li, J.P. Wu, C.Y. Sun, Q.X. Hu,
Characterization of Engineered Scaffolds with Spatial Prevascularized
Networks for Bulk Tissue Regeneration, ACS Biomater. Sci. Eng. 3(10)
(2017) 2493-2501.
[15] L. Ouyang, J.P.K. Armstrong, Y. Lin, J.P. Wojciechowski, M.M.
Stevens, Expanding and optimizing 3D bioprinting capabilities using
complementary network bioinks, Science Advances 6(38) (2020).
[16] G. Gao, J.H. Lee, J. Jang, D.H. Lee, J.-S. Kong, B.S. Kim,
Y.-J. Choi, W.B. Jang, Y.J. Hong, S.-M. Kwon, D.-W. Cho, Tissue
Engineered Bio-Blood-Vessels Constructed Using a Tissue-Specific Bioink
and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic
Disease, Advanced Functional Materials 27(33) (2017) 1700798.
[17] K. Hölzl, S. Lin, L. Tytgat, S.V. Vlierberghe, A. Ovsianikov,
Bioink properties before, during and after 3D bioprinting,
Biofabrication 8(3) (2016) 032002.
[18] C. Piard, H. Baker, T. Kamalitdinov, J. Fisher, Bioprinted
osteon-like scaffolds enhance in vivo neovascularization, Biofabrication
11(2) (2019) 025013.
[19] Q.Q. Wang, Y. Liu, C.J. Zhang, C. Zhang, P. Zhu,
Alginate/gelatin blended hydrogel fibers cross-linked by Ca(2+) and
oxidized starch: Preparation and properties, Mater Sci Eng C Mater Biol
Appl 99 (2019) 1469-1476.
[20] A. Jahani-Javanmardi, M. Sirousazar, Y. Shaabani, F. Kheiri,
Egg white/poly (vinyl alcohol)/MMT nanocomposite hydrogels for wound
dressing, J Biomater Sci Polym Ed 27(12) (2016) 1262-76.
[21] J.S. Gonzalez, L.N. Ludueña, A. Ponce, V.A. Alvarez, Poly(vinyl
alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential
wound dressings, Materials Science & Engineering C Materials for
Biological Applications 34(1) (2014) 54-61.
[22] S.-H. Liu, H.-G. Zhang, S. Li, C.-Y. Sun, Q.-X. Hu, A Facile
Strategy for Fabricating Tissue Engineering Scaffolds with Sophisticated
Prevascularized Networks for Bulk Tissue Regeneration, Macromolecular
Materials and Engineering (2019) 1800642.
[23] E.C. Novosel, C. Kleinhans, P.J. Kluger, Vascularization is the
key challenge in tissue engineering, Advanced Drug Delivery Reviews
63(4) (2011) 300-311.