References
Abiria, S. A., & Colbran, R. J. (2010). CaMKII associates with CaV 1.2 L-type calcium channels via selected β subunits to
enhance regulatory phosphorylation. Journal of Neurochemistry ,112 (1), 150–161.
https://doi.org/10.1111/j.1471-4159.2009.06436.x
Alexander, S. P. H., Mathie, A., Peters, J. A., Veale, E. L.,
Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S.
D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., Aldrich,
R. W., Becirovic, E., Biel, M., Catterall, W. A., Conner, A. C., Davies,
P., … Zhu, M. (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20:
Ion channels. British Journal of Pharmacology , 176 (S1),
S142–S228. https://doi.org/10.1111/bph.14749
Angaut-Petit, D., Molgo, J., Connold, A. L., & Faille, L. (1987). The
levator auris longus muscle of the mouse: A convenient preparation for
studies of short- and long-term presynaptic effects of drugs or toxins.Neuroscience Letters , 82 (1), 83–88.
https://doi.org/10.1016/0304-3940(87)90175-3
Atchison, W. D. (1989). Dihydropyridine-sensitive and -insensitive
components of acetylcholine release from rat motor nerve terminals.Journal of Pharmacology and Experimental Therapeutics ,251 (2), 672–678.
Balezina, O. P., Fedorin, V. V., & Gaidukov, A. E. (2006). Effect of
nicotine on neuromuscular transmission in mouse motor synapses.Bulletin of Experimental Biology and Medicine , 142 (1),
17–21. https://doi.org/10.1007/s10517-006-0280-3
Bowersox, S. S., Miljanich, G. P., Sugiura, Y., Li, C., Nadasdi, L.,
Hoffman, B. B., Ramachandran, J., & Ko, C. P. (1995). Differential
blockade of voltage-sensitive calcium channels at the mouse
neuromuscular junction by novel ω-conopeptides and ω-agatoxin-IVA.Journal of Pharmacology and Experimental Therapeutics ,273 (1), 248–256. https://pubmed.ncbi.nlm.nih.gov/7714772/
Bowman, W. C., Prior, C., & Marshall, I. G. (1990). Presynaptic
Receptors in the Neuromuscular Junction. Annals of the New York
Academy of Sciences , 604 (1), 69–81.
https://doi.org/10.1111/j.1749-6632.1990.tb31983.x
Ciani, S., & Edwards, C. (1963). The effect of acetylcholine on
neuromuscular transmission in the frog. The Journal of
Pharmacology and Experimental Therapeutics , 142 , 21–23.
http://www.ncbi.nlm.nih.gov/pubmed/14076518
Crawford, A. C. (1974). The dependence of evoked transmitter release on
external calcium ions at very low mean quantal contents. The
Journal of Physiology , 240 (2), 255–278.
https://doi.org/10.1113/jphysiol.1974.sp010609
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C.
H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y.,
MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M.,
Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis
and their reporting II: updated and simplified guidance for authors and
peer reviewers. British Journal of Pharmacology , 175 (7),
987–993. https://doi.org/10.1111/bph.14153
Del Castillo, J., & Katz, B. (1957). Interaction at end-plate receptors
between different choline derivatives. Proceedings of the Royal
Society of London. Series B, Containing Papers of a Biological
Character. Royal Society (Great Britain) , 146 (924), 369–381.
https://doi.org/10.1098/rspb.1957.0018
Flink, M. T., Atchison, W. D., & Atchison, B. (2003).
Iberiotoxin-induced block of Ca2+-activated K+ channels induces
dihydropyridine sensitivity of ACh release from mammalian motor nerve
terminals. Journal of Pharmacology and Experimental Therapeutics ,305 (2), 646–652. https://doi.org/10.1124/jpet.102.046102
Garduño, J., Galindo-Charles, L., Jiménez-Rodríguez, J., Galarraga, E.,
Tapia, D., Mihailescu, S., & Hernandez-Lopez, S. (2012). Presynaptic
α4β2 nicotinic acetylcholine receptors increase glutamate release and
serotonin neuron excitability in the dorsal raphe nucleus. Journal
of Neuroscience , 32 (43), 15148–15157.
https://doi.org/10.1523/JNEUROSCI.0941-12.2012
Gotti, C., & Clementi, F. (2004). Neuronal nicotinic receptors: From
structure to pathology. Progress in Neurobiology , 74 (6),
363–396. https://doi.org/10.1016/j.pneurobio.2004.09.006
Hess, P., Lansman, J. B., & Tsien, R. W. (1984). Different modes of Ca
channel gating behaviour favoured by dihydropyridine Ca agonists and
antagonists. Nature , 311 (5986), 538–544.
https://doi.org/10.1038/311538a0
Hill, J. M., Alewood, P. F., & Craik, D. J. (1996). Three-dimensional
solution structure of μ-conotoxin GIIIB, a specific blocker of skeletal
muscle sodium channels. Biochemistry , 35 (27), 8824–8835.
https://doi.org/10.1021/bi960073o
Hogg, R. C., Raggenbass, M., & Bertrand, D. (2003). Nicotinic
acetylcholine receptors: from structure to brain function. InReviews of physiology, biochemistry and pharmacology (Vol. 147,
pp. 1–46). Rev Physiol Biochem Pharmacol.
https://doi.org/10.1007/s10254-003-0005-1
Houlihan, L. M., Slater, E. Y., Beadle, D. J., Lukas, R. J., &
Bermudez, I. (2000). Effects of diltiazem on human nicotinic
acetylcholine and GABA(A) receptors. Neuropharmacology ,39 (13), 2533–2542. https://doi.org/10.1016/S0028-3908(00)00116-7
Karadsheh, M. S., Shah, M. S., Tang, X., Macdonald, R. L., & Stitzel,
J. A. (2004). Functional characterization of mouse α4β2 nicotinic
acetylcholine receptors stably expressed in HEK293T cells. Journal
of Neurochemistry , 91 (5), 1138–1150.
https://doi.org/10.1111/j.1471-4159.2004.02801.x
Katsura, M., Mohri, Y., Shuto, K., Hai-Du, Y., Amano, T., Tsujimura, A.,
Sasa, M., & Ohkuma, S. (2002). Up-regulation of L-type
voltage-dependent calcium channels after long term exposure to nicotine
in cerebral cortical neurons. Journal of Biological Chemistry ,277 (10), 7979–7988. https://doi.org/10.1074/jbc.M109466200
Katz B. (1969). The release of neural transmitter substances.Liverpool University Press , 5–39.
https://ci.nii.ac.jp/naid/10009658302
Katz, E., Ferro, P. A., Weisz, G., & Uchitel, O. D. (1996). Calcium
channels involved in synaptic transmission at the mature and
regenerating mouse neuromuscular junction. Journal of Physiology ,497 (3), 687–697.
Khaziev, E., Samigullin, D., Zhilyakov, N., Fatikhov, N., Bukharaeva,
E., Verkhratsky, A., & Nikolsky, E. (2016). Acetylcholine-induced
inhibition of presynaptic calcium signals and transmitter release in the
frog neuromuscular junction. Frontiers in Physiology ,7 (DEC), 1–10. https://doi.org/10.3389/fphys.2016.00621
Kim, E. Y., Rumpf, C. H., Fujiwara, Y., Cooley, E. S., Van Petegem, F.,
& Minor, D. L. (2008). Structures of CaV2 Ca2+/CaM-IQ domain complexes
reveal binding modes that underlie calcium-dependent inactivation and
facilitation. Structure , 16 (10), 1455–1467.
https://doi.org/10.1016/j.str.2008.07.010
Lansman, J. B., Hess, P., & Tsien, R. W. (1986). Blockade of current
through single calcium channels by Cd2+, Mg2+, and Ca2+s: voltage and
concentration dependence of calcium entry into the pore. Journal
of General Physiology , 88 (3), 321–347.
https://doi.org/10.1085/jgp.88.3.321
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H.,
Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A.,
Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G.,
Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British
Journal of Pharmacology: Updated guidance for 2020. British
Journal of Pharmacology , 177 (16), 3611–3616.
https://doi.org/10.1111/bph.15178
Miller, R. J. (1990). Receptor-mediated regulation of calcium channels
and neurotransmitter release. FASEB Journal : Official
Publication of the Federation of American Societies for Experimental
Biology , 4 (15), 3291–3299.
http://www.ncbi.nlm.nih.gov/pubmed/1979294
Miller, R. J. (1998). Presynaptic receptors. Annual Review of
Pharmacology and Toxicology , 38 , 201–227.
https://doi.org/10.1146/annurev.pharmtox.38.1.201
Moroni, M., Zwart, R., Sher, E., Cassels, B. K., & Bermudez, I. (2006).
α4β2 nicotinic receptors with high and low acetylcholine sensitivity:
Pharmacology, stoichiometry, and sensitivity to long-term exposure to
nicotine. Molecular Pharmacology , 70 (2), 755–768.
https://doi.org/10.1124/mol.106.023044
Nachshen, D. A., & Blaustein, M. P. (1979). The effects of some organic
calcium antagonists on calcium influx in presynaptic nerve terminals.Molecular Pharmacology , 16 (2).
Nikolsky, E. E., Vyskocil, F., Bukharaeva, E. A., Samigullin, D., &
Magazanik, L. G. (2004). Cholinergic regulation of the evoked quantal
release at frog neuromuscular junction. The Journal of
Physiology , 560 (Pt 1), 77–88.
https://doi.org/10.1113/jphysiol.2004.065805
Oliveira, L., Timóteo, M. A., & Correia-de-Sá, P. (2002). Modulation by
adenosine of both muscarinic M1-facilitation and M2-inhibition of
[3H]-acetylcholine release from the rat motor nerve terminals.European Journal of Neuroscience , 15 (11), 1728–1736.
https://doi.org/10.1046/j.1460-9568.2002.02020.x
Pagani, R., Song, M., Mcenery, M., Qin, N., Tsien, R. W., Toro, L.,
Stefani, E., & Uchitel, O. D. (2004). Differential expression of α1 and
β subunits of voltage dependent Ca2+ channel at the neuromuscular
junction of normal and P/Q Ca2+ channel knockout mouse.Neuroscience , 123 (1), 75–85.
https://doi.org/10.1016/j.neuroscience.2003.09.019
Papke, R. L., Wecker, L., & Stitzel, J. A. (2010). Activation and
inhibition of mouse muscle and neuronal nicotinic acetylcholine
receptors expressed in xenopus oocytes. Journal of Pharmacology
and Experimental Therapeutics , 333 (2), 501–518.
https://doi.org/10.1124/jpet.109.164566
Penner, R., & Dreyer, F. (1986). Two different presynaptic calcium
currents in mouse motor nerve terminals. Pflügers Archiv European
Journal of Physiology , 406 (2), 190–197.
https://doi.org/10.1007/BF00586682
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T.,
Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U.,
Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A.,
Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., …
Würbel, H. (2020). The arrive guidelines 2.0: Updated guidelines for
reporting animal research. PLoS Biology , 18 (7).
https://doi.org/10.1371/journal.pbio.3000410
Perissinotti, P. P., Tropper, B. G., & Uchitel, O. D. (2008). L-type
calcium channels are involved in fast endocytosis at the mouse
neuromuscular junction. European Journal of Neuroscience ,27 (6), 1333–1344.
https://doi.org/10.1111/j.1460-9568.2008.06113.x
Picciotto, M. R. (2003). Nicotine as a modulator of behavior: Beyond the
inverted U. In Trends in Pharmacological Sciences (Vol. 24, Issue
9, pp. 493–499). Elsevier Ltd.
https://doi.org/10.1016/S0165-6147(03)00230-X
Polo-Parada, L., Bose, C. M., & Landmesser, L. T. (2001). Alterations
in transmission, vesicle dynamics, and transmitter release machinery at
NCAM-deficient neuromuscular junctions. Neuron , 32 (5),
815–828. https://doi.org/10.1016/S0896-6273(01)00521-9
Prior, C., & Singh, S. (2000). Factors influencing the low-frequency
associated nicotinic ACh autoreceptor-mediated depression of ACh release
from rat motor nerve terminals. British Journal of Pharmacology ,129 (6), 1067–1074. https://doi.org/10.1038/sj.bjp.0703161
Prior, C., Tian, L., Dempster, J., & Marshall, I. G. (1995).
Prejunctional actions of muscle relaxants: Synaptic vesicles and
transmitter mobilization as sites of action. In General
Pharmacology (Vol. 26, Issue 4, pp. 659–666). Gen Pharmacol.
https://doi.org/10.1016/0306-3623(94)00246-J
Protti, D. A., Szczupak, L., Scornik, F. S., & Uchitel, O. D. (1991).
Effect of ω-conotoxin GVIA on neurotransmitter release at the mouse
neuromuscular junction. Brain Research , 557 (1–2),
336–339. https://doi.org/10.1016/0006-8993(91)90156-P
Protti, D. A., & Uchitel, O. D. (1993). Transmitter release and
presynaptic ca2+ currents blocked by the spider toxin ω-aga-IVA.NeuroReport , 5 (3), 333–336.
https://doi.org/10.1097/00001756-199312000-00039
Radford Deckera, E., & Dani, J. A. (1990). Calcium permeability of the
nicotinic acetylcholine receptor: The single-channel calcium influx is
significant. Journal of Neuroscience , 10 (10), 3413–3420.
https://doi.org/10.1523/jneurosci.10-10-03413.1990
Samigullin, D. V., Khaziev, E. F., Zhilyakov, N. V., Bukharaeva, E. A.,
& Nikolsky, E. E. (2017). Loading a calcium dye into frog nerve endings
through the nerve stump: calcium transient registration in the frog
neuromuscular junction. Journal of Visualized Experiments ,125 . https://doi.org/10.3791/55122
Samigullin, D. V., Khaziev, E. F., Zhilyakov, N. V., Sudakov, I. A.,
Bukharaeva, E. A., & Nikolsky, E. E. (2017). Calcium transient
registration in response to single stimulation and during train of
pulses in mouse neuromuscular junction. BioNanoScience ,7 (1), 162–166. https://doi.org/10.1007/s12668-016-0318-6
Santafé, M. M., Salon, I., Garcia, N., Lanuza, M. A., Uchitel, O. D., &
Tomàs, J. (2003). Modulation of ACh release by presynaptic muscarinic
autoreceptors in the neuromuscular junction of the newborn and adult
rat. European Journal of Neuroscience , 17 (1), 119–127.
https://doi.org/10.1046/j.1460-9568.2003.02428.x
Santafé, M. M., Salon, I., Garcia, N., Lanuza, M. A., Uchitel, O. D., &
Tomàs, J. (2004). Muscarinic autoreceptors related with calcium channels
in the strong and weak inputs at polyinnervated developing rat
neuromuscular junctions. Neuroscience , 123 (1), 61–73.
https://doi.org/10.1016/j.neuroscience.2003.09.012
Seth, P., Cheeta, S., Tucci, S., & File, S. E. (2002).
Nicotinic-serotonergic interactions in brain and behaviour. InPharmacology Biochemistry and Behavior (Vol. 71, Issue 4, pp.
795–805). Elsevier Inc. https://doi.org/10.1016/S0091-3057(01)00715-8
Slutsky, I., Wess, J., Gomeza, J., Dudel, J., Parnas, I., & Parnas, H.
(2003). Use of knockout mice reveals involvement of M2-muscarinic
receptors in control of the kinetics of acetylcholine release.Journal of Neurophysiology , 89 (4), 1954–1967.
https://doi.org/10.1152/jn.00668.2002
Starke, K., Göthert, M., & Kilbinger, H. (1989). Modulation of
neurotransmitter release by presynaptic autoreceptors.Physiological Reviews , 69 (3), 864–989.
http://www.ncbi.nlm.nih.gov/pubmed/2568648
Stauderman, K. A., Mashaffi, L. S., M, A., Veliçelebi, G.,
Chavez-Noriega, L. E., Crona, J. H., Johnson, E. C., Elliott, K. J.,
Gillespie, A., Reid, R. T., Adams, P., Harpold, M. M., & Corey-Naeve,
J. (2000). Characterization of the recombinant human neuronal nicotinic
acetylcholine receptors α3β2 and α4β2 stably expressed in HEK293 cells.Neuropharmacology , 39 (13), 2543–2560.
https://doi.org/10.1016/S0028-3908(00)00134-9
Thesleff, S. (1958). A study of the interaction between neuromuscular
blocking agents and acetylcholine at the mammalian motor end-plate.Acta Anaesthesiologica Scandinavica , 2 (2), 69–79.
https://doi.org/10.1111/j.1399-6576.1958.tb05252.x
Tian, L., Prior, C., Dempster, J., & Marshall, I. G. (1994). Nicotinic
antagonist‐produced frequency‐dependent changes in acetylcholine release
from rat motor nerve terminals. The Journal of Physiology ,476 (3), 517–529. https://doi.org/10.1113/jphysiol.1994.sp020151
Urbano, F. J., Rosato-Siri, M. D., & Uchitel, O. D. (2002). Calcium
channels involved in neurotransmitter release at adult, neonatal and
P/Q-type deficient neuromuscular junctions. Molecular Membrane
Biology , 19 (4), 293–300.
https://doi.org/10.1080/0968768021000035087
Van der Kloot, W. (1993). Nicotinic agonists antagonize quantal size
increases and evoked release at frog neuromuscular junction. The
Journal of Physiology , 468 (1), 567–589.
https://doi.org/10.1113/jphysiol.1993.sp019789
Wang, X., Michael McIntosh, J., & Rich, M. M. (2018). Muscle nicotinic
acetylcholine receptors may mediate trans-synaptic signaling at the
mouse neuromuscular junction. Journal of Neuroscience ,38 (7), 1725–1736. https://doi.org/10.1523/JNEUROSCI.1789-17.2018
Wheeler, D. G., Barrett, C. F., & Tsien, R. W. (2006). L-type calcium
channel ligands block nicotine-induced signaling to CREB by inhibiting
nicotinic receptors. Neuropharmacology , 51 (1), 27–36.
https://doi.org/10.1016/j.neuropharm.2006.02.010
Wonnacott, S. (2014). Nicotinic ACh receptors. Tocris Scientific
Review Series , 1–31.
Zhilyakov, N. V., Khaziev, E. F., Latfullin, A. R., Malomouzh, A. I.,
Bukharaeva, E. A., Nikolsky, E. E., & Samigullin, D. V. (2019). Changes
in calcium levels in motor nerve endings in mice on activation of
metabotropic cholinoreceptors and GABA receptors. Neuroscience and
Behavioral Physiology , 49 (9), 1092–1095.
https://doi.org/10.1007/s11055-019-00844-7