References
Affholder, M.C., Weiss, D.J., Wissuwa, M., Johnson-Beebout, S. & Kirk, G.J.D. 2017. Soil CO2 venting as one of the mechanisms for tolerance of Zn deficiency by rice in flooded soils. Plant Cell & Environment, 40, 3018–3030, doi:10.1111/pce.13069.
Ando, T., Yoshida, S. & Nishiyama, I. 1983. Nature of oxidizing power of rice roots. Plant and Soil72 , 57–71.
Aung, M.S., Kobayashi, T., Masuda, H. & Nishizawa, N.K. 2018b. Rice HRZ ubiquitin ligases are crucial for the response to excess iron.Physiologia Plantarum , 163 , 282–296.
Aung, M. S. & Masuda, H. 2020. How does rice defend against excess iron?: Physiological and molecular mechanisms. Frontiers in Plant Science, 11, 1102 https://doi.org/10.3389/fpls.2020.01102.
Aung, M.S., Masuda, H., Kobayashi, T. & Nishizawa, N.K. 2018a. Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Science and Plant Nutrition, 64, 370–385.
Balkos, K.D., Britto, D.T. & Kronzucker, H.J. 2010. Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72). Plant Cell & Environment, 33,23–34.
Bashir, K., Ishimaru, Y. & Nishizawa, N.K. 2012. Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil, 361 , 189–201.
Becker, M. & Asch, F. 2005. Iron toxicity in rice—conditions and management concepts. Journal of Plant Nutrition & Soil Science, 168 , 558–573.
Becker, M., Ngo, N.S. & Schenk, M.K.A. 2020. Silicon reduces the iron uptake in rice and induces iron homeostasis related genes.Scientific Reports, 10, 5079. doi.org/10.1038/s41598-020-6171.
Begg, C.B.M., Kirk, G.J.D., Mackenzie, A.F. & Neue, H.-U. 1994. Root‐induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytologist128 , 469–477.
Benckiser, G., Santiago, S., Neue, H.U., Watanabe, I. & Ottow, J.C.G. 1984. Effect of fertilization on exudation, dehydrogenase activity, iron-reducing populations and Fe++ formation in the rhizosphere of rice (Oryza sativa L.) in relation to iron toxicity. Plant and Soil79 , 305–316.
Bierschenk, B., Tagele, M.T., Ali, B., Ashrafuzzaman, M.D., Wu, L.B., Becker, M. & Frei, M. 2020. Evaluation of rice wild relatives as a source of traits for adaptation to iron toxicity and enhanced grain quality. PloS One15 , e0223086.
Briat, J.-F., Ravet, K., Arnaud, N., Duc, C., Boucherez, J., Touraine, B., … & Gaymard, F. 2010. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Annals of Botany, 105, 811–822.
Britto, D.T. & Kronzucker, H.J. 2005. Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms.Plant Cell & Environment, 38, 1396–1409.
Broadley, M., Brown, P., Cakmak, I., Ma, J.F., Rengel, Z. & Zhao, F.-J. 2012. Beneficial elements. Pages 249–268 in Marschner, P. (ed.)Marschner’s mineral nutrition of higher plants , 3rd edn. London: Academic Press.
Bughio, N., Yamaguchi, H., Nishizawa, N.K., Nakanishi, H. & Mori, S. 2002. Cloning an iron-regulated metal transporter from rice.Journal of Experimental Botany, 53, 1677–1682.
Chalmardi, Z.K., Abdolzadeh, A. & Sadeghipour, H.R. 2014. Silicon nutrition potentiates the antioxidant metabolism of rice plants under iron toxicity. Acta Physiologiae Plantarum, 36, 493–502.
da Silveira, V.C., Fadanelli, C., Sperotto, R.A., Stein, R.J., Basso, L.A. & Santos, D.S, … & Fett, J.P. 2009. Role of ferritin in the rice tolerance to iron overload. Scientia Agricola, 66, 549–555.
Diop, B., Wang, D.R., Dramé, K.-N., Gracen, V., Tongoona, P. … & McCouch, S.R. 2020. Bridging old and new: diversity and evaluation of high iron-associated stress response of rice cultivated in West Africa. Journal of Experimental Botany71 , 4188–4200.
Dobermann, A. & Fairhurst, T. 2000. Rice nutrient disorders and nutrient management . Singapore: Potash and Phosphate Institute, and Manila: International Rice Research Institute.
dos Santos, M.S., Sanglard, L.M., Barbosa, M.L., Namorato, F.A., de Melo, D.C., Franco, W.C., Pérez–Molina, J.P., Martins, S.C. & DaMatta, F.M. 2020. Silicon nutrition mitigates the negative impacts of iron toxicity in rice photosynthesis and grain yield. Ecotoxicology and Environmental Safety, 189 , 10008.
Dramé K.-N., Saito K., Koné B., Chabi A., Dakouo D., Annan-Afful E., … & Sié, M. 2011. Coping with iron toxicity in the lowlands of sub-Saharan Africa: experience from Africa rice center. In Proceedings of the 2nd Africa Rice Congress, Innovation and Partnerships to Realize Africa’s Rice Potential , (Bamako: Africa Rice Center), 191–198.
Dufey, I., Gheysens, S., Ingabire, A., Lutts, S. & Bertin, P. 2014. Silicon application in cultivated rices (Oryza sativa L and Oryza glaberrima Steud) alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. Journal of Agronomy and Crop Science, 200 , 132–142.
Dufey, I., Draye, X., Lutts, S., Lorieux, M., Martinez, C. & Bertin, P. 2015. Novel QTLs in an interspecific backcross Oryza sativa ×Oryza glaberrima for resistance to iron toxicity in rice.Euphytica, 204, 609–625.
Engel, K., Asch, F. & Becker, M. 2012. Classification of rice genotypes based on their mechanisms of adaptation to iron toxicity. Journal of Plant Nutrition and Soil Science175 , 871–881.
Finatto, T., Oliveira, A.C., Chaparro, C., Maia, L.C., Farias, D.R., Woyann, L.G. … & Picault, N. 2015. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron in rice. Rice, 8, 13. doi: 10.1186/s12284-015-0045-6.
Frei, M., Tetteh, R.N., Razafindrazaka, A.L., Fuh, M.A., Wu, L.-B. & Becker, M. 2016. Responses of rice to chronic and acute iron toxicity: genotypic differences and biofortification aspects. Plant and Soil, 408, 149–161.
Fu, Y.Q., Yang, X.J. & Shen, H. 2014. The physiological mechanism of enhanced oxidizing capacity of rice (Oryza sativa L.) roots induced by phosphorus deficiency. Acta Physiologiae Plantarum36 , 179–190.
Golldack, D., Quigley, F., Michalowski, C.B., Kamasani, U.R. & Bohnert, H.J. 2003. Salinity stress-tolerant and-sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Molecular Biology51 , 71–81.
Greenway, H., Armstrong, W. & Colmer, T.D. 2006. Conditions leading to high CO2 (>5 kPa) in waterlogged–flooded soils and possible effects on root growth and metabolism. Annals of Botany, 98, 9–32.
Grillet, L., Lan, P., Li, W., Mokkapati, G. & Schmidt, W. 2018. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nature Plants , 4 , 953–963.
Hauer-Jákli, M. & Tränkner, M. 2019. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defence: a systematic review and meta–analysis from 70 years of research. Frontiers in Plant Science10 , https://doi.org/10.3389/fpls.2019.00766.
Heuer S., Miézan K.M., Sié M. & Gaye S. 2004. Increasing biodiversity of irrigated rice in Africa by interspecific crossing of Oryza glaberrima  (Steud.) × O. sativa indica  (L.). Euphytica, 132,  31–40.
Howeler, R.H. 1973. Iron‐induced oranging disease of rice in relation to physico‐chemical changes in a flooded oxisol. Soil Science Society of America Journal37 , 898–903.
Inoue H., Higushi K., Takahashi M., Nakanishi H., Mori S. & Nishizawa N.K. 2003. Three rice nicotianamine synthase genes, OsNAS1,OsNAS2,and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. The Plant Journal, 36,366–381.
Inoue, H., Takahashi, M., Kobayashi, T., Suzuki, M., Nakanishi, H., Mori, S. & Nishizawa, N. 2008. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Molecular Biology, 66, 193–203.
Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K. Nakazono, M. … & Nishizawa, N.K. 2006. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+.The Plant Journal, 45, 335–346.
Jianguo, H. & Shuman, L.M. 1991. Phosphorus status and utilization in the rhizosphere of rice. Soil Science152 , 360–364.
Jugsujinda, A. & Patrick, W.H. Jr. 1993. Evaluation of toxic conditions associated with oranging symptoms of rice in a flooded Oxisol in Sumatra, Indonesia. Plant and Soil, 152, 237–243.
Kirk G.J.D. 2003. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytologist, 159, 185–194.
Kirk, G.J.D. 2004. The biogeochemistry of submerged soils.  Chichester, Wiley.
Kirk G.J.D., Ahmad A.R. & Nye P.H. 1990. Coupled diffusion and oxidation of ferrous iron in soils. II. A model of the diffusion and reaction of O2, Fe2+, H+ and HCO3- in soils and a sensitivity analysis of the model. Journal of Soil Science, 41, 411–431.
Kirk G.J.D. & Bajita J.B. 1995. Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytologist, 131, 129–137.
Kirk G.J.D., Boghi A., Affholder M.C., Keyes S.D., Heppell J. & Roose T. 2019. Soil carbon dioxide venting through rice roots. Plant Cell & Environment, 42, 3197–320. doi: 10.1111/pce.13638.
Kirk, G.J.D. & Du, L.V. 1997. Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency.New Phytologist, 135 , 191–200.
Kirk G.J.D. & Kronzucker H.J. 2005. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study.Annals of Botany, 96, 639–646.
Kirk G.J.D., Solivas J.L. & Alberto M.A. 2003. Effects of redox conditions on solute diffusion in soil. Eur. Journal of Soil Science, 54, 617–624.
Kobayashi, T., Itai, R.N., Aung, M.S., Senoura, T., Nakanishi, H. & Nishizawa, N.K. 2012. The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status.Plant Journal , 69 , 81–91.
Kobayashi, T., Nagano, A. J. & Nishizawa, N.K. 2021. Iron deficiency-inducible peptide-coding genes OsIMA1 and OsIMA2 positively regulate a major pathway of iron uptake and translocation in rice .Journal of Experimental Botany , 72 , 2196–2211.
Kobayashi, T., Nagasaka, S., Senoura, T., Itai, R.N., Nakanishi, H. & Nishizawa, N.K. 2013. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nature Communications , 4 , 2792.
Kobayashi, T., Ogo, Y., Itai, R.N., Nakanishi, H., Takahashi, M., Mori, S. & Nishizawa, N. K. 2007. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants.Proceedings of the National Academy of Sciences of the United States of America , 104 , 19150–19155.
Kobayashi, N.I., Ogura, T., Takagi, K., Sugita, R., Suzuki, H., Iwata, R., Nakanishi, T.M. & Tanoi, K. 2018. Magnesium deficiency damages the youngest mature leaf in rice through tissue-specific iron toxicity. Plant and Soil428 , 137–152.
Kosegarten, H., Hoffmann, B., Rroco, E., Grolig, F., Glüsenkamp, K.H. & Mengel, K. 2004. Apoplastic pH and FeIII reduction in young sunflower (Helianthus annuus ) roots. Physiologia Plantarum, 122,95–106.
Kronzucker, H.J., Glass, A.D.M., Siddiqi, M.Y. & Kirk, G.J.D. 2000. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytologist, 145, 471–476.
Li, G., Kronzucker, H.J. & Shi, W. 2016a. Root developmental adaptation to Fe toxicity: Mechanisms and management. Plant Signalling & Behaviour, 11 , e1117722
Li, G., Kronzucker, H.J. & Shi, W. 2016b. The response of the root apex in plant adaptation to iron heterogeneity in soil. Frontiers in Plant Science 7, 344. doi:10.3389/fpls.2016.00344.
Li, J., Long, Y., Qi, G.N., Li, J., Xu, Z.J., Wu, W.H. & Wang, Y. 2014. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. The Plant Cell26 , 3387–3402.
Li, B., Sun, L., Huang, J., Göschl, C., Shi, W., Chory, J. & Busch, W. 2019. GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity. Nature Communications , 10 , 3896.
Linares, O.F. 2002. African rice (Oryza glaberrima ): history and future potential. Proceedings of the National Academy of Science, USA, 99,  16360–16365.
Majerus, V., Bertin, P. & Lutts, S. 2009. Abscisic acid and oxidative stress implications in overall ferritin synthesis by African rice (Oryza glaberrima Steud.) seedlings exposed to short term iron toxicity. Plant and Soil, 324, 253–265.
Matthus, E., Wu, L.-B., Ueda, Y. Höller, S., Becker, M. & Frei, M. 2015. Loci, genes, and mechanisms associated with tolerance to ferrous iron toxicity in rice (Oryza sativa L.). Theoretical & Applied Genetics, 128, 2085–2098.
Melandri, G., Sikirou, M., Arbelaez, J. D., Shittu, A., Semwal, V. K. … & McCouch, S. R. 2021. Multiple small-effect alleles of Indica  origin enhance high iron-associated stress tolerance in rice under field conditions in West Africa. Frontiers in Plant Science11 , 604938.
Mongon, J., Konnerup, D. Colmer, T.D. & Rerkasem, B. 2014. Responses of rice to Fe2+ in aerated and stagnant conditions: growth, root porosity and radial oxygen loss barrier. Functional Plant Biology 41, 922–929. doi.org/10.1071/FP13359.
Moore, K.L., Chen, Y., van de Meene, A.M.L., Hughes, L., Liu, W., Geraki T. … & Zhao F.-J. 2014. Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytologist, 201,104–115.
Narteh, N.T. & K.L. Sahrawat, K.L. 1999. Influence of flooding on electrochemical and chemical properties of West African soils.Geoderma, 87, 179–207.
Ndjiondjop, M.N., Semagn, K., Sow, M., Manneh, B., Gouda, A.C. … & Warburton, M.L. 2018. Assessment of genetic variation and population structure of diverse rice genotypes adapted to lowland and upland ecologies in Africa using SNPs. Frontiers in Plant Science, 9,446.
Nozoe, T., Agbisit, R., Fukuta, Y., Rodriguez, R. & Yanagihara, S. 2004. The Iron (Fe)-excluding power of rice roots as a mechanism of tolerance of elite breeding lines to iron toxicity. In Fisher, T. (ed.)Proceedings for the 4th International Crop Science Congress, Brisbane, Australia, 26 September – 1 October 2004 .
Pawar, S., Pandit, E., Mohanty, I.C., Saha, D. & Pradhan, S.K. 2021. Population genetic structure and association mapping for iron toxicity tolerance in rice. PLoS ONE, 16, e0246232
Ponnamperuma, F.N. (1972). The chemistry of submerged soils.Advances in Agronomy, 24, 29–96.
Quinet, M., Vromman, D., Clippe, A., Bertin, P., Lequeux, H., Dufey, I., Lutts, S. & Lefevre, I. 2012. Combined transcriptomic and physiological approaches reveal strong differences between short‐ and long‐term response of rice (Oryza sativa ) to iron toxicity. Plant Cell & Environment35 , 1837–1859.
Rakotoson, T., Ergezinger, L., Rajoandraina, T, Razafimbelo, T., Wu, L.-B. & Frei, M. 2019. Physiological investigations of management and genotype options for adapting rice production to iron toxicity in Madagascar. Journal or Plant Nutrition and Soil Science 182,145–155. https://doi.org/10.1002/jpln.201800621.
Ramírez, L.M., Claassen, N. Ubiera, A.A., Werner, H. & Moawad, A.M. 2002. Effect of phosphorus, potassium and zinc fertilizers on iron toxicity in wetland rice (Oryza sativa L.). Plant and Soil 239, 197–206.
Rasheed, A., Hassan, M.U., Aamer, M., Bian, J.M., Xu, Z.R., He, X.F., & Wu, Z.M. 2020. Iron toxicity, tolerance and quantitative trait loci mapping in rice: a review. Applied Ecology and Environmental Research, 18, 7483–7498.
Rodenburg, J., Zwartb, S.J., Kiepe, P., Narteh, L.T., Dogbe, W. & Wopereis, M.C.S. 2014. Sustainable rice production in African inland valleys: Seizing regional potentials through local approaches.Agricultural Systems, 123, 1–11.
Rose, T.J., Impa, S.M., Rose, M.T., Pariasca-Tanaka, J., Mori, A., Heuer, S., Johnson-Beebout, S.E. & Wissuwa, M. 2013. Enhancing phosphorus and zinc acquisition eefficiency in rice: a critical review of root traits and their potential utility in rice breeding.Annals of Botany, 112, 331–345.
Sahrawat, K.L. 2000. Elemental composition of the rice plant as affected by iron toxicity under field conditions. Communications in Soil Science and Plant Analysis 31, 2819–2827.
Sahrawat, K.L. 2005. Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition27 , 1471–1504.
Sahrawat, K.L., Mulbah, C.K., Diatta, S., Delaune, R.D., Patrick Jr, D., Singh, B.N. & Jones, M.P. 1996. The role of tolerant genotypes and plant nutrients in the management of iron toxicity in lowland rice. Journal of Agricultural Science126 , 143–149.
Saleque, M.A. & Kirk, G.J.D. 1995. Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytologist, 129, 325–336.
Selote, D., Samira, R., Matthiadis, A., Gillikin, J. W., & Long, T.A. 2015. Iron-binding e3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiology , 167 , 273–286.
Sié, M., Sanni, K., Futakuchi, K., Manneh, B., Mandé, S., Vodouhe, R., Dogbe, S, Dramé, K.-N., Ogunbayo, A., Ndjiondjop, M. & Traore, K. 2012. Towards a rational use of African rice (Oryza glaberrima Steud.) for breeding in Sub-Saharan Africa. Genes, Genomes and Genomics, 6, 1–7.
Sikirou, M., Saito, K., Achigan-Dako, E.G., Dramé, K.N., Adam, A. & Venuprasad, R. 2015. Genetic improvement of iron toxicity tolerance in rice-Progress, Challenges and Prospects in West Africa. Plant Production Science, 18, 423–424.
Sikirou, M., Shittu, A., Konaté, K. A., Maji, A. T., Ngaujah, A. S., Sanni, K. A. … & Venuprasad, R. 2018. Screening African rice (Oryza glaberrima ) for tolerance to abiotic stresses: I. Fe toxicity. Field Crops Research, 220, 3–9. doi: 10.1016/j.fcr.2016.04.016
Souza–Santos, P., Ramos, R.S., Ferreira, S.T. & Carvalho–Alves, P.C. 2001. Iron-induced oxidative damage of corn root plasma membrane H+-ATPase. Biochimica et Biophysica Acta1512 , 357–366.
Stein, R.J., Ricachenevsky, F.K. & Fett, J.P. 2009. Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2).Plant Science, 177, 563–569.
Stein, R.J., Ricachenevsky, F.K. & Fett, J.P. 2014. Iron toxicity in field-cultivated rice: contrasting tolerance mechanisms in distinct cultivars. Theoretical and Experimental Plant Physiology, 26,135–146.
Suriyagoda, L.D., Tränkner, M. & Dittert, K. 2020. Effects of potassium nutrition and water availability on iron toxicity of rice seedlings.Journal of Plant Nutrition, 43 , 2350–2367.
van Mensvoort, M.E., Lantin, R.S., Brinkman, R. & Van Breemen, N. 1985. Toxicities of wetland soils. Pages 123–138 in Wetland soils: characterization, classification, and utilization. International Rice Research Institute, Manila.
Vandamme, E., Ahouanton, K., Mwakasege, L., Mujuni, S., Mujawamariya, G., Kamanda, J., Senthilkumar, K. & Saito, K. 2018. Phosphorus micro-dosing as an entry point to sustainable intensification of rice systems in sub-Saharan Africa. Field Crops Research, 222, 39–49.
Wairich, A., de Oliveira, B.H.N., Wu, L.B., Murugaiyan, V., Margis-Pinheiro, M., Fett, J.P., Ricachenevsky, F.K. & Frei, M. 2021. Chromosomal introgressions from Oryza meridionalis into domesticated rice Oryza sativa result in iron tolerance. Journal of Experimental Botany72 , 2242–2259.
Wu, L.-B., Holtkamp, H., Wairich, A. & Frei, M. 2019. Potassium ion channel gene OsAKT1 affects iron translocation in rice plants exposed to iron toxicity. Frontiers in Plant Science 10, 579. doi: 10.3389/fpls.2019.00579.
Wu, L.-B., Shhadi, M.Y., Gregorio, G., Matthus, E., Becker, M. & Frei, M. 2014. Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7 , 8. www.thericejournal.com/content/7/1/8.
Wu, L.-B., Ueda, Y., Lai, S.K. & Frei, M. 2017. Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.). Plant Cell & Environment40 , 570–584.
Yamanouchi, M. & Yoshida, S. 1981. Physiological mechanisms of rice‘s tolerance for iron toxicity. Paper presented at the IRRI Saturday Seminar, June 6, 1981. Manila: International Rice Research Institute.
Yamauchi, M. 1989. Rice bronzing in Nigeria caused by nutrient imbalances and its control by potassium sulfate application. Plant and Soil, 117 , 275–286.
Yamauchi, M. & Peng, X.X. 1995. Iron toxicity and stress-induced ethylene production in rice leaves. Plant and Soil, 173 , 21–28.
Yamauchi, T., Colmer, T.D., Pederson, O. & Nakazono, M. 2018. Regulation of root traits for internal aeration and tolerance of waterlogging-flooding stress. Plant Physiology, 176, 118–1130.
Yoshida, S. 1981. Fundamentals of rice crop science. Manila: International Rice Research Institute.
Zhang, H., Li, Y., Yao, X., Liang, G., & Yu, D. 2017. POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, facilitates iron homeostasis.Plant Physiology , 175 , 543–554.
Zhang, X.K., Zhang, F.S. & Mao, D.R. 1996. Effect of root iron plaque on zinc uptake by rice plant. Chinese Acta Applied Ecology , 7, 262–266.
Zhang, X., Zhang, F. & Mao, D. 1999. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): Phosphorus uptake.Plant and Soil , 209, 187–192.