References
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology , 215 (3), 403–410. doi: 10.1016/S0022-2836(05)80360-2
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., … Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing.Journal of Computational Biology , 19 (5), 455–477. doi: 10.1089/cmb.2012.0021
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software , 67 (1–48).
Becker, N. S., Margos, G., Blum, H., Krebs, S., Graf, A., Lane, R. S., … Fingerle, V. (2016). Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genomics , 17 (1), 734–746. Retrieved from http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-3016-4
Becker, N. S., Rollins, R. E., Nosenko, K., Paulus, A., Martin, S., Krebs, S., … Margos, G. (2020). High conservation combined with high plasticity: Genomics and evolution of Borrelia bavariensis .BMC Genomics , 21 , 702. doi: 10.1186/s12864-020-07054-3
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics ,30 (15), 2114–2120. doi: 10.1093/bioinformatics/btu170
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics , 10 , 1–9. doi: 10.1186/1471-2105-10-421
Casjens, S., & Huang, W. M. (1993). Linear chromosomal physical and genetic map of Borrelia burgdorferi , the Lyme disease agent.Molecular Microbiology , 8 (5), 967–980. doi: 10.1111/j.1365-2958.1993.tb01641.x
Casjens, S. R., Di, L., Akther, S., Mongodin, E. F., Luft, B. J., Schutzer, S. E., … Qiu, W. G. (2018). Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics , 19 (1), 1–24. doi: 10.1186/s12864-018-4597-x
Casjens, S. R., Mongodin, E. F., Qiu, W. G., Luft, B. J., Schutzer, S. E., Gilcrease, E. B., … Fraser, C. M. (2012). Genome stability of Lyme disease spirochetes: Comparative genomics of Borrelia burgdorferi plasmids. PLoS ONE , 7 (3). doi: 10.1371/journal.pone.0033280
Comstedt, P, Bergstrom, S., Olsen, B., Garpmo, U., Marjavaara, L., Mejlon, H., … Bunikis, J. (2006). Migratory passerine birds as reserviors of Lyme borreliosis in Europe. Emerging Infectious Diseases , 12 (7), 1087–1095.
Comstedt, Pär, Asokliene, L., Eliasson, I., Olsen, B., Wallensten, A., Bunikis, J., & Bergström, S. (2009). Complex population structure of Lyme borreliosis group spirochete Borrelia garinii in subarctic Eurasia. PLoS ONE , 4 (6). doi: 10.1371/journal.pone.0005841
Comstedt, Pär, Bergström, S., Olsen, B., Garpmo, U., Marjavaara, L., Mejlon, H., … Bunikis, J. (2006). Migratory passerine birds as reservoirs of Lyme borreliosis in Europe. Emerging Infectious Diseases , 12 (7), 1087–1095.
Comstedt, Pär, Jakobsson, T., & Bergström, S. (2011). Global ecology and epidemiology of Borrelia garinii spirochetes. Infection Ecology & Epidemiology , 1 (1), 9545. doi: 10.3402/iee.v1i0.9545
Delcher, A. L., Phillippy, A., Carlton, J., & Salzberg, S. L. (2002). Fast algorithms for large-scale genome alignment and comparison.Nucleic Acids Research , 30 (11), 2478–2483. doi: 10.1093/nar/30.11.2478
Dulebohn, D. P., Bestor, A., & Rosa, P. A. (2013). Borrelia burgdorferi linear plasmid 28-3 confers a selective advantage in an experimental mouse-tick infection model. Infection and Immunity ,81 (8), 2986–2996. doi: 10.1128/IAI.00219-13
Eisen, L. (2020). Vector competence studies with hard ticks andBorrelia burgdorferi sensu lato spirochetes: A review.Ticks and Tick-Borne Diseases , 11 (3), 101359. doi: 10.1016/j.ttbdis.2019.101359
Ellis, T. C., Jain, S., Linowski, A. K., Rike, K., Bestor, A., Rosa, P. A., … Jewett, M. W. (2013). In Vivo Expression Technology Identifies a Novel Virulence Factor Critical for Borrelia burgdorferi Persistence in Mice. PLoS Pathogens , 9 (8). doi: 10.1371/journal.ppat.1003567
Embers, M. E., Alvarez, X., Ooms, T., & Philipp, M. T. (2008). The failure of immune response evasion by linear plasmid 28-1-deficientBorrelia burgdorferi is attributable to persistent expression of an outer surface protein. Infection and Immunity , 76 (9), 3984–3991. doi: 10.1128/IAI.00387-08
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data Laurent.Genetics , 131 , 479–491. doi: 10.3354/meps198283
Fraser, C., Casjens, S., & Huang, W. (1997). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi . Nature ,390 (December), 580–586. doi: doi:10.1038/37551
Gallais, F., De Martino, S. J., Sauleau, E. A., Hansmann, Y., Lipsker, D., Lenormand, C., … Schramm, F. (2018). Multilocus sequence typing of clinical Borreliella afzelii strains: Population structure and differential ability to disseminate in humans.Parasites and Vectors , 11 (1), 1–13. doi: 10.1186/s13071-018-2938-x
Gatzmann, F., Metzler, D., Krebs, S., Blum, H., Sing, A., Takano, A., … Becker, N. S. (2015). NGS population genetics analyses reveal divergent evolution of a Lyme Borreliosis agent in Europe and Asia.Ticks and Tick-Borne Diseases , 6 (3), 344–351.
Gelman, A., & Su, Y.-S. (2016). arm: Data Analysis Using Regression and Multilevel/Hierarchical Models . Retrieved from https://cran.r-project.org/package=arm
Gómez-Díaz, E., Boulinier, T., Sertour, N., Cornet, M., Ferquel, E., & McCoy, K. D. (2011). Genetic structure of marine Borrelia gariniiand population admixture with the terrestrial cycle of Lyme borreliosis.Environmental Microbiology , 13 (9), 2453–2467. doi: 10.1111/j.1462-2920.2011.02515.x
Grimm, D., Eggers, C. H., Caimano, M. J., Tilly, K., Stewart, P. E., Elias, A. F., … Rosa, P. A. (2004). Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infection and Immunity , 72 (10), 5938–5946. doi: 10.1128/IAI.72.10.5938-5946.2004
Grimm, D., Tilly, K., Bueschel, D. M., Fisher, M. A., Policastro, P. F., Gherardini, F. C., … Rosa, P. A. (2005). Defining plasmids required by Borrelia burgdorferi for colonization of tick vectorIxodes scapularis (Acari: Ixodidae). Journal of Medical Entomology , 42 (4), 676–684. doi: 10.1093/jmedent/42.4.676
Heylen, D., Matthysen, E., Fonville, M., & Sprong, H. (2014). Songbirds as general transmitters but selective amplifiers of Borrelia burgdorferi sensu lato genotypes in Ixodes rinicus ticks.Environmental Microbiology , 16 (9), 2859–2868. doi: 10.1111/1462-2920.12304
Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics ,132 (2), 583–589. doi: 10.1093/genetics/132.2.583
Hudson, Richard R, & Kaplan, N. L. (1985). Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics , 111 , 147–164.
Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics , 17 (8), 754–755. doi: 10.1093/bioinformatics/17.8.754
Ishiguro, F., Takada, N., & Masuzawa, T. (2005). Molecular evidence of the dispersal of Lyme disease Borrelia from the Asian continent to Japan via migratory birds. Japanese Journal of Infectious Diseases , 58 (3), 184–186.
Kamvar, Z. N., Brooks, J. C., & Grünwald, N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in Genetics , 6 , 208. doi: 10.3389/fgene.2015.00208
Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research , 30 (14), 3059–3066.
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability.Molecular Biology and Evolution , 30 (4), 772–780. doi: 10.1093/molbev/mst010
Kovalev, S. Y., & Mukhacheva, T. A. (2014). Tick-borne encephalitis virus subtypes emerged through rapid vector switches rather than gradual evolution. Ecology and Evolution , 4 (22), 4307–4316. doi: 10.1002/ece3.1301
Kurtenbach, K., De Michelis, S., Etti, S., Schäfer, S. M., Sewell, H. S., Brade, V., & Kraiczy, P. (2002). Host association of Borrelia burgdorferi sensu lato - The key role of host complement. Trends in Microbiology , 10 (2), 74–79.
Kurtenbach, K., Hanincová, K., Tsao, J. I., Margos, G., Fish, D., & Ogden, N. H. (2006). Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature Reviews Microbiology , 4 (9), 660–669.
Kurtenbach, K., Sewell, H.-S., Ogden, N. H., Randolph, S. E., & Nuttall, P. A. (1998). Serum complement sensitivity as a key factor in Lyme disease ecology. Infection and Immunity , 66 (3), 1248–1251.
Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., & Salzberg, S. L. (2004). Versatile and open software for comparing large genomes. Genome Biology , 5 , R 12. Retrieved from http://www.tigr.org/software/mummer.
Lin, Y. P., Diuk-Wasser, M. A., Stevenson, B., & Kraiczy, P. (2020). Complement Evasion Contributes to Lyme Borreliae–Host Associations.Trends in Parasitology , 1–12.
Margos, G., Hepner, S., Mang, C., Marosevic, D., Reynolds, S. E., Krebs, S., … Fingerle, V. (2017). Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogenBorrelia burgdorferi . BMC Genomics , 18 (1), 422.
Margos, Gabriele, Fingerle, V., & Reynolds, S. (2019). Borrelia bavariensis : Vector Switch, Niche Invasion, and Geographical Spread of a Tick-Borne Bacterial Parasite. Frontiers in Ecology and Evolution , 7 (October), 1–20. doi: 10.3389/fevo.2019.00401
Margos, Gabriele, Gatewood, A. G., Aanensen, D. M., Hanincová, K., Terekhova, D., Vollmer, S. A., … Kurtenbach, K. (2008). MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi . Proceedings of the National Academy of Sciences of the United States of America ,105 (25), 8730–8735. Retrieved from www.pnas.org/cgi/content/full/
Margos, Gabriele, Vollmer, S. A., Cornet, M., Garnier, M., Fingerle, V., Wilske, B., … Kurtenbach, K. (2009). A new Borreliaspecies defined by multilocus sequence analysis of housekeeping genes.Applied and Environmental Microbiology , 75 (16), 5410–5416.
Margos, Gabriele, Vollmer, S. A., Ogden, N. H., & Fish, D. (2011). Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infection, Genetics and Evolution ,11 (7), 1545–1563.
Margos, Gabriele, Wilske, B., Sing, A., Hizo-Teufel, C., Cao, W. C., Chu, C., … Fingerle, V. (2013). Borrelia bavariensis sp. nov. is widely distributed in Europe and Asia. International Journal of Systematic and Evolutionary Microbiology , 63 (PART 11), 4284–4288.
Masuzawa, T. (2004). Terrestrial distribution of the Lyme borreliosis agent Borrelia burgdorferi sensu lato in East Asia.Japanese Journal of Infectious Diseases , 57 (6), 229–235.
Mongodin, E. F., Casjens, S. R., Bruno, J. F., Xu, Y., Drabek, E. F., Riley, D. R., … Luft, B. J. (2013). Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: Genome stability and adaptive radiation. BMC Genomics , 14 (1). doi: 10.1186/1471-2164-14-693
Munro, H. J., Ogden, N. H., Lindsay, L. R., Robertson, G. J., Whitney, H., & Lang, S. (2017). Evidence for Borrelia bavariensisInfections of Ixodes uriae within Seabird Colonies of the North Atlantic Ocean . 83 (20), 1–9.
Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biological Reviews , 85 (4), 935–956.
Nakao, M., Miyamoto, K., & Fukunaga, M. (1994). Lyme Disease Spirochetes in Japan: Enzootic Transmission Cycles in Birds, Rodents, and Ixodes persulcatus Ticks. The Journal of Infectious Diseases , 170 , 878–882.
Nei, M. (1987). Molecular Evolutionary Genetics . New York: Columbia University Press.
Norte, A. C., Ramos, J. A., Gern, L., Núncio, M. S., & Lopes de Carvalho, I. (2013). Birds as reservoirs for Borrelia burgdorferis.l. in Western Europe: Circulation of B. turdi and other genospecies in bird-tick cycles in Portugal. Environmental Microbiology , 15 (2), 386–397.
Norte, Ana Cláudia, Margos, G., Becker, N. S., Albino Ramos, J., Núncio, M. S., Fingerle, V., … Lopes de Carvalho, I. (2020). Host dispersal shapes the population structure of a tick-borne bacterial pathogen. Molecular Ecology , 29 (3), 485–501. doi: 10.1111/mec.15336
Paradis, E. (2010). Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics , 26 (3), 419–420. doi: 10.1093/bioinformatics/btp696
Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E., & Lercher, M. J. (2014). PopGenome: An efficient swiss army knife for population genomic analyses in R. Molecular Biology and Evolution , 31 (7), 1929–1936. doi: 10.1093/molbev/msu136
Pollack, R. J., Telford, S. R., & Spielman, A. (1993). Standardization of medium for culturing Lyme disease spirochetes. Journal of Clinical Microbiology , 31 (5), 1251–1255. doi: 10.1128/jcm.31.5.1251-1255.1993
Preac-Mursic, V., Wilske, B., & Schierz, G. (1986). EuropeanBorrelia burgdorferi Isolated from Humans and Ticks Culture Conditions and Antibiotic Susceptibility. Zentralblatt Für Bakteriologie, Mikrobiologie, Und Hygiene , 263 (1–2), 112–118.
R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology , 67 (5), 901–904. doi: 10.1093/sysbio/syy032
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology , 61 (3), 539–542. doi: 10.1093/sysbio/sys029
Smith, R. P., Muzaffar, S. Bin, Lavers, J., Lacombe, E. H., Cahill, B. K., Lubelczyk, C. B., … Rand, P. W. (2006). Borrelia garinii in seabird ticks (Ixodes uriae ), Atlantic Coast, North America. Emerging Infectious Diseases , 12 (12), 1909–1912. doi: 10.3201/eid1212.060448
Stanek, G., Fingerle, V., Hunfeld, K.-P., Jaulhac, B., Kaiser, R., Krause, A., … Gray, J. (2011). Lyme borreliosis: Clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect , 17 , 69–79.
Steere, A. C., Coburn, J., & Glickstein, L. (2004). The emergence of Lyme disease. Journal of Clinical Investigation , 113 (8), 1093–1101. doi: 10.1172/JCI21681
Tajima, F. (1989). Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics , 123 , 585–595.
Takano, A., Nakao, M., Masuzawa, T., Takada, N., Yano, Y., Ishiguro, F., … Kawabata, H. (2011). Multilocus sequence typing implicates rodents as the main reservoir host of human-pathogenic Borrelia garinii in Japan. Journal of Clinical Microbiology ,49 (5), 2035–2039. doi: 10.1128/JCM.02544-10
Tavaré, S. (1986). Some Probabilistic and Statistial Problems in the Analysis of DNA Sequences. Lectures on Mathematics in Teh Life Sciences , 17 , 57–86.
Vollmer, S. A., Bormane, A., Dinnis, R. E., Seelig, F., Dobson, A. D. M., Aanensen, D. M., … Margos, G. (2011). Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe.Environmental Microbiology , 13 (1), 184–192. doi: 10.1111/j.1462-2920.2010.02319.x
Walter, K. S., Carpi, G., Caccone, A., & Diuk-Wasser, M. A. (2017). Genomic insights into the ancient spread of Lyme disease across North America. Nature Ecology and Evolution , 1 (10), 1569–1576. doi: 10.1038/s41559-017-0282-8